Search results for: consumer data right
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25905

Search results for: consumer data right

25275 Social Entrepreneurship and Inclusive Growth

Authors: Sudheer Gupta

Abstract:

Approximately 4 billion citizens of the world live on the equivalent of less than $8 a day. This segment constitutes a $5 trillion global market that remains under-served. Multinational corporations have historically tended to focus their innovation efforts on the upper segments of the economic pyramid. The academic literature has also been dominated by theories and frameworks of innovation that are valid when applied to the developed markets and consumer segments, but fail to adequately account for the challenges and realities of new product and service creation for the poor. Theories of entrepreneurship developed in the context of developed markets similarly ignore the challenges and realities of operating in developing economies that can be characterized by missing institutions, missing markets, information and infrastructural challenges, and resource constraints. Social entrepreneurs working in such contexts develop solutions differently. In this talk, we summarize lessons learnt from a long-term research project that involves data collection from a broad range of social entrepreneurs in developing countries working towards solutions to alleviate poverty, and grounded theory-building efforts. We aim to develop a better understanding of consumers, producers, and other stakeholder involvement, thus laying the foundation to build a robust theory of innovation and entrepreneurship for the poor.

Keywords: poverty alleviation, social enterprise, social innovation, development

Procedia PDF Downloads 399
25274 Simulation and Hardware Implementation of Data Communication Between CAN Controllers for Automotive Applications

Authors: R. M. Kalayappan, N. Kathiravan

Abstract:

In automobile industries, Controller Area Network (CAN) is widely used to reduce the system complexity and inter-task communication. Therefore, this paper proposes the hardware implementation of data frame communication between one controller to other. The CAN data frames and protocols will be explained deeply, here. The data frames are transferred without any collision or corruption. The simulation is made in the KEIL vision software to display the data transfer between transmitter and receiver in CAN. ARM7 micro-controller is used to transfer data’s between the controllers in real time. Data transfer is verified using the CRO.

Keywords: control area network (CAN), automotive electronic control unit, CAN 2.0, industry

Procedia PDF Downloads 398
25273 Rating the Importance of Customer Requirements for Green Product Using Analytic Hierarchy Process Methodology

Authors: Lara F. Horani, Shurong Tong

Abstract:

Identification of customer requirements and their preferences are the starting points in the process of product design. Most of design methodologies focus on traditional requirements. But in the previous decade, the green products and the environment requirements have increasingly attracted the attention with the constant increase in the level of consumer awareness towards environmental problems (such as green-house effect, global warming, pollution and energy crisis, and waste management). Determining the importance weights for the customer requirements is an essential and crucial process. This paper used the analytic hierarchy process (AHP) approach to evaluate and rate the customer requirements for green products. With respect to the ultimate goal of customer satisfaction, surveys are conducted using a five-point scale analysis. With the help of this scale, one can derive the weight vectors. This approach can improve the imprecise ranking of customer requirements inherited from studies based on the conventional AHP. Furthermore, the AHP with extent analysis is simple and easy to implement to prioritize customer requirements. The research is based on collected data through a questionnaire survey conducted over a sample of 160 people belonging to different age, marital status, education and income groups in order to identify the customer preferences for green product requirements.

Keywords: analytic hierarchy process (AHP), green product, customer requirements for green design, importance weights for the customer requirements

Procedia PDF Downloads 243
25272 Improving the Statistics Nature in Research Information System

Authors: Rajbir Cheema

Abstract:

In order to introduce an integrated research information system, this will provide scientific institutions with the necessary information on research activities and research results in assured quality. Since data collection, duplication, missing values, incorrect formatting, inconsistencies, etc. can arise in the collection of research data in different research information systems, which can have a wide range of negative effects on data quality, the subject of data quality should be treated with better results. This paper examines the data quality problems in research information systems and presents the new techniques that enable organizations to improve their quality of research information.

Keywords: Research information systems (RIS), research information, heterogeneous sources, data quality, data cleansing, science system, standardization

Procedia PDF Downloads 157
25271 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research

Authors: Carla Silva

Abstract:

Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.

