Search results for: online and adaptive learning
3548 Effects of Artificial Intelligence Technology on Children: Positives and Negatives
Authors: Paula C. Latorre Arroyo, Andrea C. Latorre Arroyo
Abstract:
In the present society, children are exposed to and impacted by technology from very early on in various ways. Artificial intelligence (AI), in particular, directly affects them, be it positively or negatively. The concept of artificial intelligence is commonly defined as the technological programming of computers or robotic mechanisms with humanlike capabilities and characteristics. These technologies are often designed as helpful machines or disguised as handy tools that could ultimately steal private information for illicit purposes. Children, being one of the most vulnerable groups due to their lack of experience and knowledge, do not have the ability to recognize or have the malice to distinguish if an apparatus with artificial intelligence is good or bad for them. For this reason, as a society, there must be a sense of responsibility to regulate and monitor different types of uses for artificial intelligence to protect children from potential risks that might arise. This article aims to investigate the many implications that artificial intelligence has in the lives of children, starting from a home setting, within the classroom, and, ultimately, in online spaces. Irrefutably, there are numerous beneficial aspects to the use of artificial intelligence. However, due to its limitless potential and lack of specific and substantial regulations to prevent the illicit use of this technology, safety and privacy concerns surface, specifically regarding the youth. This written work aims to provide an in-depth analysis of how artificial intelligence can both help children and jeopardize their safety. Concluding with resources and data supporting the aforementioned statement.Keywords: artificial intelligence, children, privacy, rights, safety
Procedia PDF Downloads 643547 Development of Pre-Mitigation Measures and Its Impact on Life-Cycle Cost of Facilities: Indian Scenario
Authors: Mahima Shrivastava, Soumya Kar, B. Swetha Malika, Lalu Saheb, M. Muthu Kumar, P. V. Ponambala Moorthi
Abstract:
Natural hazards and manmade destruction causes both economic and societal losses. Generalized pre-mitigation strategies introduced and adopted for prevention of disaster all over the world are capable of augmenting the resiliency and optimizing the life-cycle cost of facilities. In countries like India where varied topographical feature exists requires location specific mitigation measures and strategies to be followed for better enhancement by event-driven and code-driven approaches. Present state of vindication measures followed and adopted, lags dominance in accomplishing the required development. In addition, serious concern and debate over climate change plays a vital role in enhancing the need and requirement for the development of time bound adaptive mitigation measures. For the development of long-term sustainable policies incorporation of future climatic variation is inevitable. This will further assist in assessing the impact brought about by the climate change on life-cycle cost of facilities. This paper develops more definite region specific and time bound pre-mitigation measures, by reviewing the present state of mitigation measures in India and all over the world for improving life-cycle cost of facilities. For the development of region specific adoptive measures, Indian regions were divided based on multiple-calamity prone regions and geo-referencing tools were used to incorporate the effect of climate changes on life-cycle cost assessment. This study puts forward significant effort in establishing sustainable policies and helps decision makers in planning for pre-mitigation measures for different regions. It will further contribute towards evaluating the life cycle cost of facilities by adopting the developed measures.Keywords: climate change, geo-referencing tools, life-cycle cost, multiple-calamity prone regions, pre-mitigation strategies, sustainable policies
Procedia PDF Downloads 3783546 The Connection Between the International Law and the Legal Consultation on the Social Media
Authors: Amir Farouk Ahmed Ali Hussin
Abstract:
Social media, such as Facebook, LinkedIn and Ex-Twitter have experienced exponential growth and a remarkable adoption rate in recent years. They give fantastic means of online social interactions and communications with family, friends, and colleagues from around the corner or across the globe, and they have become an important part of daily digital interactions for more than one and a half billion users around the world. The personal information sharing practices that social network providers encourage have led to their success as innovative social interaction platforms. Moreover, these practices have outcome in concerns with respect to privacy and security from different stakeholders. Guiding these privacy and security concerns in social networks is a must for these networks to be sustainable. Real security and privacy tools may not be enough to address existing concerns. Some points should be followed to protect users from the existing risks. In this research, we have checked the various privacy and security issues and concerns pertaining to social media. However, we have classified these privacy and security issues and presented a thorough discussion of the effects of these issues and concerns on the future of the social networks. In addition, we have presented a set of points as precaution measures that users can consider to address these issues.Keywords: international legal, consultation mix, legal research, small and medium-sized enterprises, strategic International law, strategy alignment, house of laws, deployment, production strategy, legal strategy, business strategy
Procedia PDF Downloads 623545 Towards Intercultural Competence in EFL Textbook: the Case of ‘New Prospects’
