Search results for: nanofluid applications
218 Modern Detection and Description Methods for Natural Plants Recognition
Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert
Abstract:
Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT
Procedia PDF Downloads 276217 Developing Telehealth-Focused Advanced Practice Nurse Educational Partnerships
Authors: Shelley Y. Hawkins
Abstract:
Introduction/Background: As technology has grown exponentially in healthcare, nurse educators must prepare Advanced Practice Registered Nurse (APRN) graduates with the knowledge and skills in information systems/technology to support and improve patient care and health care systems. APRN’s are expected to lead in caring for populations who lack accessibility and availability through the use of technology, specifically telehealth. The capacity to effectively and efficiently use technology in patient care delivery is clearly delineated in the American Association of Colleges of Nursing (AACN) Doctor of Nursing Practice (DNP) and Master of Science in Nursing (MSN) Essentials. However, APRN’s have minimal, or no, exposure to formalized telehealth education and lack necessary technical skills needed to incorporate telehealth into their patient care. APRN’s must successfully master the technology using telehealth/telemedicine, electronic health records, health information technology, and clinical decision support systems to advance health. Furthermore, APRN’s must be prepared to lead the coordination and collaboration with other healthcare providers in their use and application. Aim/Goal/Purpose: The purpose of this presentation is to establish and operationalize telehealth-focused educational partnerships between one University School of Nursing and two health care systems in order to enhance the preparation of APRN NP students for practice, teaching, and/or scholarly endeavors. Methods: The proposed project was initially presented by the project director to selected multidisciplinary stakeholders including leadership, home telehealth personnel, primary care providers, and decision support systems within two major health care systems to garner their support for acceptance and implementation. Concurrently, backing was obtained from key university-affiliated colleagues including the Director of Simulation and Innovative Learning Lab and Coordinator of the Health Care Informatics Program. Technology experts skilled in design and production in web applications and electronic modules were secured from two local based technology companies. Results: Two telehealth-focused APRN Program academic/practice partnerships have been established. Students have opportunities to engage in clinically based telehealth experiences focused on: (1) providing patient care while incorporating various technology with a specific emphasis on telehealth; (2) conducting research and/or evidence-based practice projects in order to further develop the scientific foundation regarding incorporation of telehealth with patient care; and (3) participating in the production of patient-level educational materials related to specific topical areas. Conclusions: Evidence-based APRN student telehealth clinical experiences will assist in preparing graduates who can effectively incorporate telehealth into their clinical practice. Greater access for diverse populations will be available as a result of the telehealth service model as well as better care and better outcomes at lower costs. Furthermore, APRN’s will provide the necessary leadership and coordination through interprofessional practice by transforming health care through new innovative care models using information systems and technology.Keywords: academic/practice partnerships, advanced practice nursing, nursing education, telehealth
Procedia PDF Downloads 242216 Effects of Hydrogen Bonding and Vinylcarbazole Derivatives on 3-Cyanovinylcarbazole Mediated Photo-Cross-Linking Induced Cytosine Deamination
Authors: Siddhant Sethi, Yasuharu Takashima, Shigetaka Nakamura, Kenzo Fujimoto
Abstract:
Site-directed mutagenesis is a renowned technique to introduce specific mutations in the genome. To achieve site-directed mutagenesis, many chemical and enzymatic approaches have been reported in the past like disulphite induced genome editing, CRISPR-Cas9, TALEN etc. The chemical methods are invasive whereas the enzymatic approaches are time-consuming and expensive. Most of these techniques are unusable in the cellular application due to their toxicity and other limitations. Photo-chemical cytosine deamination, introduced in 2010, is one of the major technique for enzyme-free single-point mutation of cytosine to uracil in DNA and RNA, wherein, 3-cyanovinylcarbazole nucleoside (CNVK) containing oligodeoxyribonucleotide (ODN) having CNVK at -1 position to that of target cytosine is reversibly crosslinked to target DNA strand using 366 nm and then incubated at 90ºC to accommodate deamination. This technique is superior to enzymatic methods of site-directed mutagenesis but has a disadvantage that it requires the use of high temperature for the deamination step which restricts its applicability in the in vivo applications. This study has been focused on improving the technique by reducing the temperature required for deamination. Firstly, the photo-cross-linker, CNVK has been modified by replacing cyano group attached to vinyl group with methyl ester (OMeVK), amide (NH2VK), and carboxylic acid (OHVK) to observe the acceleration in the deamination of target cytosine cross-linked to vinylcarbazole derivative. Among the derivatives, OHVK has shown 2 times acceleration in deamination reaction as compared to CNVK, while the other two derivatives have shown deceleration towards deamination reaction. The trend of rate of deamination reaction follows the same order as that of hydrophilicity of the vinylcarbazole derivatives. OHVK being most hydrophilic has shown highest acceleration while OMeVK is least hydrophilic has proven to be least active for deamination. Secondly, in the related study, the counter-base of the target cytosine, guanine has been replaced by inosine, 2-aminopurine, nebularine, and 5-nitroindole having distinct hydrogen bonding patterns with target cytosine. Among the ODNs with these counter bases, ODN with inosine has shown 12 fold acceleration towards deamination of cytosine cross-linked to CNVK at physiological conditions as compared to guanosine. Whereas, when 2-aminopurine, nebularine, and 5-nitroindole were used, no deamination reaction took place. It can be concluded that inosine has potential to be used as the counter base of target cytosine for the CNVK mediated photo-cross-linking induced deamination of cytosine. The increase in rate of deamination reaction has been attributed to pattern and number of hydrogen bonding between the cytosine and counter base. One of the important factor is presence of hydrogen bond between exo-cyclic amino group of cytosine and the counter base. These results will be useful for development of more efficient technique for site-directed mutagenesis for C → U transformations in the DNA/RNA which might be used in the living system for treatment of various genetic disorders and genome engineering for making designer and non-native proteins.Keywords: C to U transformation, DNA editing, genome engineering, ultra-fast photo-cross-linking
Procedia PDF Downloads 235215 Edible Active Antimicrobial Coatings onto Plastic-Based Laminates and Its Performance Assessment on the Shelf Life of Vacuum Packaged Beef Steaks
Authors: Andrey A. Tyuftin, David Clarke, Malco C. Cruz-Romero, Declan Bolton, Seamus Fanning, Shashi K. Pankaj, Carmen Bueno-Ferrer, Patrick J. Cullen, Joe P. Kerry
Abstract:
Prolonging of shelf-life is essential in order to address issues such as; supplier demands across continents, economical profit, customer satisfaction, and reduction of food wastage. Smart packaging solutions presented in the form of naturally occurred antimicrobially-active packaging may be a solution to these and other issues. Gelatin film forming solution with adding of natural sourced antimicrobials is a promising tool for the active smart packaging. The objective of this study was to coat conventional plastic hydrophobic packaging material with hydrophilic antimicrobial active beef gelatin coating and conduct shelf life trials on beef sub-primal cuts. Minimal inhibition concentration (MIC) of Caprylic acid sodium salt (SO) and commercially available Auranta FV (AFV) (bitter oranges extract with mixture of nutritive organic acids) were found of 1 and 1.5 % respectively against bacterial strains Bacillus cereus, Pseudomonas fluorescens, Escherichia coli, Staphylococcus aureus and aerobic and anaerobic beef microflora. Therefore SO or AFV were incorporated in beef gelatin film forming solution in concentration of two times of MIC which was coated on a conventional plastic LDPE/PA film on the inner cold plasma treated polyethylene surface. Beef samples were vacuum packed in this material and stored under chilling conditions, sampled at weekly intervals during 42 days shelf life study. No significant differences (p < 0.05) in the cook loss was observed among the different treatments compared to control samples until the day 29. Only for AFV coated beef sample it was 3% higher (37.3%) than the control (34.4 %) on the day 36. It was found antimicrobial films did not protect beef against discoloration. SO containing packages significantly (p < 0.05) reduced Total viable bacterial counts (TVC) compared to the control and AFV samples until the day 35. No significant reduction in TVC was observed between SO and AFV films on the day 42 but a significant difference was observed compared to control samples with a 1.40 log of bacteria reduction on the day 42. AFV films significantly (p < 0.05) reduced TVC compared to control samples from the day 14 until the day 42. Control samples reached the set value of 7 log CFU/g on day 27 of testing, AFV films did not reach this set limit until day 35 and SO films until day 42 of testing. The antimicrobial AFV and SO coated films significantly prolonged the shelf-life of beef steaks by 33 or 55% (on 7 and 14 days respectively) compared to control film samples. It is concluded antimicrobial coated films were successfully developed by coating the inner polyethylene layer of conventional LDPE/PA laminated films after plasma surface treatment. The results indicated that the use of antimicrobial active packaging coated with SO or AFV increased significantly (p < 0.05) the shelf life of the beef sub-primal. Overall, AFV or SO containing gelatin coatings have the potential of being used as effective antimicrobials for active packaging applications for muscle-based food products.Keywords: active packaging, antimicrobials, edible coatings, food packaging, gelatin films, meat science
Procedia PDF Downloads 303214 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media
Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca
Abstract:
Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks
Procedia PDF Downloads 197213 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning
Authors: Akeel A. Shah, Tong Zhang
Abstract:
Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning
Procedia PDF Downloads 41212 3D Label-Free Bioimaging of Native Tissue with Selective Plane Illumination Optical Microscopy
Authors: Jing Zhang, Yvonne Reinwald, Nick Poulson, Alicia El Haj, Chung See, Mike Somekh, Melissa Mather
Abstract:
Biomedical imaging of native tissue using light offers the potential to obtain excellent structural and functional information in a non-invasive manner with good temporal resolution. Image contrast can be derived from intrinsic absorption, fluorescence, or scatter, or through the use of extrinsic contrast. A major challenge in applying optical microscopy to in vivo tissue imaging is the effects of light attenuation which limits light penetration depth and achievable imaging resolution. Recently Selective Plane Illumination Microscopy (SPIM) has been used to map the 3D distribution of fluorophores dispersed in biological structures. In this approach, a focused sheet of light is used to illuminate the sample from the side to excite fluorophores within the sample of interest. Images are formed based on detection of fluorescence emission orthogonal to the illumination axis. By scanning the sample along the detection axis and acquiring a stack of images, 3D volumes can be obtained. The combination of rapid image acquisition speeds with the low photon dose to samples optical sectioning provides SPIM is an attractive approach for imaging biological samples in 3D. To date all implementations of SPIM rely on the use of fluorescence reporters be that endogenous or exogenous. This approach has the disadvantage that in the case of exogenous probes the specimens are altered from their native stage rendering them unsuitable for in vivo studies and in general fluorescence emission is weak and transient. Here we present for the first time to our knowledge a label-free implementation of SPIM that has downstream applications in the clinical setting. The experimental set up used in this work incorporates both label-free and fluorescent illumination arms in addition to a high specification camera that can be partitioned for simultaneous imaging of both fluorescent emission and scattered light from intrinsic sources of optical contrast in the sample being studied. This work first involved calibration of the imaging system and validation of the label-free method with well characterised fluorescent microbeads embedded in agarose gel. 3D constructs of mammalian cells cultured in agarose gel with varying cell concentrations were then imaged. A time course study to track cell proliferation in the 3D construct was also carried out and finally a native tissue sample was imaged. For each sample multiple images were obtained by scanning the sample along the axis of detection and 3D maps reconstructed. The results obtained validated label-free SPIM as a viable approach for imaging cells in a 3D gel construct and native tissue. This technique has the potential use in a near-patient environment that can provide results quickly and be implemented in an easy to use manner to provide more information with improved spatial resolution and depth penetration than current approaches.Keywords: bioimaging, optics, selective plane illumination microscopy, tissue imaging
Procedia PDF Downloads 249211 Mechanical Properties of Poly(Propylene)-Based Graphene Nanocomposites
Authors: Luiza Melo De Lima, Tito Trindade, Jose M. Oliveira
Abstract:
The development of thermoplastic-based graphene nanocomposites has been of great interest not only to the scientific community but also to different industrial sectors. Due to the possible improvement of performance and weight reduction, thermoplastic nanocomposites are a great promise as a new class of materials. These nanocomposites are of relevance for the automotive industry, namely because the emission limits of CO2 emissions imposed by the European Commission (EC) regulations can be fulfilled without compromising the car’s performance but by reducing its weight. Thermoplastic polymers have some advantages over thermosetting polymers such as higher productivity, lower density, and recyclability. In the automotive industry, for example, poly(propylene) (PP) is a common thermoplastic polymer, which represents more than half of the polymeric raw material used in automotive parts. Graphene-based materials (GBM) are potential nanofillers that can improve the properties of polymer matrices at very low loading. In comparison to other composites, such as fiber-based composites, weight reduction can positively affect their processing and future applications. However, the properties and performance of GBM/polymer nanocomposites depend on the type of GBM and polymer matrix, the degree of dispersion, and especially the type of interactions between the fillers and the polymer matrix. In order to take advantage of the superior mechanical strength of GBM, strong interfacial strength between GBM and the polymer matrix is required for efficient stress transfer from GBM to the polymer. Thus, chemical compatibilizers and physicochemical modifications have been reported as important tools during the processing of these nanocomposites. In this study, PP-based nanocomposites were obtained by a simple melt blending technique, using a Brabender type mixer machine. Graphene nanoplatelets (GnPs) were applied as structural reinforcement. Two compatibilizers were used to improve the interaction between PP matrix and GnPs: PP graft maleic anhydride (PPgMA) and PPgMA modified with tertiary amine alcohol (PPgDM). The samples for tensile and Charpy impact tests were obtained by injection molding. The results suggested the GnPs presence can increase the mechanical strength of the polymer. However, it was verified that the GnPs presence can promote a decrease of impact resistance, turning the nanocomposites more fragile than neat PP. The compatibilizers’ incorporation increases the impact resistance, suggesting that the compatibilizers can enhance the adhesion between PP and GnPs. Compared to neat PP, Young’s modulus of non-compatibilized nanocomposite increase demonstrated that GnPs incorporation can promote a stiffness improvement of the polymer. This trend can be related to the several physical crosslinking points between the PP matrix and the GnPs. Furthermore, the decrease of strain at a yield of PP/GnPs, together with the enhancement of Young’s modulus, confirms that the GnPs incorporation led to an increase in stiffness but to a decrease in toughness. Moreover, the results demonstrated that incorporation of compatibilizers did not affect Young’s modulus and strain at yield results compared to non-compatibilized nanocomposite. The incorporation of these compatibilizers showed an improvement of nanocomposites’ mechanical properties compared both to those the non-compatibilized nanocomposite and to a PP sample used as reference.Keywords: graphene nanoplatelets, mechanical properties, melt blending processing, poly(propylene)-based nanocomposites