Keywords: data mining, research analysis, investment decision-making, educational research

Procedia PDF Downloads 358
25270 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data

Authors: Digvijaysingh S. Bana, Kiran R. Trivedi

Abstract:

This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.

Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data

Procedia PDF Downloads 464
25269 The Use of Social Media in the Recruitment Process as HR Strategy

Authors: Seema Sant

Abstract:

In the 21st century were four generation workforces are working, it’s crucial for organizations to build talent management strategy, as tech-savvy Gen Y has entered the work force. They are more connected to each other than ever – through the internet enabled Social media networks Social media has become important in today’s world. The users of such Social media sites have increased in multiple. From sharing their opinion for a brand/product to researching a company before going for an interview, making a conception about a company’s culture or following a Company’s updates due to sheer interest or for job vacancy, Work force today is constantly in touch with social networks. Thus corporate world has rightly realized its potential uses for business purpose. Companies now use social media for marketing, advertising, consumer survey, etc. For HR professionals, it is used for networking and connecting to the Talent pool- through Talent Community. Social recruiting is the process of sourcing or hiring candidates through the use of social sites such as LinkedIn, Facebook Twitter which provide them with an array of information about potential employee; this study represents an exploratory investigation on the role of social networking sites in recruitment. The primarily aim is to analyze the factors that can enhance the channel of recruitment used by of the recruiter with specific reference to the IT organizations in Mumbai, India. Particularly, the aim is to identify how and why companies use social media to attract and screen applicants during their recruitment processes. It also examines the advantages and limitations of recruitment through social media for employers. This is done by literature review. Further, the papers examine the recruiter impact and understand the various opportunities which have created due to technology, thus, to analyze and examine these factors, both primary, as well as secondary data, are collected for the study. The primary data are gathered from five HR manager working in five top IT organizations in Mumbai and 100 HR consultants’ i.e., recruiter. The data was collected by conducting a survey and supplying a closed-ended questionnaire. A comprehension analysis of the study is depicted through graphs and figures. From the analysis, it was observed that there exists a positive relationship between the level of employee recruited through social media and their organizational commitment. Finally the findings show that company’s i.e. recruiters are currently using social media in recruitment, but perhaps not as effective as they could be. The paper gives recommendations and conditions for success that can help employers to make the most out of social media in recruitment.

Keywords: recruitment, social media, social sites, workforce

Procedia PDF Downloads 179
25268 The Indicators of Excellent Supply Chain Management by Selected Companies in Ethiopia: A Comparative Qualitative Approach in Coca-Cola and Yousran International

Authors: Abdikarim Barqadle Igale

Abstract:

The main objective of this study is to find out the indicators of excellent supply chain management based on game theory. The study employed a survey design to collect data. A total of 268 respondents participated in this research. The results indicate that both companies (Coca-cola & Yousran International) managed to effectively use the physical and information flows but were different from the focus on the items in the two key areas. The Coca-cola, for instance, sustained to utilize the flows of excellent planning, starting from row materials, timing, transformation, transportation, and storage of goods to reach consumer’s hands on one side and solid linkage to strategic partners to plan and work together for long-term control of better day-to-day supply chains of goods and materials down to customers’ consumption on the other. Meanwhile, the Yousran International heavily concentrated on the physical side with moderate rapports with strategic partners for long-term improvement on supply chain. The study proposes that strong combination of effective use of both physical and information flows are good indicators of better supply chain management in today’s emerging companies.

Keywords: game theory, physical flow, supply chain management, indicators

Procedia PDF Downloads 285
25267 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 83
25266 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95
25265 Improved K-Means Clustering Algorithm Using RHadoop with Combiner

Authors: Ji Eun Shin, Dong Hoon Lim

Abstract:

Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.

Keywords: big data, combiner, K-means clustering, RHadoop

Procedia PDF Downloads 438
25264 Framework for Integrating Big Data and Thick Data: Understanding Customers Better

Authors: Nikita Valluri, Vatcharaporn Esichaikul

Abstract:

With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.

Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data

Procedia PDF Downloads 162
25263 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: text mining, topic extraction, independent, incremental, independent component analysis

Procedia PDF Downloads 309
25262 Open Data for e-Governance: Case Study of Bangladesh

Authors: Sami Kabir, Sadek Hossain Khoka

Abstract:

Open Government Data (OGD) refers to all data produced by government which are accessible in reusable way by common people with access to Internet and at free of cost. In line with “Digital Bangladesh” vision of Bangladesh government, the concept of open data has been gaining momentum in the country. Opening all government data in digital and customizable format from single platform can enhance e-governance which will make government more transparent to the people. This paper presents a well-in-progress case study on OGD portal by Bangladesh Government in order to link decentralized data. The initiative is intended to facilitate e-service towards citizens through this one-stop web portal. The paper further discusses ways of collecting data in digital format from relevant agencies with a view to making it publicly available through this single point of access. Further, possible layout of this web portal is presented.

Keywords: e-governance, one-stop web portal, open government data, reusable data, web of data

Procedia PDF Downloads 355
25261 Resource Framework Descriptors for Interestingness in Data

Authors: C. B. Abhilash, Kavi Mahesh

Abstract:

Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.

Keywords: RDF, interestingness, knowledge base, semantic data

Procedia PDF Downloads 162
25260 Forecasting Future Demand for Energy Efficient Vehicles: A Review of Methodological Approaches

Authors: Dimitrios I. Tselentis, Simon P. Washington

Abstract:

Considerable literature has been focused over the last few decades on forecasting the consumer demand of Energy Efficient Vehicles (EEVs). These methodological issues range from how to capture recent purchase decisions in revealed choice studies and how to set up experiments in stated preference (SP) studies, and choice of analysis method for analyzing such data. This paper reviews the plethora of published studies on the field of forecasting demand of EEVs since 1980, and provides a review and annotated bibliography of that literature as it pertains to this particular demand forecasting problem. This detailed review addresses the literature not only to Transportation studies, but specifically to the problem and methodologies around forecasting to the time horizons of planning studies which may represent 10 to 20 year forecasts. The objectives of the paper are to identify where existing gaps in literature exist and to articulate where promising methodologies might guide longer term forecasting. One of the key findings of this review is that there are many common techniques used both in the field of new product demand forecasting and the field of predicting future demand for EEV. Apart from SP and RP methods, some of these new techniques that have emerged in the literature in the last few decades are survey related approaches, product diffusion models, time-series modelling, computational intelligence models and other holistic approaches.

Keywords: demand forecasting, Energy Efficient Vehicles (EEVs), forecasting methodologies review, methodological approaches

Procedia PDF Downloads 489
25259 Data Mining Practices: Practical Studies on the Telecommunication Companies in Jordan

Authors: Dina Ahmad Alkhodary

Abstract:

This study aimed to investigate the practices of Data Mining on the telecommunication companies in Jordan, from the viewpoint of the respondents. In order to achieve the goal of the study, and test the validity of hypotheses, the researcher has designed a questionnaire to collect data from managers and staff members from main department in the researched companies. The results shows improvements stages of the telecommunications companies towered Data Mining.

Keywords: data, mining, development, business

Procedia PDF Downloads 497
25258 The Origins of Inflation in Tunisia

Authors: Narimen Rdhaounia Mohamed Kouni

Abstract:

Our aim in this paper is to identify the origins of inflation in Tunisia on the period from 1988 to 2018. In order to estimate the model, an ARDL methodology is used. We studied also the effect of informal economy on inflation. Indeed, we estimated the size of the informal economy in Tunisia based on Gutmann method. The results showed that there are three main origins of inflation. In fact, the first origin is the fiscal policy adopted by Tunisia, particularly after revolution. The second origin is the increase of monetary variables. Finally, informal economy played an important role in inflation.