Authors: Kamilia Mebarki
Abstract:
The promotion of intercultural competence plays an important role in foreign language education. The outcome of intercultural educationalists‟ studies was the adoption of intercultural language learning and a modified version of the Communicative Competence that encompasses an intercultural component enabling language learners to communicate successfully interculturally. Intercultural Competencehas an even more central role in teaching English as a foreign language (EFL) since efforts are critical to preparing learners for intercultural communisation in our global world. In these efforts, EFL learning materials are a crucial stimulus for developing learners’ intercultural competence. There has been a continuous interest in the analysis of EFL textbooks by researcher all over the world. One specific area that has received prominent attention in recent years is a focus on how the cultural content of EFL materials promote intercultural competence. In the Algerian context, research on the locally produced EFL textbooks tend to focus on investigating the linguistic and communicative competence. The cultural content of the materials has not yet been systematically researched. Therefore, this study contributes to filling this gap by evaluating the locally published EFL textbook ‘New Prospects’ used at the high school level as well as investigating teachers’ views and attitudes on the cultural content of ‘New Prospects’ alongside two others locally produced EFL textbooks ‘Getting Through’ and ‘At the Crossroad’ used at high school level. To estimate the textbook’s potential of developing intercultural competence, mixed methods, a combination of quantitative and qualitative data collection, was used in the material evaluation analysed via content analysis and in the survey questionnaire and interview with teachers.Data collection and analysis were supported by the frameworks developed by the researcher for analysing the textbook, questionnaire, and interview. Indeed, based on the literature, three frameworks/ models are developed in this study to analyse, on one hand, the cultural contexts and themes discussed in the material that play an important role in fostering learners’ intercultural awareness. On the other hand, to evaluate the promotion of developing intercultural competence.Keywords: intercultural communication, intercultural communicative competence, intercultural competence, EFL materials
Procedia PDF Downloads 953544 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks
Procedia PDF Downloads 2943543 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management
Authors: A. Giannakopoulos, S. B. Buckley
Abstract:
Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.Keywords: critical thinking, knowledge management, mathematics, problem solving
Procedia PDF Downloads 5953542 Using Support Vector Machines for Measuring Democracy
Authors: Tommy Krieger, Klaus Gruendler
Abstract:
We present a novel approach for measuring democracy, which enables a very detailed and sensitive index. This method is based on Support Vector Machines, a mathematical algorithm for pattern recognition. Our implementation evaluates 188 countries in the period between 1981 and 2011. The Support Vector Machines Democracy Index (SVMDI) is continuously on the 0-1-Interval and robust to variations in the numerical process parameters. The algorithm introduced here can be used for every concept of democracy without additional adjustments, and due to its flexibility it is also a valuable tool for comparison studies.Keywords: democracy, democracy index, machine learning, support vector machines
Procedia PDF Downloads 3753541 Education of Purchasing Professionals in Austria: Competence Based View
Authors: Volker Koch
Abstract:
This paper deals with the education of purchasing professionals in Austria. In this education, equivalent and measurable criteria are collected in order to create a comparison. The comparison shows the problem. To make the aforementioned comparison possible, methodologies such as KODE-Competence Atlas or presentations in a matrix form are used. The result shows the content taught and whether there are any similarities or interesting differences in the current Austrian purchasers’ formations. Purchasing professionals learning competencies are also illustrated in the study result.Keywords: competencies, education, purchasing professional, technological-oriented
Procedia PDF Downloads 2943540 Robotics Technology Supported Pedagogic Models in Science, Technology, Engineering, Arts and Mathematics Education
Authors: Sereen Itani
Abstract:
As the world aspires for technological innovation, Innovative Robotics Technology-Supported Pedagogic Models in STEAM Education (Science, Technology, Engineering, Arts, and Mathematics) are critical in our global education system to build and enhance the next generation 21st century skills. Thus, diverse international schools endeavor in attempts to construct an integrated robotics and technology enhanced curriculum based on interdisciplinary subjects. Accordingly, it is vital that the globe remains resilient in STEAM fields by equipping the future learners and educators with Innovative Technology Experiences through robotics to support such fields. A variety of advanced teaching methods is employed to learn about Robotics Technology-integrated pedagogic models. Therefore, it is only when STEAM and innovations in Robotic Technology becomes integrated with real-world applications that transformational learning can occur. Robotics STEAM education implementation faces major challenges globally. Moreover, STEAM skills and concepts are communicated in separation from the real world. Instilling the passion for robotics and STEAM subjects and educators’ preparation could lead to the students’ majoring in such fields by acquiring enough knowledge to make vital contributions to the global STEAM industries. Thus, this necessitates the establishment of Pedagogic models such as Innovative Robotics Technologies to enhance STEAM education and develop students’ 21st-century skills. Moreover, an ICT innovative supported robotics classroom will help educators empower and assess students academically. Globally, the Robotics Design System and platforms are developing in schools and university labs creating a suitable environment for the robotics cross-discipline STEAM learning. Accordingly, the research aims at raising awareness about the importance of robotics design systems and methodologies of effective employment of robotics innovative technology-supported pedagogic models to enhance and develop (STEAM) education globally and enhance the next generation 21st century skills.Keywords: education, robotics, STEAM (Science, Technology, Engineering, Arts and Mathematics Education), challenges