Procedia PDF Downloads 187210 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms
Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee
Abstract:
Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences
Procedia PDF Downloads 274209 Advancing Agriculture through Technology: An Abstract of Research Findings
Authors: Eugene Aninagyei-Bonsu
Abstract:
Introduction: Agriculture has been a cornerstone of human civilization, ensuring food security and livelihoods for billions of people worldwide. In recent decades, rapid advancements in technology have revolutionized the agricultural sector, offering innovative solutions to enhance productivity, sustainability, and efficiency. This abstract summarizes key findings from a research study that explores the impacts of technology in modern agriculture and its implications for future food production systems. Methodologies: The research study employed a mixed-methods approach, combining quantitative data analysis with qualitative interviews and surveys to gain a comprehensive understanding of the role of technology in agriculture. Data was collected from various stakeholders, including farmers, agricultural technicians, and industry experts, to capture diverse perspectives on the adoption and utilization of agricultural technologies. The study also utilized case studies and literature reviews to contextualize the findings within the broader agricultural landscape. Major Findings: The research findings reveal that technology plays a pivotal role in transforming traditional farming practices and driving innovation in agriculture. Advanced technologies such as precision agriculture, drone technology, genetic engineering, and smart irrigation systems have significantly improved crop yields, reduced environmental impact, and optimized resource utilization. Farmers who have embraced these technologies have reported increased productivity, enhanced profitability, and improved resilience to environmental challenges. Furthermore, the study highlights the importance of accessible and affordable technology solutions for smallholder farmers in developing countries. Mobile applications, sensor technologies, and digital platforms have enabled small-scale farmers to access market information, weather forecasts, and agricultural best practices, empowering them to make informed decisions and improve their livelihoods. The research emphasizes the need for targeted policies and investments to bridge the digital divide and promote equitable technology adoption in agriculture. Conclusion: In conclusion, this research underscores the transformative potential of technology in agriculture and its critical role in advancing sustainable food production systems. The findings suggest that harnessing technology can address key challenges facing the agricultural sector, including climate change, resource scarcity, and food insecurity. By embracing innovation and leveraging technology, farmers can enhance their productivity, profitability, and resilience in a rapidly evolving global food system. Moving forward, policymakers, researchers, and industry stakeholders must collaborate to facilitate the adoption of appropriate technologies, support capacity building, and promote sustainable agricultural practices for a more resilient and food-secure future.Keywords: technology development in modern agriculture, the influence of information technology access in agriculture, analyzing agricultural technology development, analyzing of the frontier technology of agriculture loT
Procedia PDF Downloads 35208 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment
Authors: Pedro Llanos, Diego García
Abstract:
This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.Keywords: slow onset hypoxia, hypobaric chamber training, altitude sickness, symptoms and altitude, pressure cabin
Procedia PDF Downloads 116207 Adaptive Power Control of the City Bus Integrated Photovoltaic System
Authors: Piotr Kacejko, Mariusz Duk, Miroslaw Wendeker
Abstract:
This paper presents an adaptive controller to track the maximum power point of a photovoltaic modules (PV) under fast irradiation change on the city-bus roof. Photovoltaic systems have been a prominent option as an additional energy source for vehicles. The Municipal Transport Company (MPK) in Lublin has installed photovoltaic panels on its buses roofs. The solar panels turn solar energy into electric energy and are used to load the buses electric equipment. This decreases the buses alternators load, leading to lower fuel consumption and bringing both economic and ecological profits. A DC–DC boost converter is selected as the power conditioning unit to coordinate the operating point of the system. In addition to the conversion efficiency of a photovoltaic panel, the maximum power point tracking (MPPT) method also plays a main role to harvest most energy out of the sun. The MPPT unit on a moving vehicle must keep tracking accuracy high in order to compensate rapid change of irradiation change due to dynamic motion of the vehicle. Maximum power point track controllers should be used to increase efficiency and power output of solar panels under changing environmental factors. There are several different control algorithms in the literature developed for maximum power point tracking. However, energy performances of MPPT algorithms are not clarified for vehicle applications that cause rapid changes of environmental factors. In this study, an adaptive MPPT algorithm is examined at real ambient conditions. PV modules are mounted on a moving city bus designed to test the solar systems on a moving vehicle. Some problems of a PV system associated with a moving vehicle are addressed. The proposed algorithm uses a scanning technique to determine the maximum power delivering capacity of the panel at a given operating condition and controls the PV panel. The aim of control algorithm was matching the impedance of the PV modules by controlling the duty cycle of the internal switch, regardless of changes of the parameters of the object of control and its outer environment. Presented algorithm was capable of reaching the aim of control. The structure of an adaptive controller was simplified on purpose. Since such a simple controller, armed only with an ability to learn, a more complex structure of an algorithm can only improve the result. The presented adaptive control system of the PV system is a general solution and can be used for other types of PV systems of both high and low power. Experimental results obtained from comparison of algorithms by a motion loop are presented and discussed. Experimental results are presented for fast change in irradiation and partial shading conditions. The results obtained clearly show that the proposed method is simple to implement with minimum tracking time and high tracking efficiency proving superior to the proposed method. This work has been financed by the Polish National Centre for Research and Development, PBS, under Grant Agreement No. PBS 2/A6/16/2013.Keywords: adaptive control, photovoltaic energy, city bus electric load, DC-DC converter
Procedia PDF Downloads 212206 Effect of Spermidine on Physicochemical Properties of Protein Based Films
Authors: Mohammed Sabbah, Prospero Di Pierro, Raffaele Porta
Abstract:
Protein-based edible films and coatings have attracted an increasing interest in recent years since they might be used to protect pharmaceuticals or improve the shelf life of different food products. Among them, several plant proteins represent an abundant, inexpensive and renewable raw source. These natural biopolymers are used as film forming agents, being able to form intermolecular linkages by various interactions. However, without the addition of a plasticizing agent, many biomaterials are brittle and, consequently, very difficult to be manipulated. Plasticizers are generally small and non-volatile organic additives used to increase film extensibility and reduce its crystallinity, brittleness and water vapor permeability. Plasticizers normally act by decreasing the intermolecular forces along the polymer chains, thus reducing the relative number of polymer-polymer contacts, producing a decrease in cohesion and tensile strength and thereby increasing film flexibility allowing its deformation without rupture. The most commonly studied plasticizers are polyols, like glycerol (GLY) and some mono or oligosaccharides. In particular, GLY not only increases film extensibility but also migrates inside the film network often causing the loss of desirable mechanical properties of the material. Therefore, replacing GLY with a different plasticizer