Search results for: HMI (Human Machine Interface)
11382 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: computational social science, movie preference, machine learning, SVM
Procedia PDF Downloads 26011381 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 15011380 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters
Authors: Eyhab El-Kharashi, Maher El-Dessouki
Abstract:
The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion
Procedia PDF Downloads 56011379 Design and Performance Evaluation of Synchronous Reluctance Machine (SynRM)
Authors: Hadi Aghazadeh, Mohammadreza Naeimi, Seyed Ebrahim Afjei, Alireza Siadatan
Abstract:
Torque ripple, maximum torque and high efficiency are important issues in synchronous reluctance machine (SynRM). This paper presents a view on design of a high efficiency, low torque ripple and high torque density SynRM. To achieve this goal SynRM parameters is calculated (such as insulation ratios in the d-and q-axes and the rotor slot pitch), while the torque ripple can be minimized by determining the best rotor slot pitch in the d-axis. The presented analytical-finite element method (FEM) approach gives the optimum distribution of air gap and iron portion for the maximizing torque density with minimum torque ripple.Keywords: torque ripple, efficiency, insulation ratio, FEM, synchronous reluctance machine (SynRM), induction motor (IM)
Procedia PDF Downloads 22911378 Human Capital, Adversity Quotient and Entrepreneurial Success
Authors: Vichada Chokesikarin
Abstract:
We propose that the ability to create the business success requires Adversity Quotient (AQ) and Human Capital (HC). The aims of the present study are to investigate adversity quotient, human capital and entrepreneurial success of accommodation entrepreneurs in Pranakorn, Bangkok and to examine the relationship between AQ, HC and Entrepreneurial Success. The participants of this study were 112 entrepreneurs in accommodation business in the Khao San/Grand Palace, the location nearby demonstration area in 2014. Specifically, we focus on higher adversity which provides a measure of one’s perceived capacity to prevail in the face of adversity and the effects of human capital on success. Results indicated that there is significant relationship between human capital and entrepreneurial success, while adversity quotient was found to partially mediate the entrepreneurial success. Moreover, our findings showed that the human capital -experience and skills- are more important than adversity quotient. This suggests that the entrepreneurial success should rely on their skill and experiences.Keywords: accommodation business, adversity quotient, entrepreneurial success, human capital
Procedia PDF Downloads 38511377 Crack Propagation Effect at the Interface of a Composite Beam
Authors: Mezidi Amar
Abstract:
In this research work, crack propagation at the interface of a composite beam is considered. The behavior of composite beams (CB) depends upon a law based on relationship between tangential or normal efforts with inelastic propagation. Throughout this study, composite beams are classified like composite beams with partial connection or sandwich beams of three layers. These structural systems are controlled by the same nature of differential equations regarding their behavior in the plane, as well as out-of-plane. Multi-layer elements with partial connection are typically met in the field of timber construction where the elements are assembled by joining. The formalism of the behavior in the plane and out-of-plane of these composite beams is obtained and their results concerning the engineering aspect or simple of interpretation are proposed for the case of composite beams made up of rectangular section and simply supported section. An apparent analytical peculiarity or paradox in the bending behavior of elastic–composite beams with interlayer slip, sandwich beam or other similar problems subjected to boundary moments exists. For a fully composite beam subjected to end moments, the partial composite model will render a non-vanishing uniform value for the normal force in the individual subelement. Obtained results are similar to those for the case of vibrations in the plane as well for the composite beams as for the sandwich beams where eigen-frequencies increase with related rigidity.Keywords: composite beam, behaviour, interface, deflection, propagation
Procedia PDF Downloads 30411376 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 10211375 Practical Model of Regenerative Braking Using DC Machine and Boost Converter
Authors: Shah Krupa Rajendra, Amit Kumar
Abstract:
Increasing use of traditional vehicles driven by internal combustion engine is responsible for the environmental pollution. Further, it leads to depletion of limited energy resources. Therefore, it is required to explore alternative energy sources for the transportation. The promising solution is to use electric vehicle. However, it suffers from limited driving range. Regenerative braking increases the range of the electric vehicle to a certain extent. In this paper, a novel methodology utilizing regenerative braking is described. The model comprising of DC machine, feedback based boost converter and micro-controller is proposed. The suggested method is very simple and reliable. The proposed model successfully shows the energy being saved into during regenerative braking process.Keywords: boost converter, DC machine, electric vehicle, micro-controller, regenerative braking
Procedia PDF Downloads 27311374 Experimental Verification of Different Types of Shear Connectors on Composite Slab
Authors: A. Siva, R. Senthil, R. Banupriya, R. Saravanakumar
Abstract:
Cold-formed steel sheets are widely used as primary tension reinforcement in composite slabs. It also performs as formwork for concreting and better ceiling surface. The major type of failure occurring in composite slab is shear failure. When the composite slab is flexurally loaded, the longitudinal shear is generated and transferred to the steel sheet concrete interface. When the load increases, the interface slip occurs. The slip failure can be resisted by mechanical interface interlock by shear studs. In this paper, the slip failure has been resisted by shear connectors and geometry of the steel sheet alone. The geometry of the sheet is kept constant for all the specimens and the type of shear connectors has been varied. Totally, three types of shear connectors (viz., straight headed, U and J) are bolted to the trapezoidal profile sheet and the concrete is casted over it. After curing, the composite slab is subjected to flexure load and the test results are compared with the numerical results analysed by ABAQUS software. The test result shows that the U-shaped bolted stud has higher flexure strength than the other two types of shear connectors.Keywords: cold formed steel sheet, headed studs, mechanical interlock, shear connectors, shear failure, slip failure
Procedia PDF Downloads 55711373 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity
Authors: Dawoon Choi, Jian Li, Yunhyun Cho
Abstract:
Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity
Procedia PDF Downloads 22111372 Plant Disease Detection Using Image Processing and Machine Learning
Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra
Abstract:
One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.Keywords: plant diseases, machine learning, image processing, deep learning
Procedia PDF Downloads 1411371 Machine Learning Data Architecture
Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap
Abstract:
Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning
Procedia PDF Downloads 6511370 Machine Learning for Classifying Risks of Death and Length of Stay of Patients in Intensive Unit Care Beds
Authors: Itamir de Morais Barroca Filho, Cephas A. S. Barreto, Ramon Malaquias, Cezar Miranda Paula de Souza, Arthur Costa Gorgônio, João C. Xavier-Júnior, Mateus Firmino, Fellipe Matheus Costa Barbosa
Abstract:
Information and Communication Technologies (ICT) in healthcare are crucial for efficiently delivering medical healthcare services to patients. These ICTs are also known as e-health and comprise technologies such as electronic record systems, telemedicine systems, and personalized devices for diagnosis. The focus of e-health is to improve the quality of health information, strengthen national health systems, and ensure accessible, high-quality health care for all. All the data gathered by these technologies make it possible to help clinical staff with automated decisions using machine learning. In this context, we collected patient data, such as heart rate, oxygen saturation (SpO2), blood pressure, respiration, and others. With this data, we were able to develop machine learning models for patients’ risk of death and estimate the length of stay in ICU beds. Thus, this paper presents the methodology for applying machine learning techniques to develop these models. As a result, although we implemented these models on an IoT healthcare platform, helping clinical staff in healthcare in an ICU, it is essential to create a robust clinical validation process and monitoring of the proposed models.Keywords: ICT, e-health, machine learning, ICU, healthcare
Procedia PDF Downloads 11411369 Enabling Citizen Participation in Urban Planning through Geospatial Gamification
Authors: Joanne F. Hayek
Abstract:
This study explores the use of gamification to promote citizen e-participation in urban planning. The research departs from a case study: the ‘Shape Your City’ web app designed and programmed by the author and presented as part of the 2021 Dubai Design Week to engage citizens in the co-creation of the future of their city through a gamified experience. The paper documents the design and development methodology of the web app and concludes with the findings of its pilot release. The case study explores the use of mobile interactive mapping, real-time data visualization, augmented reality, and machine learning as tools to enable co-planning. The paper also details the user interface design strategies employed to integrate complex cross-sector e-planning systems and make them accessible to citizens.Keywords: gamification, co-planning, citizen e-participation, mobile interactive mapping, real-time data visualization