Procedia PDF Downloads 3833539 Environmental and Socioeconomic Determinants of Climate Change Resilience in Rural Nigeria: Empirical Evidence towards Resilience Building
Authors: Ignatius Madu
Abstract:
The study aims at assessing the environmental and socioeconomic determinants of climate change resilience in rural Nigeria. This is necessary because researches and development efforts on building climate change resilience of rural areas in developing countries are usually made without the knowledge of the impacts of the inherent rural characteristics that determine resilient capacities of the households. This has, in many cases, led to costly mistakes, delayed responses, inaccurate outcomes, and other difficulties. Consequently, this assessment becomes crucial not only to policymakers and people living in risk-prone environments in rural areas but also to fill the research gap. To achieve the aim, secondary data were obtained from the Annual Abstract of Statistics 2017, LSMS-Integrated Surveys on Agriculture and General Household Survey Panel 2015/2016, and National Agriculture Sample Survey (NASS), 2010/2011.Resilience was calculated by weighting and adding the adaptive, absorptive and anticipatory measures of households variables aggregated at state levels and then regressed against rural environmental and socioeconomic characteristics influencing it. From the regression, the coefficients of the variables were used to compute the impacts of the variables using the Stochastic Regression of Impacts on Population, Affluence and Technology (STIRPAT) Model. The results showed that the northern States are generally low in resilient indices and are impacted less by the development indicators. The major determining factors are percentage of non-poor, environmental protection, road transport development, landholding, agricultural input, population density, dependency ratio (inverse), household asserts, education and maternal care. The paper concludes that any effort to a successful resilient building in rural areas of the country should first address these key factors that enhance rural development and wellbeing since it is better to take action before shocks take place.Keywords: climate change resilience; spatial impacts; STIRPAT model; Nigeria
Procedia PDF Downloads 1483538 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference
Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev
Abstract:
Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.Keywords: compartmental model, climate, dengue, machine learning, social-economic
Procedia PDF Downloads 843537 Building a Parametric Link between Mapping and Planning: A Sunlight-Adaptive Urban Green System Plan Formation Process
Authors: Chenhao Zhu
Abstract:
Quantitative mapping is playing a growing role in guiding urban planning, such as using a heat map created by CFX, CFD2000, or Envi-met, to adjust the master plan. However, there is no effective quantitative link between the mappings and planning formation. So, in many cases, the decision-making is still based on the planner's subjective interpretation and understanding of these mappings, which limits the improvement of scientific and accuracy brought by the quantitative mapping. Therefore, in this paper, an effort has been made to give a methodology of building a parametric link between the mapping and planning formation. A parametric planning process based on radiant mapping has been proposed for creating an urban green system. In the first step, a script is written in Grasshopper to build a road network and form the block, while the Ladybug Plug-in is used to conduct a radiant analysis in the form of mapping. Then, the research creatively transforms the radiant mapping from a polygon into a data point matrix, because polygon is hard to engage in the design formation. Next, another script is created to select the main green spaces from the road network based on the criteria of radiant intensity and connect the green spaces' central points to generate a green corridor. After that, a control parameter is introduced to adjust the corridor's form based on the radiant intensity. Finally, a green system containing greenspace and green corridor is generated under the quantitative control of the data matrix. The designer only needs to modify the control parameter according to the relevant research results and actual conditions to realize the optimization of the green system. This method can also be applied to much other mapping-based analysis, such as wind environment analysis, thermal environment analysis, and even environmental sensitivity analysis. The parameterized link between the mapping and planning will bring about a more accurate, objective, and scientific planning.Keywords: parametric link, mapping, urban green system, radiant intensity, planning strategy, grasshopper
Procedia PDF Downloads 1403536 Morality in Actual Behavior: The Moderation Effect of Identification with the Ingroup and Religion on Norm Compliance
Authors: Shauma L. Tamba
Abstract:
