Search results for: body image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6537

Search results for: body image

5907 Shaping the Image of Museum Events in the Digital Media Era: A Quantitative Analysis of the Cat-Themed ‘Night at the Museum’ Event

Authors: Shuyu Zhao

Abstract:

This study uses the cat-themed "Night at the Museum" event of the Shanghai Museum as a case to examine how museum events are portrayed across various digital news platforms. Grounded in communication and cultural creativity theories and employing a three-tier framing approach, this research provides an in-depth analysis of media strategies in cross-platform museum image building. Through a quantitative content analysis, it is investigated that how digital media employ specific narrative strategies to shape the public perception of museum events. The findings reveal a prevalent use of leadership framing, highlighting the museum's unique role in cultural dissemination. By combining elements of museum culture with a pet-friendly theme, the "catty Night at the Museum" event serves as a distinctive example in exploring museum image construction within digital media. This study sheds light on how museum events, as unique cultural arenas, are positioned in the public mind, offering a fresh perspective for the promotion and image-building of museum activities.

Keywords: cultural communication, digital media, museum, framing theory

Procedia PDF Downloads 18
5906 Automatic Moment-Based Texture Segmentation

Authors: Tudor Barbu

Abstract:

An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.

Keywords: image segmentation, moment-based, texture analysis, automatic classification, validation indexes

Procedia PDF Downloads 416
5905 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging

Procedia PDF Downloads 155
5904 MSG Image Encryption Based on AES and RSA Algorithms "MSG Image Security"

Authors: Boukhatem Mohammed Belkaid, Lahdir Mourad

Abstract:

In this paper, we propose a new encryption system for security issues meteorological images from Meteosat Second Generation (MSG), which generates 12 images every 15 minutes. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every 15 minutes that will be used to encrypt each frame of the MSG meteorological basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, satellite MSG, encryption, decryption, key, correlation

Procedia PDF Downloads 383
5903 Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique

Authors: Chalakorn Chitsaart, Suchada Rianmora, Noppawat Vongpiyasatit

Abstract:

In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.

Keywords: image processing technique, feature detections, surface registrations, capturing multi-view images, Production costs and Manufacturing processes

Procedia PDF Downloads 250
5902 Image Denoising Using Spatial Adaptive Mask Filter for Medical Images

Authors: R. Sumalatha, M. V. Subramanyam

Abstract:

In medical image processing the quality of the image is degraded in the presence of noise. Especially in ultra sound imaging and Magnetic resonance imaging the data was corrupted by signal dependent noise known as salt and pepper noise. Removal of noise from the medical images is a critical issue for researchers. In this paper, a new type of technique Adaptive Spatial Mask Filter (ASMF) has been proposed. The proposed filter is used to increase the quality of MRI and ultra sound images. Experimental results show that the proposed filter outperforms the implementation of mean, median, adaptive median filters in terms of MSE and PSNR.

Keywords: salt and pepper noise, ASMF, PSNR, MSE

Procedia PDF Downloads 436
5901 Two Years Retrospective Study of Body Fluid Cultures Obtained from Patients in the Intensive Care Unit of General Hospital of Ioannina

Authors: N. Varsamis, M. Gerasimou, P. Christodoulou, S. Mantzoukis, G. Kolliopoulou, N. Zotos

Abstract:

Purpose: Body fluids (pleural, peritoneal, synovial, pericardial, cerebrospinal) are an important element in the detection of microorganisms. For this reason, it is important to examine them in the Intensive Care Unit (ICU) patients. Material and Method: Body fluids are transported through sterile containers and enriched as soon as possible with Tryptic Soy Broth (TSB). After one day of incubation, the broth is poured into selective media: Blood, Mac Conkey No. 2, Chocolate, Mueller Hinton, Chapman and Saboureaud agar. The above selective media are incubated directly for 2 days. After this period, if any number of microbial colonies are detected, gram staining is performed. After that, the isolated organisms are identified by biochemical techniques in the automated Microscan system (Siemens) and followed by a sensitivity test on the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by Kirby Bauer-based plate test. Results: In 2017 the Laboratory of Microbiology received 60 samples of body fluids from the ICU. More specifically the Microbiology Department received 6 peritoneal fluid specimens, 18 pleural fluid specimens and 36 cerebrospinal fluid specimens. 36 positive cultures were tested. S. epidermidis was identified in 18 specimens, S. haemolyticus in 6, and E. faecium in 12. Conclusions: The results show low detection of microorganisms in body fluid cultures.