might help to improve film characteristics allowing potential industrial applications. To improve film properties, it seemed of interest to test as plasticizers some cationic small molecules like polyamines (PAs). Putrescine, spermidine (SPD), and spermine are PAs widely distributed in nature and of particular interest for their biological activities that may have some beneficial health effects. Since PAs contains amino instead of hydroxyl functional groups, they are able to trigger ionic interactions with negatively charged proteins. Bitter vetch (Vicia ervilia; BV) is an ancient grain legume crop, originated in the Mediterranean region, which can be found today in many countries around the world. This annual Vicia genus shows several favorable features, being their seeds a cheap and abundant protein source. The main objectives of this study were to investigate the effect of different concentrations of SPD on the mechanical and permeability properties of films prepared with native or heat denatured BV proteins in the presence of different concentrations of SPD and/or GLY. Therefore, a BV seed protein concentrate (BVPC), containing about 77% proteins, was used to prepare film forming solutions (FFSs), whereas GLY and SPD were added as film plasticizers, either singly or in combination, at various concentrations. Since a primary plasticizer is generally defined as a molecule that when added to a material makes it softer, more flexible and easier to be processed, our findings lead to consider SPD as a possible primary plasticizer of protein-based films. In fact, the addition of millimolar concentrations of SPD to BVPC FFS allowed obtaining handleable biomaterials with improved properties. Moreover, SPD can be also considered as a secondary plasticizer, namely an 'extender', because of its ability even to enhance the plasticizing performance of GLY. In conclusion, our studies indicate that innovative edible protein-based films and coatings can be obtained by using PAs as new plasticizers.Keywords: edible films, glycerol, plasticizers, polyamines, spermidine
Procedia PDF Downloads 197205 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications
Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi
Abstract:
Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery
Procedia PDF Downloads 108204 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model
Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson
Abstract:
The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania
Procedia PDF Downloads 106203 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry
Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard
Abstract:
Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor
Procedia PDF Downloads 327202 Spin Rate Decaying Law of Projectile with Hemispherical Head in Exterior Trajectory
Authors: Quan Wen, Tianxiao Chang, Shaolu Shi, Yushi Wang, Guangyu Wang
Abstract:
As a kind of working environment of the fuze, the spin rate decaying law of projectile in exterior trajectory is of great value in the design of the rotation count fixed distance fuze. In addition, it is significant in the field of devices for simulation tests of fuze exterior ballistic environment, flight stability, and dispersion accuracy of gun projectile and opening and scattering design of submunition and illuminating cartridges. Besides, the self-destroying mechanism of the fuze in small-caliber projectile often works by utilizing the attenuation of centrifugal force. In the theory of projectile aerodynamics and fuze design, there are many formulas describing the change law of projectile angular velocity in external ballistic such as Roggla formula, exponential function formula, and power function formula. However, these formulas are mostly semi-empirical due to the poor test conditions and insufficient test data at that time. These formulas are difficult to meet the design requirements of modern fuze because they are not accurate enough and have a narrow range of applications now. In order to provide more accurate ballistic environment parameters for the design of a hemispherical head projectile fuze, the projectile’s spin rate decaying law in exterior trajectory under the effect of air resistance was studied. In the analysis, the projectile shape was simplified as hemisphere head, cylindrical part, rotating band part, and anti-truncated conical tail. The main assumptions are as follows: a) The shape and mass are symmetrical about the longitudinal axis, b) There is a smooth transition between the ball hea, c) The air flow on the outer surface is set as a flat plate flow with the same area as the expanded outer surface of the projectile, and the boundary layer is turbulent, d) The polar damping moment attributed to the wrench hole and rifling mark on the projectile is not considered, e) The groove of the rifle on the rotating band is uniform, smooth and regular. The impacts of the four parts on aerodynamic moment of the projectile rotation were obtained by aerodynamic theory. The surface friction stress of the projectile, the polar damping moment formed by the head of the projectile, the surface friction moment formed by the cylindrical part, the rotating band, and the anti-truncated conical tail were obtained by mathematical derivation. After that, the mathematical model of angular spin rate attenuation was established. In the whole trajectory with the maximum range angle (38°), the absolute error of the polar damping torque coefficient obtained by simulation and the coefficient calculated by the mathematical model established in this paper is not more than 7%. Therefore, the credibility of the mathematical model was verified. The mathematical model can be described as a first-order nonlinear differential equation, which has no analytical solution. The solution can be only gained as a numerical solution by connecting the model with projectile mass motion equations in exterior ballistics.Keywords: ammunition engineering, fuze technology, spin rate, numerical simulation
Procedia PDF Downloads 144201 Using Business Simulations and Game-Based Learning for Enterprise Resource Planning Implementation Training
Authors: Carin Chuang, Kuan-Chou Chen
Abstract:
An Enterprise Resource Planning (ERP) system is an integrated information system that supports the seamless integration of all the business processes of a company. Implementing an ERP system can increase efficiencies and decrease the costs while helping improve productivity. Many organizations including large, medium and small-sized companies have already adopted an ERP system for decades. Although ERP system can bring competitive advantages to organizations, the lack of proper training approach in ERP implementation is still a major concern. Organizations understand the importance of ERP training to adequately prepare managers and users. The low return on investment, however, for the ERP training makes the training difficult for knowledgeable workers to transfer what is learned in training to the jobs at workplace. Inadequate and inefficient ERP training limits the value realization and success of an ERP system. That is the need to call for a profound change and innovation for ERP training in both workplace at industry and the Information Systems (IS) education in academia. The innovated ERP training approach can improve the users’ knowledge in business processes and hands-on skills in mastering ERP system. It also can be instructed as educational material for IS students in universities. The purpose of the study is to examine the use of ERP simulation games via the ERPsim system to train the IS students in learning ERP implementation. The ERPsim is the business simulation game developed by ERPsim Lab at HEC Montréal, and the game is a real-life SAP (Systems Applications and Products) ERP system. The training uses the ERPsim system as the tool for the Internet-based simulation games and is designed as online student competitions during the class. The competitions involve student teams with the facilitation of instructor and put the students’ business skills to the test via intensive simulation games on a real-world SAP ERP system. The teams run the full business cycle of a manufacturing company while interacting with suppliers, vendors, and customers through sending and receiving orders, delivering products and completing the entire cash-to-cash cycle. To learn a range of business skills, student needs to adopt individual business role and make business decisions around the products and business processes. Based on the training experiences learned from rounds of business simulations, the findings show that learners have reduced risk in making mistakes that help learners build self-confidence in problem-solving. In addition, the learners’ reflections from their mistakes can speculate the root causes of the problems and further improve the efficiency of the training. ERP instructors teaching with the innovative approach report significant improvements in student evaluation, learner motivation, attendance, engagement as well as increased learner technology competency. The findings of the study can provide ERP instructors with guidelines to create an effective learning environment and can be transferred to a variety of other educational fields in which trainers are migrating towards a more active learning approach.Keywords: business simulations, ERP implementation training, ERPsim, game-based learning, instructional strategy, training innovation