This study examined whether morality is the most important aspect in actual behavior. The prediction was that people tend to behave in line with moral (as compared to competence) norms, especially when such norms are presented by their ingroup. The actual behavior that was tested was support for a military intervention without a mandate from the UN. In addition, this study also examined whether identification with the ingroup and religion moderated the effect of group and norm on support for the norm that was prescribed by their ingroup. The prediction was that those who identified themselves higher with the ingroup moral would show a higher support for the norm. Furthermore, the prediction was also that those who have religion would show a higher support for the norm in the ingroup moral rather than competence. In an online survey, participants were asked to read a scenario in which a military intervention without a mandate was framed as either the moral (but stupid) or smart (but immoral) thing to do by members of their own (ingroup) or another (outgroup) society. This study found that when people identified themselves with the smart (but immoral) norm, they showed a higher support for the norm. However, when people identified themselves with the moral (but stupid) norm, they tend to show a lesser support towards the norm. Most of the results in the study did not support the predictions. Possible explanations and implications are discussed.Keywords: morality, competence, ingroup identification, religion, group norm
Procedia PDF Downloads 4073535 A New Approach to Increase Consumer Understanding of Meal’s Quality – Food Focus Instead of Nutrient Focus
Authors: Elsa Lamy, Marília Prada, Ada Rocha, Cláudia Viegas
Abstract:
The traditional and widely used nutrition-focused approach to communicate with consumers is reductionist and makes it difficult for consumers to assess their food intake. Without sufficient nutrition knowledge and understanding, it would be difficult to choose a healthful diet based only on nutritional recommendations. This study aimed to evaluate the understanding of how food/nutritional information is presented in menus to Portuguese consumers, comparing the nutrient-focused approach (currently used Nutrition Declaration) and the new food-focused approach (the infographic). For data collection, a questionnaire was distributed online using social media channels. A main effect of format on ratings of meal balance and completeness (Fbalance(1,79) = 18.26, p < .001, ηp2 = .188; Fcompleteness(1,67) = 27.18, p < .001, ηp2 = .289). Overall, dishes paired with the nutritional information were rated as more balanced (Mbalance= 3.70, SE = .11; Mcompleteness = 4.00, SE = .14) than meals with the infographic representation (Mbalance = 3.14, SE = .11; Mcompleteness = 3.29, SE = .13). We also observed a main effect of the meal, F(3,237) = 48.90, p < .001, ηp2 = .382, such that M1 and M2 were perceived as less balanced than the M3 and M4, all p < .001. The use of a food-focused approach (infographic) helped participants identify the lack of balance in the less healthful meals (dishes M1 and M2), allowing for a better understanding of meals' compliance with recommendations contributing to better food choices and a healthier lifestyle.Keywords: food labelling, food and nutritional recommendations, infographics, portions based information
Procedia PDF Downloads 783534 Personas Help Understand Users’ Needs, Goals and Desires in an Online Institutional Repository
Authors: Maha ALjohani, James Blustein
Abstract:
Communicating users' needs, goals and problems help designers and developers overcome challenges faced by end users. Personas are used to represent end users’ needs. In our research, creating personas allowed the following questions to be answered: Who are the potential user groups? What do they want to achieve by using the service? What are the problems that users face? What should the service provide to them? To develop realistic personas, we conducted a focus group discussion with undergraduate and graduate students and also interviewed a university librarian. The personas were created to help evaluating the Institutional Repository that is based on the DSpace system. The profiles helped to communicate users' needs, abilities, tasks, and problems, and the task scenarios used in the heuristic evaluation were based on these personas. Four personas resulted of a focus group discussion with undergraduate and graduate students and from interviewing a university librarian. We then used these personas to create focused task-scenarios for a heuristic evaluation on the system interface to ensure that it met users' needs, goals, problems and desires. In this paper, we present the process that we used to create the personas that led to devise the task scenarios used in the heuristic evaluation as a follow up study of the DSpace university repository.Keywords: heuristic evaluation, institutional repositories, user experience, human computer interaction, user profiles, personas, task scenarios, heuristics
Procedia PDF Downloads 4983533 Rooftop Rainwater Harvesting for Sustainable Organic Farming: Insights from Smart cities in India
Authors: Rajkumar Ghosh
Abstract:
India faces a critical task of water shortage, specifically during dry seasons, which adversely impacts agricultural productivity and food protection. Natural farming, specializing in sustainable practices, demands green water management in smart cities in India. This paper examines how rooftop rainwater harvesting (RRWH) can alleviate water scarcity and support sustainable organic farming practices in India. RRWH emerges as a promising way to increase water availability for the duration of dry intervals and decrease reliance on traditional water sources in smart cities. The look at explores the capacity of RRWH to enhance water use performance, help crop growth, enhance soil health, and promote ecological stability inside the farming ecosystem. The medical paper delves into the advantages, challenges, and implementation techniques of RRWH in organic farming. It addresses demanding situations, including seasonal variability