Search results for: steel sheet pile
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2336

Search results for: steel sheet pile

1736 Extension of D Blast Furnace Campaign Life at Tata Steel Ltd

Authors: Biswajit Seal, Dushyant Kumar, Shambhu Nath, A. B. Raju

Abstract:

Extension of blast furnace campaign life is highly desired for blast furnace operators mainly because of reduction of operating cost and to avoid capital expenditure cost. Tata Steel Ltd, Jamshedpur plant operates seven blast furnaces with combination of old and new technologies. The focus of Tata Steel Ltd is to push for increasing productivity with good quality product and increasing campaign life. This has been challenging for older furnaces because older furnaces are generally equipped with less automation, old design and old equipment. Good operational practices, appropriate remedial measures, and regular planned maintenance helps to achieve long campaign life of old furnaces. Good operating practices like stable and consistent productivity, control of burden distribution, remedial measures like stack gunning and shotcreting for protection of stack wall, enhanced cooling system, and intermediate stack repair helps to achieve long campaign life of old blast furnaces. This paper describes experiences with the current old equipment and design of Tata Steel’s D Blast Furnace for campaign life extension.

Keywords: blast furnace, burden distribution, campaign life, productivity

Procedia PDF Downloads 261
1735 Experimental Study on Post-Fire Mechanical Properties of S235 Steel

Authors: Mahyar Maali, Merve Sagiroglu, Mahmut Kilic, Abdulkadir Cuneyt Aydin

Abstract:

In order to evaluate the residual strength of S235 (St37) steel structures after the fire, an experimental program was undertaken to investigate the post-fire mechanical properties. Tensile coupons taken from S235 sheets were exposed to varying temperatures as 200°C, 400°C, 600°C, and 800 °C. The samples were then allowed to cool down to ambient temperature before they were tested to failure. To obtain the mechanical properties of steels; tensile tests are performed, and the post-fire stress-strain curves are evaluated. The microstructures of the heat-treated specimens were examined by Scanning Electron Microscope (SEM). It is seen that morphology and size of the precipitates in the specimens change, as the heat increases. The modulus of elasticity decreases, and deformation increases with temperature. Energy dissipation decreases due to lower stress according to the stress-strain curves of the specimens. Especially, the mechanical properties were decreased compared with the pre-fire ones. As a result of the post-fire and pre-fire behavior of S235, a set of equations is evaluated to predict the mechanical properties after the fire. These types of equations may allow the structural and/or fire engineers to predict accurately the post-fire behavior of the buildings constructed with S235 type steel.

Keywords: post-fire behavior, stress-strain curves, experimental study, S235 steel

Procedia PDF Downloads 349
1734 Microstructure and High Temperature Deformation Behavior of Cast 310S Alloy

Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha

Abstract:

High temperature deformation behavior of cast 310S stainless steel has been investigated in this study by performing tensile and compression tests at temperatures from 900 to 1200°C. Rectangular ingots of which the dimensions were 350×350×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Thermal expansion coefficient was also measured on the ingot in the temperature range from room temperature to 1200°C. Tensile strength of cast 310S stainless steel was 9 MPa at 1200°C, which is a little higher than that of a wrought 310S. With temperature decreased, tensile strength increased rapidly and reached up to 72 MPa at 900°C. Elongation also increased with temperature decreased. Microstructure observation revealed that σ phase was precipitated along the grain boundary and within the matrix over 1200°C, which is detrimental to high temperature elongation.

Keywords: stainless steel, STS 310S, high temperature deformation, microstructure, mechanical properties

Procedia PDF Downloads 400
1733 Strengthening of Concrete Slabs with Steel Beams

Authors: Mizam Doğan

Abstract:

In service life; structures can be damaged if they are subjected to dead and live loads which are greater than design values. For preventing this case; possible loads must be correctly calculated, structure must be designed according to determined loads, and structure must not be used out of its function. If loading case of the structure changes when its function changes; it must be reinforced for continuing it is new function. Reinforcement is a process that is made by increasing the existing strengths of structural system elements of the structure as reinforced concrete walls, beams, and slabs. Reinforcement can be done by casting reinforced concrete, placing steel and fiber structural elements. In this paper, reinforcing of columns and slabs of a structure of which function is changed is studied step by step. This reinforcement is made for increasing vertical and lateral load carrying capacity of the building. Not for repairing damaged structural system.

