Search results for: improved sparrow search algorithm
8852 Sweepline Algorithm for Voronoi Diagram of Polygonal Sites
Authors: Dmitry A. Koptelov, Leonid M. Mestetskiy
Abstract:
Voronoi Diagram (VD) of finite set of disjoint simple polygons, called sites, is a partition of plane into loci (for each site at the locus) – regions, consisting of points that are closer to a given site than to all other. Set of polygons is a universal model for many applications in engineering, geoinformatics, design, computer vision, and graphics. VD of polygons construction usually done with a reduction to task of constructing VD of segments, for which there are effective O(n log n) algorithms for n segments. Preprocessing – constructing segments from polygons’ sides, and postprocessing – polygon’s loci construction by merging the loci of the sides of each polygon are also included in reduction. This approach doesn’t take into account two specific properties of the resulting segment sites. Firstly, all this segments are connected in pairs in the vertices of the polygons. Secondly, on the one side of each segment lies the interior of the polygon. The polygon is obviously included in its locus. Using this properties in the algorithm for VD construction is a resource to reduce computations. The article proposes an algorithm for the direct construction of VD of polygonal sites. Algorithm is based on sweepline paradigm, allowing to effectively take into account these properties. The solution is performed based on reduction. Preprocessing is the constructing of set of sites from vertices and edges of polygons. Each site has an orientation such that the interior of the polygon lies to the left of it. Proposed algorithm constructs VD for set of oriented sites with sweepline paradigm. Postprocessing is a selecting of edges of this VD formed by the centers of empty circles touching different polygons. Improving the efficiency of the proposed sweepline algorithm in comparison with the general Fortune algorithm is achieved due to the following fundamental solutions: 1. Algorithm constructs only such VD edges, which are on the outside of polygons. Concept of oriented sites allowed to avoid construction of VD edges located inside the polygons. 2. The list of events in sweepline algorithm has a special property: the majority of events are connected with “medium” polygon vertices, where one incident polygon side lies behind the sweepline and the other in front of it. The proposed algorithm processes such events in constant time and not in logarithmic time, as in the general Fortune algorithm. The proposed algorithm is fully implemented and tested on a large number of examples. The high reliability and efficiency of the algorithm is also confirmed by computational experiments with complex sets of several thousand polygons. It should be noted that, despite the considerable time that has passed since the publication of Fortune's algorithm in 1986, a full-scale implementation of this algorithm for an arbitrary set of segment sites has not been made. The proposed algorithm fills this gap for an important special case - a set of sites formed by polygons.Keywords: voronoi diagram, sweepline, polygon sites, fortunes' algorithm, segment sites
Procedia PDF Downloads 1778851 Usage the Point Analysis Algorithm (SANN) on Drought Analysis
Authors: Khosro Shafie Motlaghi, Amir Reza Salemian
Abstract:
In arid and semi-arid regions like our country Evapotranspiration is the greatestportion of water resource. Therefor knowlege of its changing and other climate parameters plays an important role for planning, development, and management of water resource. In this search the Trend of long changing of Evapotranspiration (ET0), average temprature, monthly rainfall were tested. To dose, all synoptic station s in iran were divided according to the climate with Domarton climate. The present research was done in semi-arid climate of Iran, and in which 14 synoptic with 30 years period of statistics were investigated with 3 methods of minimum square error, Mann Kendoll, and Vald-Volfoytz Evapotranspiration was calculated by using the method of FAO-Penman. The results of investigation in periods of statistic has shown that the process Evapotranspiration parameter of 24 percent of stations is positive, and for 2 percent is negative, and for 47 percent. It was without any Trend. Similary for 22 percent of stations was positive the Trend of parameter of temperature for 19 percent , the trend was negative and for 64 percent, it was without any Trend. The results of rainfall trend has shown that the amount of rainfall in most stations was not considered as a meaningful trend. The result of Mann-kendoll method similar to minimum square error method. regarding the acquired result was can admit that in future years Some regions will face increase of temperature and Evapotranspiration.Keywords: analysis, algorithm, SANN, ET0
Procedia PDF Downloads 2968850 Role of Self-Concept in the Relationship between Emotional Abuse and Mental Health of Employees in the North West Province, South Africa
Authors: L. Matlawe, E. S. Idemudia
Abstract:
The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modeling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they were designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid.Keywords: emotional abuse, employees, mental health, self-concept
Procedia PDF Downloads 2568849 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation
Authors: Anton Stadler, Thorsten Ike
Abstract:
In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.Keywords: low density, optical flow, upward smoke motion, video based smoke detection