Procedia PDF Downloads 139200 Collagen/Hydroxyapatite Compositions Doped with Transitional Metals for Bone Tissue Engineering Applications
Authors: D. Ficai, A. Ficai, D. Gudovan, I. A. Gudovan, I. Ardelean, R. Trusca, E. Andronescu, V. Mitran, A. Cimpean
Abstract:
In the last years, scientists struggled hardly to mimic bone structures to develop implants and biostructures which present higher biocompatibility and reduced rejection rate. One way to obtain this goal is to use similar materials as that of bone, namely collagen/hydroxyapatite composite materials. However, it is very important to tailor both compositions but also the microstructure of the bone that would ensure both the optimal osteointegartion and the mechanical properties required by the application. In this study, new collagen/hydroxyapatites composite materials doped with Cu, Li, Mn, Zn were successfully prepared. The synthesis method is described below: weight the Ca(OH)₂ mass, i.e., 7,3067g, and ZnCl₂ (0.134g), CuSO₄ (0.159g), LiCO₃ (0.133g), MnCl₂.4H₂O (0.1971g), and suspend in 100ml distilled water under magnetic stirring. The solution thus obtained is added a solution of NaH₂PO₄*H2O (8.247g dissolved in 50ml distilled water) under slow dropping of 1 ml/min followed by adjusting the pH to 9.5 with HCl and finally filter and wash until neutral pH. The as-obtained slurry was dried in the oven at 80°C and then calcined at 600°C in order to ensure a proper purification of the final product of organic phases, also inducing a proper sterilization of the mixture before insertion into the collagen matrix. The collagen/hydroxyapatite composite materials are tailored from morphological point of view to optimize their biocompatibility and bio-integration against mechanical properties whereas the addition of the dopants is aimed to improve the biological activity of the samples. The addition of transitional metals can improve the biocompatibility and especially the osteoblasts adhesion (Mn²⁺) or to induce slightly better osteoblast differentiation of the osteoblast, Zn²⁺ being a cofactor for many enzymes including those responsible for cell differentiation. If the amount is too high, the final material can become toxic and lose all of its biocompatibility. In order to achieve a good biocompatibility and not reach the cytotoxic effect, the amount of transitional metals added has to be maintained at low levels (0.5% molar). The amount of transitional metals entering into the elemental cell of HA will be verified using inductively-coupled plasma mass spectrometric system. This highly sensitive technique is necessary, because, at such low levels of transitional metals, the difference between biocompatible and cytotoxic is a very thin line, thus requiring proper and thorough investigation using a precise technique. In order to determine the structure and morphology of the obtained composite materials, IR spectroscopy, X-Ray diffraction (XRD), scanning electron microscopy (SEM), and Energy Dispersive X-Ray Spectrometry (EDS) were used. Acknowledgment: The present work was possible due to the EU-funding grant POSCCE-A2O2.2.1-2013-1, Project No. 638/12.03.2014, code SMIS-CSNR 48652. The financial contribution received from the national project “Biomimetic porous structures obtained by 3D printing developed for bone tissue engineering (BIOGRAFTPRINT), No. 127PED/2017 is also highly acknowledged.Keywords: collagen, composite materials, hydroxyapatite, bone tissue engineering
Procedia PDF Downloads 206199 Novel Numerical Technique for Dusty Plasma Dynamics (Yukawa Liquids): Microfluidic and Role of Heat Transport
Authors: Aamir Shahzad, Mao-Gang He
Abstract:
Currently, dusty plasmas motivated the researchers' widespread interest. Since the last two decades, substantial efforts have been made by the scientific and technological community to investigate the transport properties and their nonlinear behavior of three-dimensional and two-dimensional nonideal complex (dusty plasma) liquids (NICDPLs). Different calculations have been made to sustain and utilize strongly coupled NICDPLs because of their remarkable scientific and industrial applications. Understanding of the thermophysical properties of complex liquids under various conditions is of practical interest in the field of science and technology. The determination of thermal conductivity is also a demanding question for thermophysical researchers, due to some reasons; very few results are offered for this significant property. Lack of information of the thermal conductivity of dense and complex liquids at different parameters related to the industrial developments is a major barrier to quantitative knowledge of the heat flux flow from one medium to another medium or surface. The exact numerical investigation of transport properties of complex liquids is a fundamental research task in the field of thermophysics, as various transport data are closely related with the setup and confirmation of equations of state. A reliable knowledge of transport data is also important for an optimized design of processes and apparatus in various engineering and science fields (thermoelectric devices), and, in particular, the provision of precise data for the parameters of heat, mass, and momentum transport is required. One of the promising computational techniques, the homogenous nonequilibrium molecular dynamics (HNEMD) simulation, is over viewed with a special importance on the application to transport problems of complex liquids. This proposed work is particularly motivated by the FIRST TIME to modify the problem of heat conduction equations leads to polynomial velocity and temperature profiles algorithm for the investigation of transport properties with their nonlinear behaviors in the NICDPLs. The aim of proposed work is to implement a NEMDS algorithm (Poiseuille flow) and to delve the understanding of thermal conductivity behaviors in Yukawa liquids. The Yukawa system is equilibrated through the Gaussian thermostat in order to maintain the constant system temperature (canonical ensemble ≡ NVT)). The output steps will be developed between 3.0×105/ωp and 1.5×105/ωp simulation time steps for the computation of λ data. The HNEMD algorithm shows that the thermal conductivity is dependent on plasma parameters and the minimum value of lmin shifts toward higher G with an increase in k, as expected. New investigations give more reliable simulated data for the plasma conductivity than earlier known simulation data and generally the plasma λ0 by 2%-20%, depending on Γ and κ. It has been shown that the obtained results at normalized force field are in satisfactory agreement with various earlier simulation results. This algorithm shows that the new technique provides more accurate results with fast convergence and small size effects over a wide range of plasma states.Keywords: molecular dynamics simulation, thermal conductivity, nonideal complex plasma, Poiseuille flow
Procedia PDF Downloads 274198 Big Data and Health: An Australian Perspective Which Highlights the Importance of Data Linkage to Support Health Research at a National Level
Authors: James Semmens, James Boyd, Anna Ferrante, Katrina Spilsbury, Sean Randall, Adrian Brown
Abstract:
‘Big data’ is a relatively new concept that describes data so large and complex that it exceeds the storage or computing capacity of most systems to perform timely and accurate analyses. Health services generate large amounts of data from a wide variety of sources such as administrative records, electronic health records, health insurance claims, and even smart phone health applications. Health data is viewed in Australia and internationally as highly sensitive. Strict ethical requirements must be met for the use of health data to support health research. These requirements differ markedly from those imposed on data use from industry or other government sectors and may have the impact of reducing the capacity of health data to be incorporated into the real time demands of the Big Data environment. This ‘big data revolution’ is increasingly supported by national governments, who have invested significant funds into initiatives designed to develop and capitalize on big data and methods for data integration using record linkage. The benefits to health following research using linked administrative data are recognised internationally and by the Australian Government through the National Collaborative Research Infrastructure Strategy Roadmap, which outlined a multi-million dollar investment strategy to develop national record linkage capabilities. This led to the establishment of the Population Health Research Network (PHRN) to coordinate and champion this initiative. The purpose of the PHRN was to establish record linkage units in all Australian states, to support the implementation of secure data delivery and remote access laboratories for researchers, and to develop the Centre for Data Linkage for the linkage of national and cross-jurisdictional data. The Centre for Data Linkage has been established within Curtin University in Western Australia; it provides essential record linkage infrastructure necessary for large-scale, cross-jurisdictional linkage of health related data in Australia and uses a best practice ‘separation principle’ to support data privacy and security. Privacy preserving record linkage technology is also being developed to link records without the use of names to overcome important legal and privacy constraint. This paper will present the findings of the first ‘Proof of Concept’ project selected to demonstrate the effectiveness of increased record linkage capacity in supporting nationally significant health research. This project explored how cross-jurisdictional linkage can inform the nature and extent of cross-border hospital use and hospital-related deaths. The technical challenges associated with national record linkage, and the extent of cross-border population movements, were explored as part of this pioneering research project. Access to person-level data linked across jurisdictions identified geographical hot spots of cross border hospital use and hospital-related deaths in Australia. This has implications for planning of health service delivery and for longitudinal follow-up studies, particularly those involving mobile populations.Keywords: data integration, data linkage, health planning, health services research
Procedia PDF Downloads 216197 Office Workspace Design for Policewomen in Assam, India: Applications for Developing Countries
Authors: Shilpi Bora, Abhirup Chatterjee, Debkumar Chakrabarti
Abstract:
Organizations of all the sectors around the world are increasingly revisiting their workplace strategies with due concern for women working therein. Limited office space and rigid work arrangements contribute to lesser job satisfaction and greater work impoundments for any organization. Flexible workspace strategies are indispensable to accommodate the progressive rise of modular workstations and involvement of women. Today’s generation of employees deserves malleable office environments with employee-friendly job conditions and strategies. The workplace nowadays stands on rapid organizational changes in progressive and flexible work culture. Occupational well-being practices need to keep pace with the rapid changes in office-based work. Working at the office (workspace) with awkward postures or for long periods can cause pain, discomfort, and injury. The world is stirring towards the era of globalization and progress. The 4000 women police personnel constitute less than one per cent of the total police strength of India. Lots of innovative fields are growing fast, and it is important that we should accommodate women in those arenas. The timeworn trends should be set apart to set out for fresh opportunities and possibilities of development and success through more involvement of women in the workplace. The notion of women policing is gaining position throughout the world, and various countries are putting solemn efforts to mainstream women in policing. As the role of women policing in a society is budding, and thus it is also notable that the accessibility of women at general police stations should be considered. Accordingly, the impact of workspace at police station on the employee productivity has been widely deliberated as a crucial contributor to employee satisfaction leading to better functional motivation. Thus the present research aimed to look into the office workstation design of police station with reference to womanhood specific issues to uplift occupational wellbeing of the policewomen. Personal interview and individual responses collected through administering to a subjective assessment questionnaire on thirty women police as well as to have their views on these issues by purposive non-probability sampling of women police personnel of different ranks posted in Guwahati, Assam, India. Scrutiny of the collected data revealed that office design has a substantial impact on the policewomen job satisfaction in the police station. In this study, the workspace was designed in such a way that the set of factors would impact on the individual to ensure increased productivity. Office design such as furniture, noise, temperature, lighting and spatial arrangement were considered. The primary feature which affected the productivity of policewomen was the furniture used in the workspace, which was found to disturb the everyday and overall productivity of policewomen. Therefore, it was recommended to have proper and adequate ergonomics design intervention to improve the office design for better performance. This type of study is today’s need-of-the-hour to empower women and facilitate their inner talent to come up in service of the nation. The office workspace design also finds critical importance at several other occupations also – where office workstation needs further improvement.Keywords: office workspace design, policewomen, womanhood concerns at workspace, occupational wellbeing
Procedia PDF Downloads 225196 Smart Services for Easy and Retrofittable Machine Data Collection
Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum
Abstract:
This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data
Procedia PDF Downloads 73195 Digital Image Correlation Based Mechanical Response Characterization of Thin-Walled Composite Cylindrical Shells
Authors: Sthanu Mahadev, Wen Chan, Melanie Lim
Abstract:
Anisotropy dominated continuous-fiber composite materials have garnered attention in numerous mechanical and aerospace structural applications. Tailored mechanical properties in advanced composites can exhibit superiority in terms of stiffness-to-weight ratio, strength-to-weight ratio, low-density characteristics, coupled with significant improvements in fatigue resistance as opposed to metal structure counterparts. Extensive research has demonstrated their core potential as more than just mere lightweight substitutes to conventional materials. Prior work done by Mahadev and Chan focused on formulating a modified composite shell theory based prognosis methodology for investigating the structural response of thin-walled circular cylindrical shell type composite configurations under in-plane mechanical loads respectively. The prime motivation to develop this theory stemmed from its capability to generate simple yet accurate closed-form analytical results that can efficiently characterize circular composite shell construction. It showcased the development of a novel mathematical framework to analytically identify the location of the centroid for thin-walled, open cross-section, curved composite shells that were characterized by circumferential arc angle, thickness-to-mean radius ratio, and total laminate thickness. Ply stress variations for curved cylindrical shells were analytically examined under the application of centric tensile and bending loading. This work presents a cost-effective, small-platform experimental methodology by taking advantage of the full-field measurement capability of digital image correlation (DIC) for an accurate assessment of key mechanical parameters such as in-plane mechanical stresses and strains, centroid location etc. Mechanical property measurement of advanced composite materials can become challenging due to their anisotropy and complex failure mechanisms. Full-field displacement measurements are well suited for characterizing the mechanical properties of composite materials because of the complexity of their deformation. This work encompasses the fabrication of a set of curved cylindrical shell coupons, the design and development of a novel test-fixture design and an innovative experimental methodology that demonstrates the capability to very accurately predict the location of centroid in such curved composite cylindrical strips via employing a DIC based strain measurement technique. Error percentage difference between experimental centroid measurements and previously estimated analytical centroid results are observed to be in good agreement. The developed analytical modified-shell theory provides the capability to understand the fundamental behavior of thin-walled cylindrical shells and offers the potential to generate novel avenues to understand the physics of such structures at a laminate level.Keywords: anisotropy, composites, curved cylindrical shells, digital image correlation