Keywords: inflation, consumer price index, informal, gutmann method, ARDL model

Procedia PDF Downloads 82
25257 The Effects of Anthropomorphism on Complex Technological Innovations

Authors: Chyi Jaw

Abstract:

Many companies have suffered as a result of consumers’ rejection of complex new products and experienced huge losses in the market. Marketers have to understand what block from new technology adoption or positive product attitude may exist in the market. This research examines the effects of techno-complexity and anthropomorphism on consumer psychology and product attitude when new technologies are introduced to the market. This study conducted a pretest and a 2 x 2 between-subjects experiment. Four simulated experimental web pages were constructed to collect data. The empirical analysis tested the moderation-mediation relationships among techno-complexity, technology anxiety, ability, and product attitude. These empirical results indicate (1) Techno-complexity of an innovation is negatively related to consumers’ product attitude, as well as increases consumers’ technology anxiety and reduces their self-ability perception. (2) Consumers’ technology anxiety and ability perception towards an innovation completely mediate the relationship between techno-complexity and product attitude. (3) Product anthropomorphism is positively related to consumers’ attitude of new technology, and also significantly moderates the effect of techno-complexity in the hypothesized model. In this work, the study presents the moderation-mediation model and the effects of anthropomorphized strategy, which describes how managers can better predict and influence the diffusion of complex technological innovations.

Keywords: ability, anthropomorphic effect, innovation, techno-complexity, technology anxiety

Procedia PDF Downloads 191
25256 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain

Authors: Amal M. Alrayes

Abstract:

Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.

Keywords: data quality, performance, system quality, Kingdom of Bahrain

Procedia PDF Downloads 493
25255 A New Approach to Increase Consumer Understanding of Meal’s Quality – Food Focus Instead of Nutrient Focus

Authors: Elsa Lamy, Marília Prada, Ada Rocha, Cláudia Viegas

Abstract:

The traditional and widely used nutrition-focused approach to communicate with consumers is reductionist and makes it difficult for consumers to assess their food intake. Without sufficient nutrition knowledge and understanding, it would be difficult to choose a healthful diet based only on nutritional recommendations. This study aimed to evaluate the understanding of how food/nutritional information is presented in menus to Portuguese consumers, comparing the nutrient-focused approach (currently used Nutrition Declaration) and the new food-focused approach (the infographic). For data collection, a questionnaire was distributed online using social media channels. A main effect of format on ratings of meal balance and completeness (Fbalance(1,79) = 18.26, p < .001, ηp2 = .188; Fcompleteness(1,67) = 27.18, p < .001, ηp2 = .289). Overall, dishes paired with the nutritional information were rated as more balanced (Mbalance= 3.70, SE = .11; Mcompleteness = 4.00, SE = .14) than meals with the infographic representation (Mbalance = 3.14, SE = .11; Mcompleteness = 3.29, SE = .13). We also observed a main effect of the meal, F(3,237) = 48.90, p < .001, ηp2 = .382, such that M1 and M2 were perceived as less balanced than the M3 and M4, all p < .001. The use of a food-focused approach (infographic) helped participants identify the lack of balance in the less healthful meals (dishes M1 and M2), allowing for a better understanding of meals' compliance with recommendations contributing to better food choices and a healthier lifestyle.

Keywords: food labelling, food and nutritional recommendations, infographics, portions based information

Procedia PDF Downloads 79
25254 Cloud Computing in Data Mining: A Technical Survey

Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham

Abstract:

Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.

Keywords: cloud computing, data mining, computing models, cloud services

Procedia PDF Downloads 479
25253 Detection of Antibiotic Resistance Genes and Antibiotic Residues in Plant-based Products

Authors: Morello Sara, Pederiva Sabina, Bianchi Manila, Martucci Francesca, Marchis Daniela, Decastelli Lucia

Abstract:

Vegetables represent an integral part of a healthy diet due to their valuable nutritional properties and the growth in consumer demand in recent years is particularly remarkable for a diet rich in vitamins and micronutrients. However, plant-based products are involved in several food outbreaks connected to various sources of contamination and quite often, bacteria responsible for side effects showed high resistance to antibiotics. The abuse of antibiotics can be one of the main mechanisms responsible for increasing antibiotic resistance (AR). Plants grown for food use can be contaminated directly by spraying antibiotics on crops or indirectly by treatments with antibiotics due to the use of manure, which may contain both antibiotics and genes of antibiotic resistance (ARG). Antibiotic residues could represent a potential way of human health risk due to exposure through the consumption of plant-based foods. The presence of antibiotic-resistant bacteria might pose a particular risk to consumers. The present work aims to investigate through a multidisciplinary approach the occurrence of ARG by means of a biomolecular approach (PCR) and the prevalence of antibiotic residues using a multi residues LC-MS/MS method, both in different plant-based products. During the period from July 2020 to October 2021, a total of 74 plant samples (33 lettuces and 41 tomatoes) were collected from 57 farms located throughout the Piedmont area, and18 out of 74 samples (11 lettuces and 7 tomatoes) were selected to LC-MS/MS analyses. DNA extracted (ExtractME, Blirt, Poland) from plants used on crops and isolated bacteria were analyzed with 6 sets of end-point multiplex PCR (Qiagen, Germany) to detect the presence of resistance genes of the main antibiotic families, such as tet genes (tetracyclines), bla (β-lactams) and mcr (colistin). Simultaneous detection of 43 molecules of antibiotics belonging to 10 different classes (tetracyclines, sulphonamides, quinolones, penicillins, amphenicols, macrolides, pleuromotilines, lincosamides, diaminopyrimidines) was performed using Exion LC system AB SCIEX coupled to a triple quadrupole mass spectrometer QTRAP 5500 from AB SCIEX. The PCR assays showed the presence of ARG in 57% (n=42): tetB (4.8%; n=2), tetA (9.5%; n=4), tetE (2.4%; n=1), tetL (12%; n=5), tetM (26%; n=11), blaSHV (21.5%; n=9), blaTEM (4.8%; n =2) and blaCTX-M (19%; n=8). In none of the analyzed samples was the mcr gene responsible for colistin resistance detected. Results obtained from LC-MS/MS analyses showed that none of the tested antibiotics appear to exceed the LOQ (100 ppb). Data obtained confirmed the presence of bacterial populations containing antibiotic resistance determinants such as tet gene (tetracycline) and bla genes (beta-lactams), widely used in human medicine, which can join the food chain and represent a risk for consumers, especially with raw products. The presence of traces of antibiotic residues in vegetables, in concentration below the LOQ of the LC-MS/MS method applied, cannot be excluded. In conclusion, traces of antibiotic residues could be a health risk to the consumer due to potential involvement in the spread of AR. PCR represents a useful and effective approach to characterize and monitor AR carried by bacteria from the entire food chain.

Keywords: plant-based products, ARG, PCR, antibiotic residues

Procedia PDF Downloads 90
25252 The Study of Security Techniques on Information System for Decision Making

Authors: Tejinder Singh

Abstract:

Information system is the flow of data from different levels to different directions for decision making and data operations in information system (IS). Data can be violated by different manner like manual or technical errors, data tampering or loss of integrity. Security system called firewall of IS is effected by such type of violations. The flow of data among various levels of Information System is done by networking system. The flow of data on network is in form of packets or frames. To protect these packets from unauthorized access, virus attacks, and to maintain the integrity level, network security is an important factor. To protect the data to get pirated, various security techniques are used. This paper represents the various security techniques and signifies different harmful attacks with the help of detailed data analysis. This paper will be beneficial for the organizations to make the system more secure, effective, and beneficial for future decisions making.

Keywords: information systems, data integrity, TCP/IP network, vulnerability, decision, data

Procedia PDF Downloads 307
25251 Data Integration with Geographic Information System Tools for Rural Environmental Monitoring

Authors: Tamas Jancso, Andrea Podor, Eva Nagyne Hajnal, Peter Udvardy, Gabor Nagy, Attila Varga, Meng Qingyan

Abstract:

The paper deals with the conditions and circumstances of integration of remotely sensed data for rural environmental monitoring purposes. The main task is to make decisions during the integration process when we have data sources with different resolution, location, spectral channels, and dimension. In order to have exact knowledge about the integration and data fusion possibilities, it is necessary to know the properties (metadata) that characterize the data. The paper explains the joining of these data sources using their attribute data through a sample project. The resulted product will be used for rural environmental analysis.