Keywords: strengthening, RC slabs, seismic load, steel beam, structural irregularity

Procedia PDF Downloads 260
1732 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

Authors: Nuo Duan, Yi Pik Cheng

Abstract:

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

Keywords: cyclic loading, DEM, numerical modelling, sands

Procedia PDF Downloads 320
1731 An Investigation of Wind Loading Effects on the Design of Elevated Steel Tanks with Lattice Tower Supporting Structures

Authors: J. van Vuuren, D. J. van Vuuren, R. Muigai

Abstract:

In recent times, South Africa has experienced extensive droughts that created the need for reliable small water reservoirs. These reservoirs have comparatively quick fabrication and installation times compared to market alternatives. An elevated water tank has inherent potential energy, resulting in that no additional water pumps are required to sustain water pressure at the outlet point – thus ensuring that, without electricity, a water source is available. The initial construction formwork and the complex geometric shape of concrete towers that requires casting can become time-consuming, rendering steel towers preferable. Reinforced concrete foundations, cast in advance, are required to be of sufficient strength. Thereafter, the prefabricated steel supporting structure and tank, which consist of steel panels, can be assembled and erected on site within a couple of days. Due to the time effectiveness of this system, it has become a popular solution to aid drought-stricken areas. These sites are normally in rural, schools or farmland areas. As these tanks can contain up to 2000kL (approximately 19.62MN) of water, combined with supporting lattice steel structures ranging between 5m and 30m in height, failure of one of the supporting members will result in system failure. Thus, there is a need to gain a comprehensive understanding of the operation conditions because of wind loadings on both the tank and the supporting structure. The aim of the research is to investigate the relationship between the theoretical wind loading on a lattice steel tower in combination with an elevated sectional steel tank, and the current wind loading codes, as applicable to South Africa. The research compares the respective design parameters (both theoretical and wind loading codes) whereby FEA analyses are conducted on the various design solutions. The currently available wind loading codes are not sufficient to design slender cantilever latticed steel towers that support elevated water storage tanks. Numerous factors in the design codes are not comprehensively considered when designing the system as these codes are dependent on various assumptions. Factors that require investigation for the study are; the wind loading angle to the face of the structure that will result in maximum load; the internal structural effects on models with different bracing patterns; the loading influence of the aspect ratio of the tank; and the clearance height of the tank on the structural members. Wind loads, as the variable that results in the highest failure rate of cantilevered lattice steel tower structures, require greater understanding. This study aims to contribute towards the design process of elevated steel tanks with lattice tower supporting structures.

Keywords: aspect ratio, bracing patterns, clearance height, elevated steel tanks, lattice steel tower, wind loads

Procedia PDF Downloads 150
1730 Analysis of the Engineering Judgement Influence on the Selection of Geotechnical Parameters Characteristic Values

Authors: K. Ivandic, F. Dodigovic, D. Stuhec, S. Strelec

Abstract:

A characteristic value of certain geotechnical parameter results from an engineering assessment. Its selection has to be based on technical principles and standards of engineering practice. It has been shown that the results of engineering assessment of different authors for the same problem and input data are significantly dispersed. A survey was conducted in which participants had to estimate the force that causes a 10 cm displacement at the top of a axially in-situ compressed pile. Fifty experts from all over the world took part in it. The lowest estimated force value was 42% and the highest was 133% of measured force resulting from a mentioned static pile load test. These extreme values result in significantly different technical solutions to the same engineering task. In case of selecting a characteristic value of a geotechnical parameter the importance of the influence of an engineering assessment can be reduced by using statistical methods. An informative annex of Eurocode 1 prescribes the method of selecting the characteristic values of material properties. This is followed by Eurocode 7 with certain specificities linked to selecting characteristic values of geotechnical parameters. The paper shows the procedure of selecting characteristic values of a geotechnical parameter by using a statistical method with different initial conditions. The aim of the paper is to quantify an engineering assessment in the example of determining a characteristic value of a specific geotechnical parameter. It is assumed that this assessment is a random variable and that its statistical features will be determined. For this purpose, a survey research was conducted among relevant experts from the field of geotechnical engineering. Conclusively, the results of the survey and the application of statistical method were compared.