Procedia PDF Downloads 14111368 Temperature Dependent Current-Voltage (I-V) Characteristics of CuO-ZnO Nanorods Based Heterojunction Solar Cells
Authors: Venkatesan Annadurai, Kannan Ethirajalu, Anu Roshini Ramakrishnan
Abstract:
Copper oxide (CuO) and zinc oxide (ZnO) based coaxial (CuO-ZnO nanorods) heterojunction has been the interest of various research communities for solar cells, light emitting diodes (LEDs) and photodetectors applications. Copper oxide (CuO) is a p-type material with the band gap of 1.5 eV and it is considered to be an attractive absorber material in solar cells applications due to its high absorption coefficient and long minority carrier diffusion length. Similarly, n-type ZnO nanorods possess many attractive advantages over thin films such as, the light trapping ability and photosensitivity owing to the presence of oxygen related hole-traps at the surface. Moreover, the abundant availability, non-toxicity, and inexpensiveness of these materials make them suitable for potentially cheap, large area, and stable photovoltaic applications. However, the efficiency of the CuO-ZnO nanorods heterojunction based devices is greatly affected by interface defects which generally lead to the poor performance. In spite of having much potential, not much work has been carried out to understand the interface quality and transport mechanism involved across the CuO-ZnO nanorods heterojunction. Therefore, a detailed investigation of CuO-ZnO heterojunction is needed to understand the interface which affects its photovoltaic performance. Herein, we have fabricated the CuO-ZnO nanorods based heterojunction by simple hydrothermal and electrodeposition technique and investigated its interface quality by carrying out temperature (300 –10 K) dependent current-voltage (I-V) measurements under dark and illumination of visible light. Activation energies extracted from the temperature dependent I-V characteristics reveals that recombination and tunneling mechanism across the interfacial barrier plays a significant role in the current flow.Keywords: heterojunction, electrical transport, nanorods, solar cells
Procedia PDF Downloads 22411367 Analyzing a Human Rights Approach to Poverty and Development Goals in the ASEAN Region
Authors: Nithya Devi
Abstract:
Poverty, hunger and water scarcity are threats to human rights and are assaults on human dignity. The very existence of man is questioned when his basic rights are violated. Addressing this social phenomenon should be a key objective of any human rights discourse. The origins of these problems have various root causes. For Asia, colonisation was an essential factor that caused great inequalities in the distribution of wealth. In the post-colonial era, the colonised states were developing nations grappling with these issues. Today, some of the developing states have progressed to developed nations. However, others remain as economically vulnerable countries. Within states, the widening income gap poses further threat to human rights. Hence ASEAN states have prioritised socio-economic rights, particularly basic needs, in the human rights discourse in this region. To date, poverty and development goals are given primary importance. This paper seeks to show how a human rights approach has dealt with poverty and development goals in this region and evaluates its effectiveness in addressing these concerns.Keywords: ASEAN, development, human rights, poverty
Procedia PDF Downloads 35011366 Induction Heating and Electromagnetic Stirring of Bi-Phasic Metal/Glass Molten Bath for Mixed Nuclear Waste Treatment
Authors: P. Charvin, R. Bourrou, F. Lemont, C. Lafon, A. Russello
Abstract:
For nuclear waste treatment and confinement, a specific IN-CAN melting module based on low-frequency induction heating have been designed. The frequency of 50Hz has been chosen to improve penetration length through metal. In this design, the liquid metal, strongly stirred by electromagnetic effects, presents shape of a dome caused by strong Laplace forces developing in the bulk of bath. Because of a lower density, the glass phase is located above the metal phase and is heated and stirred by metal through interface. Electric parameters (Intensity, frequency) give precious information about metal load and composition (resistivity of alloy) through impedance modification. Then, power supply can be adapted to energy transfer efficiency for suitable process supervision. Modeling of this system allows prediction of metal dome shape (in agreement with experimental measurement with a specific device), glass and metal velocity, heat and motion transfer through interface. MHD modeling is achieved with COMSOL and Fluent. First, a simplified model is used to obtain the shape of the metal dome. Then the shape is fixed to calculate the fluid flow and the thermal part.Keywords: electromagnetic stirring, induction heating, interface modeling, metal load