of rainfall, limited rooftop vicinity, and monetary concerns. Moreover, it analyses broader environmental and socio-economic implications of RRWH for sustainable agriculture, emphasizing water conservation, biodiversity protection, and the social properly-being of farming communities. The belief underscores the importance of RRWH as a sustainable solution for reaching the aim of sustainable agriculture in natural farming in India. It emphasizes the want for further studies, policy advocacy, and capacity-building initiatives to promote RRWH adoption and assist the transformation in the direction of sustainable organic farming systems. The paper proposes adaptive strategies to triumph over demanding situations and optimize the advantages of RRWH in organic farming. By way of doing so, India can make vast development in addressing water scarcity issues and making sure a greater resilient and sustainable agricultural future in smart cities.Keywords: rooftop rainwater harvesting, organic farming, green water management, food protection, ecological stabilty
Procedia PDF Downloads 1003532 The Use of Telecare in the Re-design of Overnight Supports for People with Learning Disabilities: Implementing a Cluster-based Approach in North Ayrshire
Authors: Carly Nesvat, Dominic Jarrett, Colin Thomson, Wilma Coltart, Thelma Bowers, Jan Thomson
Abstract:
Introduction: Within Scotland, the Same As You strategy committed to moving people with learning disabilities out of long-stay hospital accommodation into homes in the community. Much of the focus of this movement was on the placement of people within individual homes. In order to achieve this, potentially excessive supports were put in place which created dependence, and carried significant ongoing cost primarily for local authorities. The greater focus on empowerment and community participation which has been evident in more recent learning disability strategy, along with the financial pressures being experienced across the public sector, created an imperative to re-examine that provision, particularly in relation to the use of expensive sleepover supports to individuals, and the potential for this to be appropriately scaled back through the use of telecare. Method: As part of a broader programme of redesigning overnight supports within North Ayrshire, a cluster of individuals living in close proximity were identified, who were in receipt of overnight supports, but who were identified as having the capacity to potentially benefit from their removal. In their place, a responder service was established (an individual staying overnight in a nearby service user’s home), and a variety of telecare solutions were placed within individual’s homes. Active and passive technology was connected to an Alarm Receiving Centre, which would alert the local responder service when necessary. Individuals and their families were prepared for the change, and continued to be informed about progress with the pilot. Results: 4 individuals, 2 of whom shared a tenancy, had their sleepover supports removed as part of the pilot. Extensive data collection in relation to alarm activation was combined with feedback from the 4 individuals, their families, and staff involved in their support. Varying perspectives emerged within the feedback. 3 of the individuals were clearly described as benefitting from the change, and the greater sense of independence it brought, while more concerns were evident in relation to the fourth. Some family members expressed a need for greater preparation in relation to the change and ongoing information provision. Some support staff also expressed a need for more information, to help them understand the new support arrangements for an individual, as well as noting concerns in relation to the outcomes for one participant. Conclusion: Developing a telecare response in relation to a cluster of individuals was facilitated by them all being supported by the same care provider. The number of similar clusters of individuals being identified within North Ayrshire is limited. Developing other solutions such as a response service for redesign will potentially require greater collaboration between different providers of home support, as well as continuing to explore the full range of telecare, including digital options. The pilot has highlighted the need for effective preparatory and ongoing engagement with staff and families, as well as the challenges which can accompany making changes to long-standing packages of support.Keywords: challenges, change, engagement, telecare
Procedia PDF Downloads 1773531 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 1473530 Contesting Blind Obedience in Islam within the Malay-Language Media: Case Study of 'I Want to Touch a Dog' Event
Authors: Aisya Zaharin
Abstract:
The reporting of Islam in the Malaysian government-controlled press is complicated and occurs almost daily. This is due to the Islamisation process that has been heavily politicized in recent years. This article analyses media representations of Islam in the Malaysian media through the social responsibility theory. A provocative case study of media reporting on the “I want to touch a dog” event was analysed since dog’s saliva is ritually considered unhygienic by Muslims. This paper will not question the Islamic ruling on the dog’s issue. Instead, it calls for discussions in relation to openness and maturity in religious discourse with respect to the dog’s saliva dialogue in 1937. It applies Hage’s “minor and major reality” to explain the increasing percentage of Muslim who define their own understandings of Islam vs the government’s dogmatic versions. This paper employs Alatas’s method of “sociological investigation in Southeast Asia” by using ethnographic examination on selected mass media. Through Asiacentricity approach, this paper revisited the local framework of Alatas’s New Man encouraging Muslims to engage in knowledge and to appreciate diversities in Islamic jurisprudences. Despite government’s control, findings showed that non-Malay languages and online media are more comprehensive in reporting the news about Islam. Clearly, there has to be a re-conceptualization of Islamic discourses in the Malay-language media.Keywords: dog, Fiqh, Islamic jurisprudence, Malaysian media, New Man, social responsibility