Keywords: characteristic values, engineering judgement, Eurocode 7, statistical methods

Procedia PDF Downloads 296
1729 Vibration of Gamma Graphyne with an Attached Mass

Authors: Win-Jin Chang, Haw-Long Lee, Yu-Ching Yang

Abstract:

Atomic finite element simulation is applied to investigate the vibration frequency of a single-layer gamma graphyne with an attached mass for the CCCC, SSSS, CFCF, SFSF boundary conditions using the commercial code ANSYS. The fundamental frequencies of the graphyne sheet are compared with the results of the previous study. The results of the comparison are very good in all considered cases. The attached mass causes a shift in the resonant frequency of the graphyne. The frequencies of the single-layer gamma graphyne with an attached mass for different boundary conditions are obtained, and the order based on the boundary condition is CCCC >SSSS > CFCF> SFSF. The highest frequency shift is obtained when the attached mass is located at the center of the graphyne sheet. This is useful for the design of a highly sensitive graphyne-based mass sensor.

Keywords: graphyne, finite element analysis, vibration analysis, frequency shift

Procedia PDF Downloads 212
1728 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 180
1727 Hydrogen Embrittlement Properties of the Hot Stamped Carbon Steels

Authors: Mitsuhiro Okayasu, Lele Yang, Koji Shimotsu

Abstract:

The effects of microstructural characteristics on the mechanical and hydrogen embrittlement properties of 1,800MPa grade hot stamping carbon steel were investigated experimentally. The tensile strength increased with increasing the hot stamping temperature until around 921°C, but that decreased with increasing the temperature in more than 921°C due to the increment of the size of lath martensite and prior austenite. With the hot stamping process, internal strain was slightly created in the sample, which led to the slight increment of the hardness value although no clear change of the microstructural formation was detected. Severity of hydrogen embrittlement was investigated using the hot stamped carbon steels after the immersion in a hydrogen gas, and that was directly attributed to the infiltration of the hydrogen into their grain boundaries. The high strength carbon steel with tiny lath martensite microstructure could make severe hydrogen brittleness as the hydrogen was strongly penetrated in the grain boundaries in the hydrogen gas for a month. Because of weak embrittlement for the as-received carbon (ferrite and pearlite), hydrogen embrittlement is caused by the high internal strain and high dislocation density. The hydrogen embrittlement for carbon steel is attributed to amount of the hydrogen immersed in-between grain boundaries, which is caused by the dislocation density and internal strain.

Keywords: hydrogen embrittlement, hot stamping process, carbon steel, mechanical property

Procedia PDF Downloads 201
1726 Soret and Dufour Effect on Variable Viscosity and Thermal Conductivity of an Inclined Magnetic Field with Dissipation in Non-Darcy Porous Medium

Authors: Rasaq A. Kareem, Sulyman O. Salawu

Abstract:

The study of Soret and Dufour effect on variable viscosity and thermal conductivity of an inclined magnetic field with dissipation in non-Darcy porous medium over a continuously stretching sheet for power-law variation in the sheet temperature and concentration are investigated. The viscosity of the fluid flow and thermal conductivity are considered to vary as a function of temperature. The local similarity solutions for different values of the physical parameters are presented for velocity, temperature and concentration. The result shows that variational increase in the values of Soret and Dufour parameters increase the temperature and concentration distribution. Finally, the effects of skin friction, Nusselt and Sherwood numbers which are of physical and engineering interest are considered and discussed.