Keywords: remote sensing, GIS, metadata, integration, environmental analysis

Procedia PDF Downloads 120
25250 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic

Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi

Abstract:

In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.

Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing

Procedia PDF Downloads 299
25249 Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data

Authors: Yu-Mi Song, Sung-Ah Kim, Dongyoun Shin

Abstract:

Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.

Keywords: big data, machine learning, ontology model, urban data model

Procedia PDF Downloads 418
25248 Implications on Informed Consent of Information Available to Patients on the Internet Regarding Hip and Knee Osteoarthritis

Authors: R. W. Walker, J. M. Lynch, K. Anderson, R. G. Middleton

Abstract:

Hip and knee arthritis are two of the commonest conditions that result in elective orthopaedic outpatient referral. At clinic appointments advice given regarding lifestyle modifications or treatment options may not be fully understood by patients. The majority of patients now use the internet to research their condition and use this to inform their decision about treatments. This study assessed the quality of patient information regarding hip and knee arthritis. To assess the quality of patient information regarding knee and hip arthritis available on the internet. Two internet searches were carried out one month apart using the search terms “knee arthritis” and “hip arthritis” on Google, a search engine that accounts for over 90% or internet searches in the UK. Sites were evaluated using the DISCERN instrument, a validated tool for measuring the quality of consumer health information. The first 50 results for each search were analysed by two different observers and discrepancies in scores were reviewed by both observers together and a score was agreed upon. In total 200 search result websites were assessed, of which 84 fulfilled the inclusion criteria. 53% (n=44) were funded directly by commercial healthcare businesses and of these, 70% (n=31) were funded by a surgeon/hospital promoting end-user purchase of surgical intervention. Overall 35% (n=29) websites were “for-profit” information websites where funding was from advertising revenues from pharmaceutical and prosthesis companies. 81% (n=67) offered information about surgical treatments however only 43% (n=36) mentioned the risk of complications of surgery. 67% (n=56) did not have any reference to sources for the information they detailed and 57% (n=47) had no apparent date for the production of the information they offered. Overall 17% (n=14) of websites were judged as being of high quality, with 29% (n=24) being of moderate quality and 54% (n=45) being of low quality. The quality of health information regarding hip and knee arthritis on the internet is highly variable and the majority of websites assessed were of poor quality. A preponderance of websites were funded by a commercial surgical service offering athroplasty at consumer cost, with a further third being funded indirectly via advertising revenues from commercial businesses. The vast majority of websites only mentioned surgery as a treatment and nearly half of all websites did not mention the risks or complications of surgical intervention at all. This has implications for the consent process. As such, Clinicians should be aware of the heterogeneous nature of patient information on the internet and be prepared to advise their patients about good quality websites where further reliable information can be sought.

Keywords: hip osteoarthritis, informed consent, knee osteoarthritis, patient information

Procedia PDF Downloads 93
25247 Data-driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship

Procedia PDF Downloads 328
25246 An Approach on the Design of a Solar Cell Characterization Device

Authors: Christoph Mayer, Dominik Holzmann

Abstract:

This paper presents the development of a compact, portable and easy to handle solar cell characterization device. The presented device reduces the effort and cost of single solar cell characterization to a minimum. It enables realistic characterization of cells under sunlight within minutes. In the field of photovoltaic research the common way to characterize a single solar cell or a module is, to measure the current voltage curve. With this characteristic the performance and the degradation rate can be defined which are important for the consumer or developer. The paper consists of the system design description, a summary of the measurement results and an outline for further developments.

Keywords: solar cell, photovoltaics, PV, characterization

Procedia PDF Downloads 421