Procedia PDF Downloads 3173529 An Impairment of Spatiotemporal Gait Adaptation in Huntington's Disease when Navigating around Obstacles
Authors: Naznine Anwar, Kim Cornish, Izelle Labuschagne, Nellie Georgiou-Karistianis
Abstract:
Falls and subsequent injuries are common features in symptomatic Huntington’s disease (symp-HD) individuals. As part of daily walking, navigating around obstacles may incur a greater risk of falls in symp-HD. We designed obstacle-crossing experiment to examine adaptive gait dynamics and to identify underlying spatiotemporal gait characteristics that could increase the risk of falling in symp-HD. This experiment involved navigating around one or two ground-based obstacles under two conditions (walking while navigating around one obstacle, and walking while navigating around two obstacles). A total of 32 participants were included, 16 symp-HD and 16 healthy controls with age and sex matched. We used a GAITRite electronic walkway to examine the spatiotemporal gait characteristics and inter-trail gait variability when participants walked at their preferable speed. A minimum of six trials were completed which were performed for baseline free walk and also for each and every condition during navigating around the obstacles. For analysis, we separated all walking steps into three phases as approach steps, navigating steps and recovery steps. The mean and inter-trail variability (within participant standard deviation) for each step gait variable was calculated across the six trails. We found symp-HD individuals significantly decreased their gait velocity and step length and increased step duration variability during the navigating steps and recovery steps compared with approach steps. In contrast, HC individuals showed less difference in gait velocity, step time and step length variability from baseline in both respective conditions as well as all three approaches. These findings indicate that increasing spatiotemporal gait variability may be a possible compensatory strategy that is adopted by symp-HD individuals to effectively navigate obstacles during walking. Such findings may offer benefit to clinicians in the development of strategies for HD individuals to improve functional outcomes in the home and hospital based rehabilitation program.Keywords: Huntington’s disease, gait variables, navigating around obstacle, basal ganglia dysfunction
Procedia PDF Downloads 4403528 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery
Authors: Forouzan Salehi Fergeni
Abstract:
Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine
Procedia PDF Downloads 473527 A Comparative Evaluation of the SIR and SEIZ Epidemiological Models to Describe the Diffusion Characteristics of COVID-19 Polarizing Viewpoints on Online
Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal
Abstract:
This study is conducted to examine how opposing viewpoints related to COVID-19 were diffused on Twitter. To accomplish this, six datasets using two epidemiological models, SIR (Susceptible, Infected, Recovered) and SEIZ (Susceptible, Exposed, Infected, Skeptics), were analyzed. The six datasets were chosen because they represent opposing viewpoints on the COVID-19 pandemic. Three of the datasets contain anti-subject hashtags, while the other three contain pro-subject hashtags. The time frame for all datasets is three years, starting from January 2020 to December 2022. The findings revealed that while both models were effective in evaluating the propagation trends of these polarizing viewpoints, the SEIZ model was more accurate with a relatively lower error rate (6.7%) compared to the SIR model (17.3%). Additionally, the relative error for both models was lower for anti-subject hashtags compared to pro-subject hashtags. By leveraging epidemiological models, insights into the propagation trends of polarizing viewpoints on Twitter were gained. This study paves the way for the development of methods to prevent the spread of ideas that lack scientific evidence while promoting the dissemination of scientifically backed ideas.Keywords: mathematical modeling, epidemiological model, seiz model, sir model, covid-19, twitter, social network analysis, social contagion
Procedia PDF Downloads 593526 Learning the History of a Tuscan Village: A Serious Game Using Geolocation Augmented Reality
Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti
Abstract:
An important tool for the enhancement of cultural sites is serious games (SG), i.e., games designed for educational purposes; SG is applied in cultural sites through trivia, puzzles, and mini-games for participation in interactive exhibitions, mobile applications, and simulations of past events. The combination of Augmented Reality (AR) and digital cultural content has also produced examples of cultural heritage recovery and revitalization around the world. Through AR, the user perceives the information of the visited place in a more real and interactive way. Another interesting technological development for the revitalization of cultural sites is the combination of AR and Global Positioning System (GPS), which integrated have the ability to enhance the user's perception of reality by providing historical and architectural information linked to specific locations organized on a route. To the author’s best knowledge, there are currently no applications that combine GPS AR and SG for cultural heritage revitalization. The present research focused on the development of an SG based on GPS and AR. The study area is the village of Caldana in Tuscany, Italy. Caldana is a fortified Renaissance village; the most important architectures are the walls, the church of San Biagio, the