Keywords: body fluids, culture, intensive care unit, microorganisms

Procedia PDF Downloads 202
5900 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses

Authors: William Huang

Abstract:

Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.

Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization

Procedia PDF Downloads 152
5899 Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention

Authors: Mahbub C. Mishu, Venktesh N. Dubey, Tamas Hickish, Jonathan Cole

Abstract:

Pressure ulcer is a common problem for today's healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body,blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments.

Keywords: pressure ulcer, viscoelastic material, mathematical model, experimental validation

Procedia PDF Downloads 311
5898 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models

Authors: Keyi Wang

Abstract:

Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.

Keywords: deep learning, hand gesture recognition, computer vision, image processing

Procedia PDF Downloads 139
5897 Content-Based Color Image Retrieval Based on the 2-D Histogram and Statistical Moments

Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed

Abstract:

In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach can overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.

Keywords: 2-D histogram, statistical moments, indexing, similarity distance, histograms intersection

Procedia PDF Downloads 457
5896 Bone Mineral Density and Trabecular Bone Score in Ukrainian Men with Obesity

Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Dzerovych, Roksolana Povoroznyuk

Abstract:

Osteoporosis and obesity are widespread diseases in people over 50 years associated with changes in structure and body composition. Нigher body mass index (BMI) values are associated with greater bone mineral density (BMD). However, trabecular bone score (TBS) indirectly explores bone quality, independently of BMD. The aim of our study was to evaluate the relationship between the BMD and TBS parameters in Ukrainian men suffering from obesity. We examined 396 men aged 40-89 years. Depending on their BMI all the subjects were divided into two groups: Group I – patients with obesity whose BMI was ≥ 30 kg/m2 (n=129) and Group II – patients without obesity and BMI of < 30 kg/m2 (n=267). The BMD of total body, lumbar spine L1-L4, femoral neck and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1- L4 was assessed by means of TBS iNsight® software installed on DXA machine (product of Med-Imaps, Pessac, France). In general, obese men had a significantly higher BMD of lumbar spine L1-L4, femoral neck, total body and ultradistal forearm (p < 0.001) in comparison with men without obesity. The TBS of L1-L4 was significantly lower in obese men compared to non-obese ones (p < 0.001). BMD of lumbar spine L1-L4, femoral neck and total body significantly differ in men aged 40-49, 50-59, 60-69, and 80-89 years (p < 0.05). At the same time, in men aged 70-79 years, BMD of lumbar spine L1-L4 (p=0.46), femoral neck (p=0.18), total body (p=0.21), ultra-distal forearm (p=0.13), and TBS (p=0.07) did not significantly differ. A significant positive correlation between the fat mass and the BMD at different sites was observed. However, the correlation between the fat mass and TBS of L1-L4 was also significant, though negative.

Keywords: bone mineral density, trabecular bone score, obesity, men

Procedia PDF Downloads 463
5895 Aerodynamic Investigation of Rear Vehicle by Geometry Variations on the Backlight Angle

Authors: Saud Hassan

Abstract:

This paper shows simulation for the prediction of the flow around the backlight angle of the passenger vehicle. The CFD simulations are carried out on different car models. The Ahmed model “bluff body” used as the stander model to study aerodynamics of the backlight angle. This paper described the airflow over the different car models with different backlight angles and also on the Ahmed model to determine the trailing vortices with the varying backlight angle of a passenger vehicle body. The CFD simulation is carried out with the Ahmed body which has simplified car model mainly used in automotive industry to investigate the flow over the car body surface. The main goal of the simulation is to study the behavior of trailing vortices of these models. In this paper the air flow over the slant angle of 0,5o, 12.5o, 20o, 30o, 40o are considered. As investigating on the rear backlight angle two dimensional flows occurred at the rear slant, on the other hand when the slant angle is 30o the flow become three dimensional. Above this angle sudden drop occurred in drag.