Keywords: Dufour, non-Darcy Flow, Soret, thermal conductivity, variable viscosity

Procedia PDF Downloads 331
1725 Weaknesses and Performance Defects of Steel Structures According to the Executive Criteria

Authors: Ehsan Sadie

Abstract:

Despite the experience of heavy losses and damages of recent earthquakes such as 8 km E of Pāhala, Hawaii, 11 km W of Salvaleón de Higüey, Dominican Republic and 49 km SSE of Punta Cana, Dominican Republic earthquakes, the possibility of large earthquakes in most populated areas of any country and the serious need for quality control in the design and implementation of buildings, not enough attention has been paid to the proper construction. Steel structures constitute a significant part of construction in any metropolitan area. This article gives a brief overview of the implementation status of these buildings in urban areas and considers the weaknesses of performance that typically occur due to negligence or insufficient mastery of the building supervisor in the principles of operation of earthquake-resistant buildings, and provide appropriate and possible solutions to improve the construction.

Keywords: bracing member, concentrated load, diaphragm system, earthquake engineering, load-bearing system, shear force, seismic retrofitting, steel building, strip foundation, supervising engineer, vulnerability of building

Procedia PDF Downloads 146
1724 Study Biogas Produced by Strain Archaea Methanothrix soehngenii in Different Biodigesters UASB in Treating Brewery Effluent in Brazil

Authors: Ederaldo Godoy Junior, Ricardo O. Jesus, Pedro H. Jesus, José R. Camargo, Jorge Y. Oliveira, Nicoly Milhardo Lourenço

Abstract:

This work aimed at the comparative study of the quality and quantity of biogas produced by archaea strain Methanothrix soehngenii operating in different versions of anaerobic digesters upflow sludge bed in the brewery wastewater treatment in Brazil in the tropical region. Four types of UASB digesters were studied made of different geometries and materials which are: a UASB IC steel 20 meters high; a circular UASB steel 6 meters high; an UASB reinforced concrete lined with geomembrane PEAB with 6 meters high; and finally a UASB plug flow comprising two UASB in serious rotomolded HDPE 6 meters high.Observed clearly that the biogas produced in the digester UASB steel H2S concentrations had values lower than the HDPE. With respect to efficiency in short time, the UASB IC showed the best results to absorb overloads, as the UASB circular steel showed an efficiency of 90% removal of the organic load. The UASB system plug flow in HDPE showed the lowest cost of deployment, and its efficiency in removing the organic load was 80%.

Keywords: biogas, achaeas, UASB, Brewery effluent

Procedia PDF Downloads 357
1723 Strip Size Optimization for Spiral Type Actuator Coil Used in Electromagnetic Flat Sheet Forming Experiment

Authors: M. A. Aleem, M. S. Awan

Abstract:

Flat spiral coil for electromagnetic forming system has been modelled in FEMM 4.2 software. Copper strip was chosen as the material for designing the actuator coil. Relationship between height to width ratio (S-factor) of the copper strip and coil’s performance has been studied. Magnetic field intensities, eddy currents, and Lorentz force were calculated for the coils that were designed using six different 'S-factor' values (0.65, 0.75, 1.05, 1.25, 1.54 and 1.75), keeping the cross-sectional area of strip the same. Results obtained through simulation suggest that actuator coil with S-factor ~ 1 shows optimum forming performance as it exerts maximum Lorentz force (84 kN) on work piece. The same coils were fabricated and used for electromagnetic sheet forming experiments. Aluminum 6061 sheets of thickness 1.5 mm have been formed using different voltage levels of capacitor bank. Smooth forming profiles were obtained with dome heights 28, 35 and 40 mm in work piece at 800, 1150 and 1250 V respectively.

Keywords: FEM modelling, electromagnetic forming, spiral coil, Lorentz force

Procedia PDF Downloads 286
1722 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading

Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla

Abstract:

Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.