Procedia PDF Downloads 3558848 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 538847 A New Approach for Assertions Processing during Assertion-Based Software Testing
Authors: Ali M. Alakeel
Abstract:
Assertion-based software testing has been shown to be a promising tool for generating test cases that reveal program faults. Because the number of assertions may be very large for industry-size programs, one of the main concerns to the applicability of assertion-based testing is the amount of search time required to explore a large number of assertions. This paper presents a new approach for assertions exploration during the process of Assertion-Based software testing. Our initial exterminations with the proposed approach show that the performance of Assertion-Based testing may be improved, therefore, making this approach more efficient when applied on programs with large number of assertions.Keywords: software testing, assertion-based testing, program assertions, generating test
Procedia PDF Downloads 4608846 Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm
Authors: Mohamed Noureldin, Jinkoo Kim
Abstract:
In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809).Keywords: slit dampers, seismic retrofit, genetic algorithm, optimum design
Procedia PDF Downloads 2238845 Sequential Covering Algorithm for Nondifferentiable Global Optimization Problem and Applications
Authors: Mohamed Rahal, Djaouida Guetta
Abstract:
In this paper, the one-dimensional unconstrained global optimization problem of continuous functions satifying a Hölder condition is considered. We extend the algorithm of sequential covering SCA for Lipschitz functions to a large class of Hölder functions. The convergence of the method is studied and the algorithm can be applied to systems of nonlinear equations. Finally, some numerical examples are presented and illustrate the efficiency of the present approach.Keywords: global optimization, Hölder functions, sequential covering method, systems of nonlinear equations
Procedia PDF Downloads 3708844 Crack Width Analysis of Reinforced Concrete Members under Shrinkage Effect by Pseudo-Discrete Crack Model
Authors: F. J. Ma, A. K. H. Kwan
Abstract:
Crack caused by shrinkage movement of concrete is a serious problem especially when restraint is provided. It may cause severe serviceability and durability problems. The existing prediction methods for crack width of concrete due to shrinkage movement are mainly numerical methods under simplified circumstances, which do not agree with each other. To get a more unified prediction method applicable to more sophisticated circumstances, finite element crack width analysis for shrinkage effect should be developed. However, no existing finite element analysis can be carried out to predict the crack width of concrete due to shrinkage movement because of unsolved reasons of conventional finite element analysis. In this paper, crack width analysis implemented by finite element analysis is presented with pseudo-discrete crack model, which combines traditional smeared crack model and newly proposed crack queuing algorithm. The proposed pseudo-discrete crack model is capable of simulating separate and single crack without adopting discrete crack element. And the improved finite element analysis can successfully simulate the stress redistribution when concrete is cracked, which is crucial for predicting crack width, crack spacing and crack number.Keywords: crack queuing algorithm, crack width analysis, finite element analysis, shrinkage effect
Procedia PDF Downloads 4198843 Study of Adaptive Filtering Algorithms and the Equalization of Radio Mobile Channel
Authors: Said Elkassimi, Said Safi, B. Manaut
Abstract:
This paper presented a study of three algorithms, the equalization algorithm to equalize the transmission channel with ZF and MMSE criteria, application of channel Bran A, and adaptive filtering algorithms LMS and RLS to estimate the parameters of the equalizer filter, i.e. move to the channel estimation and therefore reflect the temporal variations of the channel, and reduce the error in the transmitted signal. So far the performance of the algorithm equalizer with ZF and MMSE criteria both in the case without noise, a comparison of performance of the LMS and RLS algorithm.Keywords: adaptive filtering second equalizer, LMS, RLS Bran A, Proakis (B) MMSE, ZF
Procedia PDF Downloads 3138842 Sync Consensus Algorithm: Trying to Reach an Agreement at Full Speed
Authors: Yuri Zinchenko
Abstract:
Recently, distributed storage systems have been used more and more in various aspects of everyday life. They provide such necessary properties as Scalability, Fault Tolerance, Durability, and others. At the same time, not only reliable but also fast data storage remains one of the most pressing issues in this area. That brings us to the consensus algorithm as one of the most important components that has a great impact on the functionality of a distributed system. This paper is the result of an analysis of several well-known consensus algorithms, such as Paxos and Raft. The algorithm it offers, called Sync, promotes, but does not insist on simultaneous writing to the nodes (which positively affects the overall writing speed) and tries to minimize the system's inactive time. This allows nodes to reach agreement on the system state in a shorter period, which is a critical factor for distributed systems. Also when developing Sync, a lot of attention was paid to such criteria as simplicity and intuitiveness, the importance of which is difficult to overestimate.Keywords: sync, consensus algorithm, distributed system, leader-based, synchronization.