Procedia PDF Downloads 317194 Liposome Loaded Polysaccharide Based Hydrogels: Promising Delayed Release Biomaterials
Authors: J. Desbrieres, M. Popa, C. Peptu, S. Bacaita
Abstract:
Because of their favorable properties (non-toxicity, biodegradability, mucoadhesivity etc.), polysaccharides were studied as biomaterials and as pharmaceutical excipients in drug formulations. These formulations may be produced in a wide variety of forms including hydrogels, hydrogel based particles (or capsules), films etc. In these formulations, the polysaccharide based materials are able to provide local delivery of loaded therapeutic agents but their delivery can be rapid and not easily time-controllable due to, particularly, the burst effect. This leads to a loss in drug efficiency and lifetime. To overcome the consequences of burst effect, systems involving liposomes incorporated into polysaccharide hydrogels may appear as a promising material in tissue engineering, regenerative medicine and drug loading systems. Liposomes are spherical self-closed structures, composed of curved lipid bilayers, which enclose part of the surrounding solvent into their structure. The simplicity of production, their biocompatibility, the size and similar composition of cells, the possibility of size adjustment for specific applications, the ability of hydrophilic or/and hydrophobic drug loading make them a revolutionary tool in nanomedicine and biomedical domain. Drug delivery systems were developed as hydrogels containing chitosan or carboxymethylcellulose (CMC) as polysaccharides and gelatin (GEL) as polypeptide, and phosphatidylcholine or phosphatidylcholine/cholesterol liposomes able to accurately control this delivery, without any burst effect. Hydrogels based on CMC were covalently crosslinked using glutaraldehyde, whereas chitosan based hydrogels were double crosslinked (ionically using sodium tripolyphosphate or sodium sulphate and covalently using glutaraldehyde). It has been proven that the liposome integrity is highly protected during the crosslinking procedure for the formation of the film network. Calcein was used as model active matter for delivery experiments. Multi-Lamellar vesicles (MLV) and Small Uni-Lamellar Vesicles (SUV) were prepared and compared. The liposomes are well distributed throughout the whole area of the film, and the vesicle distribution is equivalent (for both types of liposomes evaluated) on the film surface as well as deeper (100 microns) in the film matrix. An obvious decrease of the burst effect was observed in presence of liposomes as well as a uniform increase of calcein release that continues even at large time scales. Liposomes act as an extra barrier for calcein release. Systems containing MLVs release higher amounts of calcein compared to systems containing SUVs, although these liposomes are more stable in the matrix and diffuse with difficulty. This difference comes from the higher quantity of calcein present within the MLV in relation with their size. Modeling of release kinetics curves was performed and the release of hydrophilic drugs may be described by a multi-scale mechanism characterized by four distinct phases, each of them being characterized by a different kinetics model (Higuchi equation, Korsmeyer-Peppas model etc.). Knowledge of such models will be a very interesting tool for designing new formulations for tissue engineering, regenerative medicine and drug delivery systems.Keywords: controlled and delayed release, hydrogels, liposomes, polysaccharides
Procedia PDF Downloads 226193 Poly(Methyl Methacrylate) Degradation Products and Its in vitro Cytotoxicity Evaluation in NIH3T3 Cells
Authors: Lesly Y Carmona-Sarabia, Luisa Barraza-Vergara, Vilmalí López-Mejías, Wandaliz Torres-García, Maribella Domenech-Garcia, Madeline Torres-Lugo
Abstract:
Biosensors are used in many applications providing real-time monitoring to treat long-term conditions. Thus, understanding the physicochemical properties and biological side effects on the skin of polymers (e. g., poly(methyl methacrylate), PMMA) employed in the fabrication of wearable biosensors is crucial for the selection of manufacturing materials within this field. The PMMA (hydrophobic and thermoplastic polymer) is commonly employed as a coating material or substrate in the fabrication of wearable devices. The cytotoxicityof PMMA (including residual monomers or degradation products) on the skin, in terms of cells and tissue, is required to prevent possible adverse effects (cell death, skin reactions, sensitization) on human health. Within this work, accelerated aging of PMMA (Mw ~ 15000) through thermal and photochemical degradation was under-taken. The accelerated aging of PMMA was carried out by thermal (200°C, 1h) and photochemical degradation (UV-Vis, 8-15d) adapted employing ISO protocols (ISO-10993-12, ISO-4892-1:2016, ISO-877-1:2009, ISO-188: 2011). In addition, in vitro cytotoxicity evaluation of PMMA degradation products was performed using NIH3T3 fibroblast cells to assess the response of skin tissues (in terms of cell viability) exposed with polymers utilized to manufacture wearable biosensors, such as PMMA. The PMMA (Mw ~ 15000) before and after accelerated aging experiments was characterized by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), powder X-ray diffractogram (PXRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) to determine and verify the successful degradation of this polymer under the specific conditions previously mention. The degradation products were characterized through nuclear magnetic resonance (NMR) to identify possible byproducts generated after the accelerated aging. Results demonstrated a percentage (%) weight loss between 1.5-2.2% (TGA thermographs) for PMMA after accelerated aging. The EDS elemental analysis reveals a 1.32 wt.% loss of carbon for PMMA after thermal degradation. These results might be associated with the amount (%) of PMMA degrade after the accelerated aging experiments. Furthermore, from the thermal degradation products was detected the presence of the monomer and methyl formate (low concentrations) and a low molecular weight radical (·COOCH3) in higher concentrations by NMR. In the photodegradation products, methyl formate was detected in higher concentrations. These results agree with the proposed thermal or photochemical degradation mechanisms found in the literature.1,2 Finally, significant cytotoxicity on the NIH3T3 cells was obtained for the thermal and photochemical degradation products. A decrease in cell viability by > 90% (stock solutions) was observed. It is proposed that the presence of byproducts (e.g. methyl formate or radicals such as ·COOCH₃) from the PMMA degradation might be responsible for the cytotoxicity observed in the NIH3T3 fibroblast cells. Additionally, experiments using skin models will be employed to compare with the NIH3T3 fibroblast cells model.Keywords: biosensors, polymer, skin irritation, degradation products, cell viability
Procedia PDF Downloads 139192 A Comparison Between Different Discretization Techniques for the Doyle-Fuller-Newman Li+ Battery Model
Authors: Davide Gotti, Milan Prodanovic, Sergio Pinilla, David Muñoz-Torrero
Abstract:
Since its proposal, the Doyle-Fuller-Newman (DFN) lithium-ion battery model has gained popularity in the electrochemical field. In fact, this model provides the user with theoretical support for designing the lithium-ion battery parameters, such as the material particle or the diffusion coefficient adjustment direction. However, the model is mathematically complex as it is composed of several partial differential equations (PDEs) such as Fick’s law of diffusion, the MacInnes and Ohm’s equations, among other phenomena. Thus, to efficiently use the model in a time-domain simulation environment, the selection of the discretization technique is of a pivotal importance. There are several numerical methods available in the literature that can be used to carry out this task. In this study, a comparison between the explicit Euler, Crank-Nicolson, and Chebyshev discretization methods is proposed. These three methods are compared in terms of accuracy, stability, and computational times. Firstly, the explicit Euler discretization technique is analyzed. This method is straightforward to implement and is computationally fast. In this work, the accuracy of the method and its stability properties are shown for the electrolyte diffusion partial differential equation. Subsequently, the Crank-Nicolson method is considered. It represents a combination of the implicit and explicit Euler methods that has the advantage of being of the second order in time and is intrinsically stable, thus overcoming the disadvantages of the simpler Euler explicit method. As shown in the full paper, the Crank-Nicolson method provides accurate results when applied to the DFN model. Its stability