Keywords: cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel

Procedia PDF Downloads 292
1721 Micro-Texture Effect on Fracture Location in Carbon Steel during Forming

Authors: Sarra Khelifi, Youcef Guerabli, Ahcene Boumaiza

Abstract:

Advances in techniques for measuring individual crystallographic orientations have made it possible to investigate the role of local crystallography during the plastic deformation of materials. In this study, the change in crystallographic orientation distribution during deformation by deep drawing in carbon steel has been investigated in order to understand their role in propagation and arrest of crack. The results show that the change of grain orientation from initial recrystallization texture components of {111}<112> to deformation orientation {111}<110> incites the initiation and propagation of cracks in the region of {111}<112> small grains. Moreover, the misorientation profile and local orientation are analyzed in detail to discuss the change from {111}<112> to {111}<110>. The deformation of the grain with {111}<110> orientation is discussed in terms of stops of the crack in carbon steel during drawing. The SEM-EBSD technique was used to reveal the change of orientation; XRD was performed for the characterization of the global evolution of texture for deformed samples.

Keywords: fracture, heterogeneity, misorientation profile, stored energy

Procedia PDF Downloads 198
1720 Curved Rectangular Patch Array Antenna Using Flexible Copper Sheet for Small Missile Application

Authors: Jessada Monthasuwan, Charinsak Saetiaw, Chanchai Thongsopa

Abstract:

This paper presents the development and design of the curved rectangular patch arrays antenna for small missile application. This design uses a 0.1mm flexible copper sheet on the front layer and back layer, and a 1.8mm PVC substrate on a middle layer. The study used a small missile model with 122mm diameter size with speed 1.1 Mach and frequency range on ISM 2.4 GHz. The design of curved antenna can be installation on a cylindrical object like a missile. So, our proposed antenna design will have a small size, lightweight, low cost, and simple structure. The antenna was design and analysis by a simulation result from CST microwave studio and confirmed with a measurement result from a prototype antenna. The proposed antenna has a bandwidth covering the frequency range 2.35-2.48 GHz, the return loss below -10 dB and antenna gain 6.5 dB. The proposed antenna can be applied with a small guided missile effectively.

Keywords: rectangular patch arrays, small missile antenna, antenna design and simulation, cylinder PVC tube

Procedia PDF Downloads 315
1719 Evaluation of an Organic Coating Applied on Algerian Oil Tanker in Sea water by EIS

Authors: Nadia Hammouda, Kamel Belmokre

Abstract:

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.

Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, seawater

Procedia PDF Downloads 417
1718 Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls

Authors: Li Guoyou, Zhang Tao, Ji Wenzhan, Huo Liang, Lin Xiqiang, Zhang Nan

Abstract:

The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm.

Keywords: concrete, 3D printed walls, thermodynamic performance, steel slag powder

Procedia PDF Downloads 183
1717 Effects of Thermal Radiation on Mixed Convection in a MHD Nanofluid Flow over a Stretching Sheet Using a Spectral Relaxation Method

Authors: Nageeb A. H. Haroun, Sabyasachi Mondal, Precious Sibanda

Abstract:

The effects of thermal radiation, Soret and Dufour parameters on mixed convection and nanofluid flow over a stretching sheet in the presence of a magnetic field are investigated. The flow is subject to temperature dependent viscosity and a chemical reaction parameter. It is assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modelled using systems of nonlinear differential equations which have been solved numerically using a spectral relaxation method. In addition to the discussion on heat and mass transfer processes, the velocity, nanoparticles volume fraction profiles as well as the skin friction coefficient are determined for different important physical parameters. A comparison of current findings with previously published results for some special cases of the problem shows an excellent agreement.

Keywords: non-isothermal wedge, thermal radiation, nanofluid, magnetic field, soret and dufour effects

Procedia PDF Downloads 235
1716 The Structural Behavior of Fiber Reinforced Lightweight Concrete Beams: An Analytical Approach

Authors: Jubee Varghese, Pouria Hafiz

Abstract:

Increased use of lightweight concrete in the construction industry is mainly due to its reduction in the weight of the structural elements, which in turn reduces the cost of production, transportation, and the overall project cost. However, the structural application of these lightweight concrete structures is limited due to its reduced density. Hence, further investigations are in progress to study the effect of fiber inclusion in improving the mechanical properties of lightweight concrete. Incorporating structural steel fibers, in general, enhances the performance of concrete and increases its durability by minimizing its potential to cracking and providing crack arresting mechanism. In this research, Geometric and Materially Non-linear Analysis (GMNA) was conducted for Finite Element Modelling using a software known as ABAQUS, to investigate the structural behavior of lightweight concrete with and without the addition of steel fibers and shear reinforcement. 21 finite element models of beams were created to study the effect of steel fibers based on three main parameters; fiber volume fraction (Vf = 0, 0.5 and 0.75%), shear span to depth ratio (a/d of 2, 3 and 4) and ratio of area of shear stirrups to spacing (As/s of 0.7, 1 and 1.6). The models created were validated with the previous experiment conducted by H.K. Kang et al. in 2011. It was seen that the lightweight fiber reinforcement can replace the use of fiber reinforced normal weight concrete as structural elements. The effect of an increase in steel fiber volume fraction is dominant for beams with higher shear span to depth ratio than for lower ratios. The effect of stirrups in the presence of fibers was very negligible; however; it provided extra confinement to the cracks by reducing the crack propagation and extra shear resistance than when compared to beams with no stirrups.

Keywords: ABAQUS, beams, fiber-reinforced concrete, finite element, light weight, shear span-depth ratio, steel fibers, steel-fiber volume fraction

Procedia PDF Downloads 107
1715 Effect of Welding Current on Mechanical Properties and Microstructure of Tungsten Inert Gas Welding of Type-304 Austenite Stainless Steel

Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho

Abstract:

The aim of this paper is to study the effect of welding current on the microstructure and the mechanical properties. Material characterizations were conducted on a 6 mm thick plates of type-304 austenite stainless steel, welded by TIG welding process at two different welding currents of 150 A (Sample F3) and 170 A (Sample F4). The tensile strength and the elongation obtained from sample F4 weld were approximately 584 MPa and 19.3 %; which were higher than sample F3 weld. The average microhardness value of sample F4 weld was found to be 235.7 HV, while that of sample F3 weld was 233.4 HV respectively. Homogenous distribution of iron (Fe), chromium (Cr) and nickel (Ni) were observed at the welded joint of the two samples. The energy dispersive spectroscopy (EDS) analysis revealed that Fe, Cr, and Ni made up the composition formed in the weld zone. The optimum welding current of 170 A for TIG welding of type-304 austenite stainless steel can be recommended for high-tech industrial applications.

Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding

Procedia PDF Downloads 195
1714 Inhibition of Mild Steel Corrosion in Hydrochloric Acid Medium Using an Aromatic Hydrazide Derivative

Authors: Preethi Kumari P., Shetty Prakasha, Rao Suma A.

Abstract:

Mild steel has been widely employed as construction materials for pipe work in the oil and gas production such as down hole tubular, flow lines and transmission pipelines, in chemical and allied industries for handling acids, alkalis and salt solutions due to its excellent mechanical property and low cost. Acid solutions are widely used for removal of undesirable scale and rust in many industrial processes. Among the commercially available acids hydrochloric acid is widely used for pickling, cleaning, de-scaling and acidization of oil process. Mild steel exhibits poor corrosion resistance in presence of hydrochloric acid. The high reactivity of mild steel in presence of hydrochloric acid is due to the soluble nature of ferrous chloride formed and the cementite phase (Fe3C) normally present in the steel is also readily soluble in hydrochloric acid. Pitting attack is also reported to be a major form of corrosion in mild steel in the presence of high concentrations of acids and thereby causing the complete destruction of metal. Hydrogen from acid reacts with the metal surface and makes it brittle and causes cracks, which leads to pitting type of corrosion. The use of chemical inhibitor to minimize the rate of corrosion has been considered to be the first line of defense against corrosion. In spite of long history of corrosion inhibition, a highly efficient and durable inhibitor that can completely protect mild steel in aggressive environment is yet to be realized. It is clear from the literature review that there is ample scope for the development of new organic inhibitors, which can be conveniently synthesized from relatively cheap raw materials and provide good inhibition efficiency with least risk of environmental pollution. The aim of the present work is to evaluate the electrochemical parameters for the corrosion inhibition behavior of an aromatic hydrazide derivative, 4-hydroxy- N '-[(E)-1H-indole-2-ylmethylidene)] benzohydrazide (HIBH) on mild steel in 2M hydrochloric acid using Tafel polarization and electrochemical impedance spectroscopy (EIS) techniques at 30-60 °C. The results showed that inhibition efficiency increased with increase in inhibitor concentration and decreased marginally with increase in temperature. HIBH showed a maximum inhibition efficiency of 95 % at 8×10-4 M concentration at 30 °C. Polarization curves showed that HIBH act as a mixed-type inhibitor. The adsorption of HIBH on mild steel surface obeys the Langmuir adsorption isotherm. The adsorption process of HIBH at the mild steel/hydrochloric acid solution interface followed mixed adsorption with predominantly physisorption at lower temperature and chemisorption at higher temperature. Thermodynamic parameters for the adsorption process and kinetic parameters for the metal dissolution reaction were determined.