Keywords: aerodynamics, Ahemd vehicle , backlight angle, finite element method

Procedia PDF Downloads 781
5894 Contrast Enhancement of Color Images with Color Morphing Approach

Authors: Javed Khan, Aamir Saeed Malik, Nidal Kamel, Sarat Chandra Dass, Azura Mohd Affandi

Abstract:

Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques.

Keywords: contrast enhacement, normalized RGB, adaptive histogram equalization, cumulative variance.

Procedia PDF Downloads 377
5893 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach

Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann

Abstract:

Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.

Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech

Procedia PDF Downloads 102
5892 A Neural Approach for Color-Textured Images Segmentation

Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui

Abstract:

In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.

Keywords: segmentation, color-texture, neural networks, fractal, watershed

Procedia PDF Downloads 346
5891 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes

Authors: Zineb Nougrara

Abstract:

In this paper, we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We, therefore, have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.

Keywords: satellite image, road network, nodes, image analysis and processing

Procedia PDF Downloads 274
5890 A Visual Inspection System for Automotive Sheet Metal Chasis Parts Produced with Cold-Forming Method

Authors: İmren Öztürk Yılmaz, Abdullah Yasin Bilici, Yasin Atalay Candemir

Abstract:

The system consists of 4 main elements: motion system, image acquisition system, image processing software, and control interface. The parts coming out of the production line to enter the image processing system with the conveyor belt at the end of the line. The 3D scanning of the produced part is performed with the laser scanning system integrated into the system entry side. With the 3D scanning method, it is determined at what position and angle the parts enter the system, and according to the data obtained, parameters such as part origin and conveyor speed are calculated with the designed software, and the robot is informed about the position where it will take part. The robot, which receives the information, takes the produced part on the belt conveyor and shows it to high-resolution cameras for quality control. Measurement processes are carried out with a maximum error of 20 microns determined by the experiments.

Keywords: quality control, industry 4.0, image processing, automated fault detection, digital visual inspection

Procedia PDF Downloads 113
5889 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique

Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu

Abstract:

Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.

Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing

Procedia PDF Downloads 101
5888 A Pilot Study of Influences of Scan Speed on Image Quality for Digital Tomosynthesis

Authors: Li-Ting Huang, Yu-Hsiang Shen, Cing-Ciao Ke, Sheng-Pin Tseng, Fan-Pin Tseng, Yu-Ching Ni, Chia-Yu Lin

Abstract:

Chest radiography is the most common technique for the diagnosis and follow-up of pulmonary diseases. However, the lesions superimposed with normal structures are difficult to be detected in chest radiography. Chest tomosynthesis is a relatively new technique to obtain 3D section images from a set of low-dose projections acquired over a limited angular range. However, there are some limitations with chest tomosynthesis. Patients undergoing tomosynthesis have to be able to hold their breath firmly for 10 seconds. A digital tomosynthesis system with advanced reconstruction algorithm and high-stability motion mechanism was developed by our research group. The potential for the system to perform a bidirectional chest scan within 10 seconds is expected. The purpose of this study is to realize the influences of the scan speed on the image quality for our digital tomosynthesis system. The major factors that lead image blurring are the motion of the X-ray source and the patient. For the fore one, an experiment of imaging a chest phantom with three different scan speeds, which are 6 cm/s, 8 cm/s, and 15 cm/s, was proceeded to understand the scan speed influences on the image quality. For the rear factor, a normal SD (Sprague-Dawley) rat was imaged with it alive and sacrificed to assess the impact on the image quality due to breath motion. In both experiments, the profile of the ROIs (region of interest) and the CNRs (contrast-to-noise ratio) of the ROIs to the normal tissue of the reconstructed images was examined to realize the degradations of the qualities of the images. The preliminary results show that no obvious degradation of the image quality was observed with increasing scan speed, possibly due to the advanced designs for the hardware and software of the system. It implies that higher speed (15 cm/s) than that of the commercialized tomosynthesis system (12 cm/s) for the proposed system is achieved, and therefore a complete chest scan within 10 seconds is expected.