Procedia PDF Downloads 26911365 An Application Framework for Integrating Wireless Sensor and Actuator Networks for Precision Farmingas Web of Things to Cloud Interface Using PaaS
Authors: Sumaya Ismail, Aijaz Ahmad Reshi
Abstract:
The advances in sensor and embedded technologies have led to rapid developments in Wireless Sensor Networks (WSNs). Presently researchers focus on the integration of WSNs to the Internet for their pervasive availability to access these network resources as the interoperable subsystems. The recent computing technologies like cloud computing has made resource sharing as a converged infrastructure with required service interfaces for the shared resources over the Internet. This paper presents application architecture for wireless Sensor and Actuator Networks (WSANS) following web of things, which allows easy integration of each node to the Internet in order to provide them with web accessibility. The architecture enables the sensors and actuator nodes accessed and controlled using cloud interface on WWW. The application architecture was implemented using existing web and its emerging technologies. In particular, the Representational State Transfer protocol (REST) was extended for the specific requirements of the application. The Cloud computing environment has been used as a development platform for the application to assess the possibility of integrating the WSAN nodes to Cloud services. The mushroom farm environment monitoring and control using WSANs has been taken as a research use case.Keywords: WSAN, REST, web of things, ZigBee, cloud interface, PaaS, sensor gateway
Procedia PDF Downloads 10511364 The Impact of Artificial Intelligence on Human Rights Legislations and Evolution
Authors: Nawal Yacoub Halim Abdelmasih
Abstract:
The intersection between development and human rights has been the factor of scholarly debate for a long term. therefore, some of standards, which enlarge from the proper to development to the human rights-based totally method to development, had been adopted to apprehend the dynamics among the two standards. no matter these attempts, the exact relationship among improvement and human rights has not been completely determined but. however, the inevitable interdependence between the two notions and the idea that improvement efforts ought to be undertaken with the aid of giving due regard to human rights ensures has won momentum in recent years. then again, the emergence of sustainable development as a extensively common technique in development dreams and policies makes this unsettled convergence even extra complicated. The vicinity of sustainable improvement in human rights regulation discourse and the function of the latter in making sure the sustainability of development applications name for a scientific observe. as a result, this newsletter seeks to discover the relationship among development and human rights, particularly focusing at the location given to sustainable development principles in international human proper regulation. it'll similarly quest whether or not there is a proper to sustainable improvement diagnosed therein. as a result, the item asserts that the ideas of sustainable improvement are immediately or circuitously diagnosed in diverse human rights contraptions, which affords an affirmative response to the question raised hereinabove. This paintings, therefore, will make expeditions via international and regional human rights devices in addition to case legal guidelines and interpretative hints of human rights bodies to show this speculation.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security
Procedia PDF Downloads 3211363 The Research of the Game Interface Improvement Due to the Game Operation Dilemma of Player in the Side-Scrolling Shooting Game
Authors: Shih-Chieh Liao, Cheng-Yan Shuai
Abstract:
The feature of a side-scrolling shooting game is facing the surrounding enemy and barraging in entire screen. The player will be in trouble when they are trying to do complicated operations because of the physical and system limitations of the joystick in the games. This study designed the prototype of a new type of arcade stick by focus group and assessed by the expert. By filtering the most representative, and build up the control system for the arcade stick, and testing time and bullets consumed in two experiments, try to prove it works in the game. Finally, the prototype of L-1 solves the dilemma of scroll shooting games when the player uses the arcade stick and improves the function of the arcade stick.Keywords: arcade stick, joystick, user interface, 2D STG
Procedia PDF Downloads 8011362 Legal Comparative on Islam and Human Rights in Indonesia
Authors: Muhammad Ilham Agus Salim
Abstract:
This study aims to reconstruct the discourse of human rights which focused on the issue of freedom of religion/belief (FORB) in Indonesia. This topic always has an appeal considering the development of Islam, both as a phenomenon of religion as well as social and political phenomenon, always in touch with human rights issues. For the majority, Islam is involved in human rights discourse needs to be viewed as a natural thing as it also occurs in the majority group in other countries. The natural state is increasingly gaining affirmation when also considering the doctrine of Islam which is also related to human rights. So the involvement of Islamic parties to human rights talks in Indonesia is not as excessive when considering the sociological position and character of Islamic doctrine. But because of who made the object of conversation, namely human rights and particularly freedom of religion or belief again, not something that is taken for granted, then the diversity within Islam itself impossible can be avoided. In this study the diversity of views presented in the trial which categorically can be grouped into two views, namely: inclusive and exclusive.Keywords: Islam doctrine, Islamic parties, human rights, freedom of religion
Procedia PDF Downloads 59611361 Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications
Authors: Hatim Laalej, Jon Stammers
Abstract:
In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time.Keywords: machining, manufacturing, tool wear, signal processing
Procedia PDF Downloads 24611360 Gender Inequality and Human Trafficking
Authors: Kimberly McCabe
Abstract:
The trafficking of women and children for abuse and exploitation is not a new problem under the umbrella of human trafficking; however, over the last decade, the problem has attracted increased attention from international governments and non-profits attempting to reduce victimization and provide services for survivors. Research on human trafficking suggests that the trafficking of human beings is, largely, a symptom of poverty. As the trafficking of human beings may be viewed as a response to the demand for people for various forms of exploitation, a product of poverty, and a consequence of the subordinate positions of women and children in society, it reaches beyond randomized victimization. Hence, human trafficking, and especially the trafficking of women and children, goes beyond the realm of poorness. Therefore, to begin to understand the reasons for the existence of human trafficking, one must identify and consider not only the immediate causes but also those underlying structural determinants that facilitate this form of victimization. Specifically, one must acknowledge the economic, social, and cultural factors that support human trafficking. This research attempts to study human trafficking at the country level by focusing on economic, social, and cultural characteristics. This study focuses on inequality and, in particular, gender inequality as related to legislative attempts to address human trafficking. Within the design of this project is the use of the US State Department’s tier classification system for Trafficking in Persons (TIP) and the USA CIA Fact Sheet of country characteristics for over 150 countries in an attempt to model legal outcomes as related to human trafficking. Results of this research demonstrate the significance of characteristics beyond poverty as related to country-level responses to human trafficking.Keywords: child trafficking, gender inequality, human trafficking, inequality
Procedia PDF Downloads 24411359 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue
Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov
Abstract:
The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport
Procedia PDF Downloads 11511358 Moving Object Detection Using Histogram of Uniformly Oriented Gradient
Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang
Abstract:
Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine
Procedia PDF Downloads 59511357 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 20611356 Reflection Phase Tuning of Graphene Plasmons by Substrate Design
Authors: Xiaojie Jiang, Wei Cai, Yinxiao Xiang, Ni Zhang, Mengxin Ren, Xinzheng Zhang, Jingjun Xu
Abstract:
Reflection phase of graphene plasmons (GPs) at an abrupt interface is very important, which determines the plasmon resonance of graphene structures of deep sub-wavelength scales. However, at an abrupt graphene edge, the reflection phase is always a constant, ΦR ≈ π/4. In this work, we show that the reflection phase of GPs can be efficiently changed through substrate design. Reflection phase of graphene plasmons (GPs) at an abrupt interface is very important, which determines the plasmon resonance of graphene structures of deep sub-wavelength scales. However, at an abrupt graphene edge, the reflection phase is always a constant, ΦR ≈ π/4. In this work, we show that the reflection phase of GPs can be efficiently changed through substrate design. Specifically, the reflection phase is no longer π/4 at the interface formed by placing