Keywords: electrochemical parameters, EIS, mild steel, tafel polarization

Procedia PDF Downloads 337
1713 FEM for Stress Reduction by Optimal Auxiliary Holes in a Loaded Plate with Elliptical Hole

Authors: Basavaraj R. Endigeri, S. G. Sarganachari

Abstract:

Steel is widely used in machine parts, structural equipment and many other applications. In many steel structural elements, holes of different shapes and orientations are made with a view to satisfy the design requirements. The presence of holes in steel elements creates stress concentration, which eventually reduce the mechanical strength of the structure. Therefore, it is of great importance to investigate the state of stress around the holes for the safety and properties design of such elements. By literature survey, it is known that till date, there is no analytical solution to reduce the stress concentration by providing auxiliary holes at a definite location and radii in a steel plate. The numerical method can be used to determine the optimum location and radii of auxiliary holes. In the present work plate with an elliptical hole, for a steel material subjected to uniaxial load is analyzed and the effect of stress concentration is graphically represented .The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 11.0 is used to analyse the steel plate. The analysis is carried out using a plane 42 element. Further the ANSYS optimization model is used to determine the location and radii for optimum values of auxiliary hole to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. The results of this study are in the form of the graphs for determining the locations and diameter of optimal auxiliary holes. The graph of stress concentration v/s central hole diameter to plate width ratio. The Finite Elements results of the study indicates that the stress concentration effect of central elliptical hole in an uniaxial loaded plate can be reduced by introducing auxiliary holes on either side of the central circular hole.

Keywords: finite element method, optimization, stress concentration factor, auxiliary holes

Procedia PDF Downloads 453
1712 Non-Linear Static Analysis of Screwed Moment Connections in Cold-Formed Steel Frames

Authors: Jikhil Joseph, Satish Kumar S R.

Abstract:

Cold-formed steel frames are preferable for framed constructions due to its low seismic weights and results into low seismic forces, but on the contrary, significant lateral deflections are expected under seismic/wind loading. The various factors affecting the lateral stiffness of steel frames are the stiffness of connections, beams and columns. So, by increasing the stiffness of beam, column and making the connections rigid will enhance the lateral stiffness. The present study focused on Structural elements made of rectangular hollow sections and fastened with screwed in-plane moment connections for the building frames. The self-drilling screws can be easily drilled on either side of the connection area with the help of gusset plates. The strength of screwed connections can be made 1.2 times the connecting elements. However, achieving high stiffness in connections is also a challenging job. Hence in addition to beam and column stiffness’s the connection stiffness are also going to be a governing parameter in the lateral deflections of the frames. SAP 2000 Non-linear static analysis has been planned to study the seismic behavior of steel frames. The SAP model will be consisting of nonlinear spring model for the connection to account the semi-rigid connections and the nonlinear hinges will be assigned for beam and column sections according to FEMA 273 guidelines. The reliable spring and hinge parameters will be assigned based on an experimental and analytical database. The non-linear static analysis is mainly focused on the identification of various hinge formations and the estimation of lateral deflection and these will contribute as an inputs for the direct displacement-based Seismic design. The research output from this study are the modelling techniques and suitable design guidelines for the performance-based seismic design of cold-formed steel frames.