Keywords: chest radiography, digital tomosynthesis, image quality, scan speed

Procedia PDF Downloads 332
5887 Thermoelectric Blanket for Aiding the Treatment of Cerebral Hypoxia and Other Related Conditions

Authors: Sarayu Vanga, Jorge Galeano-Cabral, Kaya Wei

Abstract:

Cerebral hypoxia refers to a condition in which there is a decrease in oxygen supply to the brain. Patients suffering from this condition experience a decrease in their body temperature. While there isn't any cure to treat cerebral hypoxia as of date, certain procedures are utilized to help aid in the treatment of the condition. Regulating the body temperature is an example of one of those procedures. Hypoxia is well known to reduce the body temperature of mammals, although the neural origins of this response remain uncertain. In order to speed recovery from this condition, it is necessary to maintain a stable body temperature. In this study, we present an approach to regulating body temperature for patients who suffer from cerebral hypoxia or other similar conditions. After a thorough literature study, we propose the use of thermoelectric blankets, which are temperature-controlled thermal blankets based on thermoelectric devices. These blankets are capable of heating up and cooling down the patient to stabilize body temperature. This feature is possible through the reversible effect that thermoelectric devices offer while behaving as a thermal sensor, and it is an effective way to stabilize temperature. Thermoelectricity is the direct conversion of thermal to electrical energy and vice versa. This effect is now known as the Seebeck effect, and it is characterized by the Seebeck coefficient. In such a configuration, the device has cooling and heating sides with temperatures that can be interchanged by simply switching the direction of the current input in the system. This design integrates various aspects, including a humidifier, ventilation machine, IV-administered medication, air conditioning, circulation device, and a body temperature regulation system. The proposed design includes thermocouples that will trigger the blanket to increase or decrease a set temperature through a medical temperature sensor. Additionally, the proposed design allows an efficient way to control fluctuations in body temperature while being cost-friendly, with an expected cost of 150 dollars. We are currently working on developing a prototype of the design to collect thermal and electrical data under different conditions and also intend to perform an optimization analysis to improve the design even further. While this proposal was developed for treating cerebral hypoxia, it can also aid in the treatment of other related conditions, as fluctuations in body temperature appear to be a common symptom that patients have for many illnesses.

Keywords: body temperature regulation, cerebral hypoxia, thermoelectric, blanket design

Procedia PDF Downloads 159
5886 Interactions of Socioeconomic Status, Age at Menarche, Body Composition and Bone Mineral Density in Healthy Turkish Female University Students

Authors: Betül Ersoy, Deniz Özalp Kizilay, Gül Gümüşer, Fatma Taneli

Abstract:

Introduction: Peak bone mass is reached in late adolescence in females. Age at menarche influences estrogen exposure, which plays a vital role in bone metabolism. The relationship between age at menarche and bone mineral density (BMD) is still controversial. In this study, we investigated the relationship between age at menarche, BMD, socioeconomic status (SES) and body composition in female university student. Participant and methods: A total of 138 healthy girls at late adolescence period (mean age 20.13±0.93 years, range 18-22) were included in this university school-based cross-sectional study in the urban area western region of Turkey. Participants have been randomly selected to reflect the university students studying in all faculties. We asked relevant questions about socioeconomic status and age at menarche to female university students. Students were grouped into three SES as lower, middle and higher according to the educational and occupational levels of their parents using Hollingshead index. Height and weight were measured. Body Mass Index (BMI) (kg/m2 ) was calculated. Dual energy X-ray absorptiometry (DXA) was performed using the Lunar DPX series, and BMD and body composition were evaluated. Results: The mean age of menarche of female university student included in the study was 13.09.±1.3 years. There was no significant difference between the three socioeconomic groups in terms of height, body weight, age at menarche, BMD [BMD (gr/cm2 ) (L2-L4) and BMD (gr/cm2 ) (total body)], and body composition (lean tissue, fat tissue, total fat, and body fat) (p>0.05). While no correlation was found between the age at menarche and any parameter (p>0.05), a positive significant correlation was found between lean tissue and BMD L2-L4 (r=0.286, p=0.01). When the relationships were evaluated separately according to socioeconomic status, there was a significant correlation between BMDL2-L4 (r: 0.431, p=0.005) and lean tissue in females with low SES, while this relationship disappeared in females with middle and high SES. Conclusion: Age at menarche did not change according to socioeconomic status, nor did BMD and body composition in female at late adolescents. No relationship was found between age at menarche and BMD and body composition determined by DEXA in female university student who were close to reaching peak bone mass. The results suggested that especially BMDL2-L4 might increase as lean tissue increases.