rectory, and the marquis' palace. The historical information is derived from extensive research by the Department of Architecture at the University of Florence. The storyboard of the SG is based on the history of the three characters who built the village: marquis Marcello Agostini, who was commissioned by Cosimo I de Medici, Grand Duke of Tuscany, to build the village, his son Ippolito and his architect Lorenzo Pomarelli. The three historical characters were modeled in 3D using the freeware MakeHuman and imported into Blender and Mixamo to associate a skeleton and blend shapes to have gestural animations and reproduce lip movement during speech. The Unity Rhubarb Lip Syncer plugin was used for the lip sync animation. The historical costumes were created by Marvelous Designer. The application was developed using the Unity 3D graphics and game engine. The AR+GPS Location plugin was used to position the 3D historical characters based on GPS coordinates. The ARFoundation library was used to display AR content. The SG is available in two versions: for children and adults. the children's version consists of finding a digital treasure consisting of valuable items and historical rarities. Players must find 9 village locations where 3D AR models of historical figures explaining the history of the village provide clues. To stimulate players, there are 3 levels of rewards for every 3 clues discovered. The rewards consist of AR masks for archaeologist, professor, and explorer. At the adult level, the SG consists of finding the 16 historical landmarks in the village, and learning historical and architectural information interactively and engagingly. The application is being tested on a sample of adults and children. Test subjects will be surveyed on a Likert scale to find out their perceptions of using the app and the learning experience between the guided tour and interaction with the app.Keywords: augmented reality, cultural heritage, GPS, serious game
Procedia PDF Downloads 923525 MEAL Project–Modifying Eating Attitudes and Actions through Learning
Authors: E. Oliver, A. Cebolla, A. Dominguez, A. Gonzalez-Segura, E. de la Cruz, S. Albertini, L. Ferrini, K. Kronika, T. Nilsen, R. Baños
Abstract:
The main objective of MEAL is to develop a pedagogical tool aimed to help teachers and nutritionists (students and professionals) to acquire, train, promote and deliver to children basic nutritional education and healthy eating behaviours competencies. MEAL is focused on eating behaviours and not only in nutritional literacy, and will use new technologies like Information and Communication Technologies (ICTs) and serious games (SG) platforms to consolidate the nutritional competences and habits.Keywords: nutritional education, pedagogical ICT platform, serious games, training course
Procedia PDF Downloads 5243524 Characterization of the Music Admission Requirements and Evaluation of the Relationship among Motivation and Performance Achievement
Authors: Antonio M. Oliveira, Patricia Oliveira-Silva, Jose Matias Alves, Gary McPherson
Abstract:
The music teaching is oriented towards offering formal music training. Due to its specificities, this vocational program starts at a very young age. Although provided by the State, the offer is limited to 6 schools throughout the country, which means that the vacancies for prospective students are very limited every year. It is therefore crucial that these vacancies be taken by especially motivated children grown within households that offer the ideal setting for success. Some of the instruments used to evaluate musical performance are highly sensitive to specific previous training, what represents a severe validity problem for testing children who have had restricted opportunities for formal training. Moreover, these practices may be unfair because, for instance, they may not reflect the candidates’ music aptitudes. Based on what constitutes a prerequisite for making an excellent music student, researchers in this field have long argued that motivation, task commitment, and parents’ support are as important as ability. Thus, the aim of this study is: (1) to prepare an inventory of admission requirements in Australia, Portugal and Ireland; (2) to examine whether the candidates to music conservatories and parents’ level of motivation, assessed at three evaluation points (i.e., admission, at the end of the first year, and at the end of the second year), correlates positively with the candidates’ progress in learning a musical instrument (i.e., whether motivation at the admission may predict student musicianship); (3) an adaptation of an existing instrument to assess the motivation (i.e., to adapt the items to the music setting, focusing on the motivation for playing a musical instrument). The inclusion criteria are: only children registered in the administrative services to be evaluated for entrance to the conservatory will be accepted for this study. The expected number of participants is fifty (5-6 years old) in all the three frequency schemes: integrated, articulated and supplementary. Revisiting musical admission procedures is of particular importance and relevance to musical education because this debate may bring guidance and assistance about the needed improvement to make the process of admission fairer and more transparent.Keywords: music learning, music admission requirements, student’s motivation, parent’s motivation
Procedia PDF Downloads 1633523 Embodied Cognition as a Concept of Educational Neuroscience and Phenomenology
Authors: Elham Shirvani-Ghadikolaei
Abstract:
In this paper, we examine the connection between the human mind and body within the framework of Merleau-Ponty's phenomenology. We study the role of this connection in designing more efficient learning environments, alongside the findings in physical recognition and educational neuroscience. Our research shows the interplay between the mind and the body in the external world and discusses its implications. Based on these observations, we make suggestions as to how the educational system can benefit from taking into account the interaction between the mind and the body in educational affairs.Keywords: educational neurosciences, embodied cognition, pedagogical neurosciences, phenomenology