Keywords: buckling, cold formed steel, nonlinear static analysis, screwed connections

Procedia PDF Downloads 177
1711 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Sea Water

Authors: Nadia Hammouda, K. Belmokre

Abstract:

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.

Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, sea water

Procedia PDF Downloads 481
1710 Finite Element Modeling Techniques of Concrete in Steel and Concrete Composite Members

Authors: J. Bartus, J. Odrobinak

Abstract:

The paper presents a nonlinear analysis 3D model of composite steel and concrete beams with web openings using the Finite Element Method (FEM). The core of the study is the introduction of basic modeling techniques comprehending the description of material behavior, appropriate elements selection, and recommendations for overcoming problems with convergence. Results from various finite element models are compared in the study. The main objective is to observe the concrete failure mechanism and its influence on the structural performance of numerical models of the beams at particular load stages. The bearing capacity of beams, corresponding deformations, stresses, strains, and fracture patterns were determined. The results show how load-bearing elements consisting of concrete parts can be analyzed using FEM software with various options to create the most suitable numerical model. The paper demonstrates the versatility of Ansys software usage for structural simulations.

Keywords: Ansys, concrete, modeling, steel

Procedia PDF Downloads 121
1709 Evaluation of Deformable Boundary Condition Using Finite Element Method and Impact Test for Steel Tubes

Authors: Abed Ahmed, Mehrdad Asadi, Jennifer Martay

Abstract:

Stainless steel pipelines are crucial components to transportation and storage in the oil and gas industry. However, the rise of random attacks and vandalism on these pipes for their valuable transport has led to more security and protection for incoming surface impacts. These surface impacts can lead to large global deformations of the pipe and place the pipe under strain, causing the eventual failure of the pipeline. Therefore, understanding how these surface impact loads affect the pipes is vital to improving the pipes’ security and protection. In this study, experimental test and finite element analysis (FEA) have been carried out on EN3B stainless steel specimens to study the impact behaviour. Low velocity impact tests at 9 m/s with 16 kg dome impactor was used to simulate for high momentum impact for localised failure. FEA models of clamped and deformable boundaries were modelled to study the effect of the boundaries on the pipes impact behaviour on its impact resistance, using experimental and FEA approach. Comparison of experimental and FE simulation shows good correlation to the deformable boundaries in order to validate the robustness of the FE model to be implemented in pipe models with complex anisotropic structure.

Keywords: dynamic impact, deformable boundary conditions, finite element modelling, LS-DYNA, stainless steel pipe

Procedia PDF Downloads 149
1708 Vibration Measurements of Single-Lap Cantilevered SPR Beams

Authors: Xiaocong He

Abstract:

Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams.

Keywords: self-piercing riveting, dynamic response, experimental measurement, frequency response functions

Procedia PDF Downloads 429
1707 Strengthening Evaluation of Steel Girder Bridge under Load Rating Analysis: Case Study

Authors: Qudama Albu-Jasim, Majdi Kanaan

Abstract:

A case study about the load rating and strengthening evaluation of the six-span of steel girders bridge in Colton city of State of California is investigated. To simulate the load rating strengthening assessment for the Colton Overhead bridge, a three-dimensional finite element model built in the CSiBridge program is simulated. Three-dimensional finite-element models of the bridge are established considering the nonlinear behavior of critical bridge components to determine the feasibility and strengthening capacity under load rating analysis. The bridge was evaluated according to Caltrans Bridge Load Rating Manual 1st edition for rating the superstructure using the Load and Resistance Factor Rating (LRFR) method. The analysis for the bridge was based on load rating to determine the largest loads that can be safely placed on existing I-girder steel members and permitted to pass over the bridge. Through extensive numerical simulations, the bridge is identified to be deficient in flexural and shear capacities, and therefore strengthening for reducing the risk is needed. An in-depth parametric study is considered to evaluate the sensitivity of the bridge’s load rating response to variations in its structural parameters. The parametric analysis has exhibited that uncertainties associated with the steel’s yield strength, the superstructure’s weight, and the diaphragm configurations should be considered during the fragility analysis of the bridge system.

Keywords: load rating, CSIBridge, strengthening, uncertainties, case study

Procedia PDF Downloads 211