a graphene sheet on different substrates. Moreover, tailorable reflection phase of GPs up to 2π variation can be further achieved by scattering GPs at a junction consisting of two such dielectric interfaces with various gap width acting as a Fabry-Perot cavity. Besides, the evolution of plasmon mode in graphene ribbons based on the interface reflection phase tuning is predicted, which is expected to be observed in near-field experiments with scattering-type scanning near-field optical microscopy (s-SNOM). Our work provides another way for in-plane plasmon control, which should find applications for integrated plasmon devices design using graphene.Specifically, the reflection phase is no longer π/4 at the interface formed by placing a graphene sheet on different substrates. Moreover, tailorable reflection phase of GPs up to 2π variation can be further achieved by scattering GPs at a junction consisting of two such dielectric interfaces with various gap width acting as a Fabry-Perot cavity. Besides, the evolution of plasmon mode in graphene ribbons based on the interface reflection phase tuning is predicted, which is expected to be observed in near-field experiments with scattering-type scanning near-field optical microscopy (s-SNOM). Our work provides a new way for in-plane plasmon control, which should find applications for integrated plasmon devices design using graphene.Keywords: graphene plasmons, reflection phase tuning, plasmon mode tuning, Fabry-Perot cavity
Procedia PDF Downloads 15111355 Baseline Study on Human Trafficking Crimes: A Case Study of Mapping Human Trafficking Crimes in East Java Province, Indonesia
Authors: Ni Komang Desy Arya Pinatih
Abstract:
Transnational crime is a crime with 'unique' feature because the activities benefit the lack of state monitoring on the borders so dealing with it cannot be based on conventional engagement but also need joint operation with other countries. On the other hand with the flow of globalization and the growth of information technology and transportation, states become more vulnerable to transnational crime threats especially human trafficking. This paper would examine transnational crime activities, especially human trafficking in Indonesia. With the case study on the mapping of human trafficking crime in East Java province, Indonesia, this paper would try to analyze how the difference in human trafficking crime trends at the national and sub-national levels. The findings of this research were first, there is difference in human trafficking crime trends whereas at the national level the trend is rising, while at sub-national (province) level the trend is declining. Second, regarding the decline of human trafficking number, it’s interesting to see how the method to decrease human trafficking crime in East Jawa Province in order to reduce transnational crime accounts in the region. These things are hopefully becoming a model for transnational crimes engagement in other regions to reduce human trafficking numbers as much as possible.Keywords: transnational crime, human trafficking, southeast Asia, anticipation model on transnational crimes
Procedia PDF Downloads 30411354 Implementation of Data Science in Field of Homologation
Authors: Shubham Bhonde, Nekzad Doctor, Shashwat Gawande
Abstract:
For the use and the import of Keys and ID Transmitter as well as Body Control Modules with radio transmission in a lot of countries, homologation is required. Final deliverables in homologation of the product are certificates. In considering the world of homologation, there are approximately 200 certificates per product, with most of the certificates in local languages. It is challenging to manually investigate each certificate and extract relevant data from the certificate, such as expiry date, approval date, etc. It is most important to get accurate data from the certificate as inaccuracy may lead to missing re-homologation of certificates that will result in an incompliance situation. There is a scope of automation in reading the certificate data in the field of homologation. We are using deep learning as a tool for automation. We have first trained a model using machine learning by providing all country's basic data. We have trained this model only once. We trained the model by feeding pdf and jpg files using the ETL process. Eventually, that trained model will give more accurate results later. As an outcome, we will get the expiry date and approval date of the certificate with a single click. This will eventually help to implement automation features on a broader level in the database where certificates are stored. This automation will help to minimize human error to almost negligible.Keywords: homologation, re-homologation, data science, deep learning, machine learning, ETL (extract transform loading)
Procedia PDF Downloads 16311353 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.Keywords: machine learning, text classification, NLP techniques, semantic representation
Procedia PDF Downloads 103