Procedia PDF Downloads 3143522 Using Textual Pre-Processing and Text Mining to Create Semantic Links
Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo
Abstract:
This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.Keywords: semantic links, data mining, linked data, SKOS
Procedia PDF Downloads 1783521 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities
Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb
Abstract:
Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network
Procedia PDF Downloads 603520 Empowering Certificate Management with Blockchain Technology
Authors: Yash Ambekar, Kapil Vhatkar, Prathamesh Swami, Kartikey Singh, Yashovardhan Kaware
Abstract:
The rise of online courses and certifications has created new opportunities for individuals to enhance their skills. However, this digital transformation has also given rise to coun- terfeit certificates. To address this multifaceted issue, we present a comprehensive certificate management system founded on blockchain technology and strengthened by smart contracts. Our system comprises three pivotal components: certificate generation, authenticity verification, and a user-centric digital locker for certificate storage. Blockchain technology underpins the entire system, ensuring the immutability and integrity of each certificate. The inclusion of a cryptographic hash for each certificate is a fundamental aspect of our design. Any alteration in the certificate’s data will yield a distinct hash, a powerful indicator of potential tampering. Furthermore, our system includes a secure digital locker based on cloud storage that empowers users to efficiently manage and access all their certificates in one place. Moreover, our project is committed to providing features for certificate revocation and updating, thereby enhancing the system’s flexibility and security. Hence, the blockchain and smart contract-based certificate management system offers a robust and one-stop solution to the escalating problem of counterfeit certificates in the digital era.Keywords: blockchain technology, smart contracts, counterfeit certificates, authenticity verification, cryptographic hash, digital locker
Procedia PDF Downloads 443519 Applying an Automatic Speech Intelligent System to the Health Care of Patients Undergoing Long-Term Hemodialysis
Authors: Kuo-Kai Lin, Po-Lun Chang
Abstract:
Research Background and Purpose: Following the development of the Internet and multimedia, the Internet and information technology have become crucial avenues of modern communication and knowledge acquisition. The advantages of using mobile devices for learning include making learning borderless and accessible. Mobile learning has become a trend in disease management and health promotion in recent years. End-stage renal disease (ESRD) is an irreversible chronic disease, and patients who do not receive kidney transplants can only rely on hemodialysis or peritoneal dialysis to survive. Due to the complexities in caregiving for patients with ESRD that stem from their advanced age and other comorbidities, the patients’ incapacity of self-care leads to an increase in the need to rely on their families or primary caregivers, although whether the primary caregivers adequately understand and implement patient care is a topic of concern. Therefore, this study explored whether primary caregivers’ health care provisions can be improved through the intervention of an automatic speech intelligent system, thereby improving the objective health outcomes of patients undergoing long-term dialysis. Method: This study developed an automatic speech intelligent system with healthcare functions such as health information voice prompt, two-way feedback, real-time push notification, and health information delivery. Convenience sampling was adopted to recruit eligible patients from a hemodialysis center at a regional teaching hospital as research participants. A one-group pretest-posttest design was adopted. Descriptive and inferential statistics were calculated from the demographic information collected from questionnaires answered by patients and primary caregivers, and from a medical record review, a health care scale (recorded six months before and after the implementation of intervention measures), a subjective health assessment, and a report of objective physiological indicators. The changes in health care behaviors, subjective health status, and physiological indicators before and after the intervention of the proposed automatic speech intelligent system were then compared. Conclusion and Discussion: The preliminary automatic speech intelligent system developed in this study was tested with 20 pretest patients at the recruitment location, and their health care capacity scores improved from 59.1 to 72.8; comparisons through a nonparametric test indicated a significant difference (p < .01). The average score for their subjective health assessment rose from 2.8 to 3.3. A survey of their objective physiological indicators discovered that the compliance rate for the blood potassium level was the most significant indicator; its average compliance rate increased from 81% to 94%. The results demonstrated that this automatic speech intelligent system yielded a higher efficacy for chronic disease care than did conventional health education delivered by nurses. Therefore, future efforts will continue to increase the number of recruited patients and to refine the intelligent system. Future improvements to the intelligent system can be expected to enhance its effectiveness even further.Keywords: automatic speech intelligent system for health care, primary caregiver, long-term hemodialysis, health care capabilities, health outcomes
Procedia PDF Downloads 109