Keywords: bone, osteoposis, menarche, dexa

Procedia PDF Downloads 75
5885 Normalized P-Laplacian: From Stochastic Game to Image Processing

Authors: Abderrahim Elmoataz

Abstract:

More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.

Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems

Procedia PDF Downloads 512
5884 Maintaining Healthy Body Weight: Beyond Exercise Routines

Authors: Nahwera L., Constance A. N. Nsibamb, Mukana R., Daniel T. Goon

Abstract:

Regular physical activity is a cornerstone of maintaining good health. Studies have shown that physical inactivity leads to overweight and obesity, a risk factor for non-communicable diseases and a public health challenge. Health clubs provide therapeutic exercises to clients desiring to reduce their weight; however, the exercise routines offered in these health clubs are insufficient to reduce their body weight. A convenient sample of 100 clients. Exercise routines were determined using a questionnaire. Height, weight, waist, and hip circumferences were measured. Body mass index (BMI), waist circumference, and waist-to-hip ratio (WHR) assessed body weight status. About 75% of clients exercised three or more times per week; 96% participated in modern intensity exercises for 30 minutes, aerobic dance (88%), treadmill (56%), cycling (51%), rope skipping (45%), and 14% in strengthening activities. The BMI of male and female clients was 64.2% and 83.0%, respectively. There was no significant correlation (p≤0.05) between BMI and WHR (p=0.336), although there was a significant correlation between BMI and waist circumference (p=0.000). There was no significant relationship between BMI and WHR for males (p= .336) and between BMI and WHR for females (p=.806). Although most clients visiting health clubs meet the recommended frequency, intensity, and duration of exercise, they are overweight and obese. Appropriate exercise and nutritional programs should be incorporated into health clubs offering therapeutic and rehabilitative exercises to clients.

Keywords: Body weight status, exercise routines, health clubs, exercises

Procedia PDF Downloads 85
5883 The Brand Value of Cosmetics in the View of Customers in Thailand

Authors: Mananya Meenakorn

Abstract:

The purpose of this research is to study the relationship customer perception and brand value of cosmetics in the view of customers in Thailand. The research is quantitative research using the survey method by questionnaire. Data were collected from female cosmetics consumer that residents in Bangkok, aged between 25-55 years. Researchers have determined the size of the sample by using Taro Yamane technic a total of 400 people. The study found the Shiseido cosmetics brand image always come with the new products innovation is in the height level. The average was 3.812, second is Shiseido brand has used innovation to produce the product for 3.792. And brand Shiseido looks luxury with an average of 3.707 respectively. In additional in terms of Lancôme cosmetic brand found the brand image is luxury at the height levels for 4.170 average. The seductive glamor is considered in the moderate with an average of 3.822 respectively.

Keywords: brand image, international fashion dress, values, working women

Procedia PDF Downloads 220
5882 Plant Disease Detection Using Image Processing and Machine Learning

Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra

Abstract:

One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.

Keywords: plant diseases, machine learning, image processing, deep learning

Procedia PDF Downloads 7
5881 Bypassing Docker Transport Layer Security Using Remote Code Execution

Authors: Michael J. Hahn

Abstract:

Docker is a powerful tool used by many companies such as PayPal, MetLife, Expedia, Visa, and many others. Docker works by bundling multiple applications, binaries, and libraries together on top of an operating system image called a container. The container runs on a Docker engine that in turn runs on top of a standard operating system. This centralization saves a lot of system resources. In this paper, we will be demonstrating how to bypass Transport Layer Security and execute remote code within Docker containers built on a base image of Alpine Linux version 3.7.0 through the use of .apk files due to flaws in the Alpine Linux package management program. This exploit renders any applications built using Docker with a base image of Alpine Linux vulnerable to unwanted outside forces.