does not depend on the integration time step, thus it is feasible for both short- and long-term tests. This last remark is particularly important as this discretization technique would allow the user to implement parameter estimation and optimization techniques such as system or genetic parameter identification methods using this model. Finally, the Chebyshev discretization technique is implemented in the DFN model. This discretization method features swift convergence properties and, as other spectral methods used to solve differential equations, achieves the same accuracy with a smaller number of discretization nodes. However, as shown in the literature, these methods are not suitable for handling sharp gradients, which are common during the first instants of the charge and discharge phases of the battery. The numerical results obtained and presented in this study aim to provide the guidelines on how to select the adequate discretization technique for the DFN model according to the type of application to be performed, highlighting the pros and cons of the three methods. Specifically, the non-eligibility of the simple Euler method for longterm tests will be presented. Afterwards, the Crank-Nicolson and the Chebyshev discretization methods will be compared in terms of accuracy and computational times under a wide range of battery operating scenarios. These include both long-term simulations for aging tests, and short- and mid-term battery charge/discharge cycles, typically relevant in battery applications like grid primary frequency and inertia control and electrical vehicle breaking and acceleration.Keywords: Doyle-Fuller-Newman battery model, partial differential equations, discretization, numerical methods
Procedia PDF Downloads 24191 Soybean Lecithin Based Reverse Micellar Extraction of Pectinase from Synthetic Solution
Authors: Sivananth Murugesan, I. Regupathi, B. Vishwas Prabhu, Ankit Devatwal, Vishnu Sivan Pillai
Abstract:
Pectinase is an important enzyme which has a wide range of applications including textile processing and bioscouring of cotton fibers, coffee and tea fermentation, purification of plant viruses, oil extraction etc. Selective separation and purification of pectinase from fermentation broth and recover the enzyme form process stream for reuse are cost consuming process in most of the enzyme based industries. It is difficult to identify a suitable medium to enhance enzyme activity and retain its enzyme characteristics during such processes. The cost effective, selective separation of enzymes through the modified Liquid-liquid extraction is of current research interest worldwide. Reverse micellar extraction, globally acclaimed Liquid-liquid extraction technique is well known for its separation and purification of solutes from the feed which offers higher solute specificity and partitioning, ease of operation and recycling of extractants used. Surfactant concentrations above critical micelle concentration to an apolar solvent form micelles and addition of micellar phase to water in turn forms reverse micelles or water-in-oil emulsions. Since, electrostatic interaction plays a major role in the separation/purification of solutes using reverse micelles. These interaction parameters can be altered with the change in pH, addition of cosolvent, surfactant and electrolyte and non-electrolyte. Even though many chemical based commercial surfactant had been utilized for this purpose, the biosurfactants are more suitable for the purification of enzymes which are used in food application. The present work focused on the partitioning of pectinase from the synthetic aqueous solution within the reverse micelle phase formed by a biosurfactant, Soybean Lecithin dissolved in chloroform. The critical micelle concentration of soybean lecithin/chloroform solution was identified through refractive index and density measurements. Effect of surfactant concentrations above and below the critical micelle concentration was considered to study its effect on enzyme activity, enzyme partitioning within the reverse micelle phase. The effect of pH and electrolyte salts on the partitioning behavior was studied by varying the system pH and concentration of different salts during forward and back extraction steps. It was observed that lower concentrations of soybean lecithin enhanced the enzyme activity within the water core of the reverse micelle with maximizing extraction efficiency. The maximum yield of pectinase of 85% with a partitioning coefficient of 5.7 was achieved at 4.8 pH during forward extraction and 88% yield with a partitioning coefficient of 7.1 was observed during backward extraction at a pH value of 5.0. However, addition of salt decreased the enzyme activity and especially at higher salt concentrations enzyme activity declined drastically during both forward and back extraction steps. The results proved that reverse micelles formed by Soybean Lecithin and chloroform may be used for the extraction of pectinase from aqueous solution. Further, the reverse micelles can be considered as nanoreactors to enhance enzyme activity and maximum utilization of substrate at optimized conditions, which are paving a way to process intensification and scale-down.Keywords: pectinase, reverse micelles, soybean lecithin, selective partitioning
Procedia PDF Downloads 372190 Extended Knowledge Exchange with Industrial Partners: A Case Study
Authors: C. Fortin, D. Tokmeninova, O. Ushakova
Abstract:
Among 500 Russian universities Skolkovo Institute of Science and Technology (Skoltech) is one of the youngest (established in 2011), quite small and vastly international, comprising 20 percent of international students and 70 percent of faculty with significant academic experience at top-100 universities (QS, THE). The institute has emerged from close collaboration with MIT and leading Russian universities. Skoltech is an entirely English speaking environment. Skoltech curriculum plans of ten Master programs are based on the CDIO learning outcomes model. However, despite the Institute’s unique focus on industrial innovations and startups, one of the main challenges has become an evident large proportion of nearly half of MSc graduates entering PhD programs at Skoltech or other universities rather than industry or entrepreneurship. In order to increase the share of students joining the industrial sector after graduation, Skoltech started implementing a number of unique practices with a focus on employers’ expectations incorporated into the curriculum redesign. In this sense, extended knowledge exchange with industrial partners via collaboration in learning activities, industrial projects and assessments became essential for students’ headway into industrial and entrepreneurship pathways. Current academic curriculum includes the following types of components based on extended knowledge exchange with industrial partners: innovation workshop, industrial immersion, special industrial tracks, MSc defenses. Innovation workshop is a 4 week full time diving into the Skoltech vibrant ecosystem designed to foster innovators, focuses on teamwork, group projects, and sparks entrepreneurial instincts from the very first days of study. From 2019 the number of mentors from industry and startups significantly increased to guide students across these sectors’ demands. Industrial immersion is an exclusive part of Skoltech curriculum where students after the first year of study spend 8 weeks in an industrial company carrying out an individual or team project and are guided jointly by both Skoltech and company supervisors. The aim of the industrial immersion is to familiarize students with relevant needs of Russian industry and to prepare graduates for job placement. During the immersion a company plays the role of a challenge provider for students. Skoltech has started a special industrial track comprising deep collaboration with IPG Photonics – a leading R&D company and manufacturer of high-performance fiber lasers and amplifiers for diverse applications. The track is aimed to train a new cohort of engineers and includes a variety of activities for students within the “Photonics” MSc program. It is expected to be a successful story and used as an example for similar initiatives with other Russian high-tech companies. One of the pathways of extended knowledge exchange with industrial partners is an active involvement of potential employers in MSc Defense Committees to review and assess MSc thesis projects and to participate in defense procedures. The paper will evaluate the effect and results of the above undertaken measures.Keywords: Curriculum redesign, knowledge exchange model, learning outcomes framework, stakeholder engagement
Procedia PDF Downloads 81189 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer
Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan
Abstract:
Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer
Procedia PDF Downloads 94