Keywords: cloud, cryptography, Docker, Linux, security

Procedia PDF Downloads 198
5880 A Conglomerate of Multiple Optical Character Recognition Table Detection and Extraction

Authors: Smita Pallavi, Raj Ratn Pranesh, Sumit Kumar

Abstract:

Information representation as tables is compact and concise method that eases searching, indexing, and storage requirements. Extracting and cloning tables from parsable documents is easier and widely used; however, industry still faces challenges in detecting and extracting tables from OCR (Optical Character Recognition) documents or images. This paper proposes an algorithm that detects and extracts multiple tables from OCR document. The algorithm uses a combination of image processing techniques, text recognition, and procedural coding to identify distinct tables in the same image and map the text to appropriate the corresponding cell in dataframe, which can be stored as comma-separated values, database, excel, and multiple other usable formats.

Keywords: table extraction, optical character recognition, image processing, text extraction, morphological transformation

Procedia PDF Downloads 143
5879 Automated Digital Mammogram Segmentation Using Dispersed Region Growing and Pectoral Muscle Sliding Window Algorithm

Authors: Ayush Shrivastava, Arpit Chaudhary, Devang Kulshreshtha, Vibhav Prakash Singh, Rajeev Srivastava

Abstract:

Early diagnosis of breast cancer can improve the survival rate by detecting cancer at an early stage. Breast region segmentation is an essential step in the analysis of digital mammograms. Accurate image segmentation leads to better detection of cancer. It aims at separating out Region of Interest (ROI) from rest of the image. The procedure begins with removal of labels, annotations and tags from the mammographic image using morphological opening method. Pectoral Muscle Sliding Window Algorithm (PMSWA) is used for removal of pectoral muscle from mammograms which is necessary as the intensity values of pectoral muscles are similar to that of ROI which makes it difficult to separate out. After removing the pectoral muscle, Dispersed Region Growing Algorithm (DRGA) is used for segmentation of mammogram which disperses seeds in different regions instead of a single bright region. To demonstrate the validity of our segmentation method, 322 mammographic images from Mammographic Image Analysis Society (MIAS) database are used. The dataset contains medio-lateral oblique (MLO) view of mammograms. Experimental results on MIAS dataset show the effectiveness of our proposed method.

Keywords: CAD, dispersed region growing algorithm (DRGA), image segmentation, mammography, pectoral muscle sliding window algorithm (PMSWA)

Procedia PDF Downloads 312
5878 The Ultimate Scaling Limit of Monolayer Material Field-Effect-Transistors

Authors: Y. Lu, L. Liu, J. Guo

Abstract:

Monolayer graphene and dichaclogenide semiconductor materials attract extensive research interest for potential nanoelectronics applications. The ultimate scaling limit of double gate MoS2 Field-Effect-Transistors (FETs) with a monolayer thin body is examined and compared with ultra-thin-body Si FETs by using self-consistent quantum transport simulation in the presence of phonon scattering. Modelling of phonon scattering, quantum mechanical effects, and self-consistent electrostatics allows us to accurately assess the performance potential of monolayer MoS2 FETs. The results revealed that monolayer MoS2 FETs show 52% smaller Drain Induced Barrier Lowering (DIBL) and 13% Smaller Sub-Threshold Swing (SS) than 3 nm-thick-body Si FETs at a channel length of 10 nm with the same gating. With a requirement of SS<100mV/dec, the scaling limit of monolayer MoS2 FETs is assessed to be 5 nm, comparing with 8nm of the ultra-thin-body Si counterparts due to the monolayer thin body and higher effective mass which reduces direct source-to-drain tunnelling. By comparing with the ITRS target for high performance logic devices of 2023; double gate monolayer MoS2 FETs can fulfil the ITRS requirements.

Keywords: nanotransistors, monolayer 2D materials, quantum transport, scaling limit

Procedia PDF Downloads 234