Procedia PDF Downloads 628841 Kinoform Optimisation Using Gerchberg- Saxton Iterative Algorithm
Authors: M. Al-Shamery, R. Young, P. Birch, C. Chatwin
Abstract:
Computer Generated Holography (CGH) is employed to create digitally defined coherent wavefronts. A CGH can be created by using different techniques such as by using a detour-phase technique or by direct phase modulation to create a kinoform. The detour-phase technique was one of the first techniques that was used to generate holograms digitally. The disadvantage of this technique is that the reconstructed image often has poor quality due to the limited dynamic range it is possible to record using a medium with reasonable spatial resolution.. The kinoform (phase-only hologram) is an alternative technique. In this method, the phase of the original wavefront is recorded but the amplitude is constrained to be constant. The original object does not need to exist physically and so the kinoform can be used to reconstruct an almost arbitrary wavefront. However, the image reconstructed by this technique contains high levels of noise and is not identical to the reference image. To improve the reconstruction quality of the kinoform, iterative techniques such as the Gerchberg-Saxton algorithm (GS) are employed. In this paper the GS algorithm is described for the optimisation of a kinoform used for the reconstruction of a complex wavefront. Iterations of the GS algorithm are applied to determine the phase at a plane (with known amplitude distribution which is often taken as uniform), that satisfies given phase and amplitude constraints in a corresponding Fourier plane. The GS algorithm can be used in this way to enhance the reconstruction quality of the kinoform. Different images are employed as the reference object and their kinoform is synthesised using the GS algorithm. The quality of the reconstructed images is quantified to demonstrate the enhanced reconstruction quality achieved by using this method.Keywords: computer generated holography, digital holography, Gerchberg-Saxton algorithm, kinoform
Procedia PDF Downloads 5338840 Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods
Authors: Halil Ibrahim Demir, Caner Erden, Mumtaz Ipek, Ozer Uygun
Abstract:
Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.Keywords: process planning, weighted scheduling, weighted due-date assignment, genetic search, simulated annealing, hybrid meta-heuristics
Procedia PDF Downloads 4698839 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 788838 Automated Test Data Generation For some types of Algorithm
Authors: Hitesh Tahbildar
Abstract:
The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms.Keywords: ongest path, saturation point, lmax, kL, kS
Procedia PDF Downloads 4058837 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based On a Motion Polymorph-Primitives Algorithm
Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba
Abstract:
Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real-time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.Keywords: robotics, aerial robots, motion primitives, helicopter
Procedia PDF Downloads 6168836 Impact of Modern Beehive on Income of Rural Households: Evidence from Bugina District of Northern Ethiopia
Authors: Wondmnew Derebe Yohannis
Abstract:
The enhanced utilization of modern beehives holds significant potential to enhance the livelihoods of smallholder farmers who heavily rely on mixed crop-livestock farming for their income. Recognizing this, the distribution of improved beehives has been implemented across various regions in Ethiopia, including the Bugina district. However, the precise impact of these improved beehives on farmers' income has received limited attention. To address this gap, this study aims to assess the influence of adopting upgraded beehives on rural households' income and asset accumulation. To conduct this research, survey data was gathered from a sample of 350 households selected through random sampling. The collected data was then analyzed using an econometric stochastic frontier model (ESRM) approach. The findings reveal that the adoption of improved beehives has resulted in higher annual income and asset growth for beekeepers. On average, those who adopted the improved beehives earned approximately 6,077 Ethiopian Birr (ETB) more than their counterparts who did not adopt these beehives. However, it is worth noting that the impact of adoption would have been even greater for non-adopters, as evidenced by the negative transitional heterogeneity effect of 1792 ETB. Furthermore, the analysis indicates that the decision to adopt or not adopt improved beehives was driven by individual self-selection. The adoption of improved beehives also led to an increase in fixed assets for households, establishing it as a viable strategy for poverty reduction. Overall, this study underscores the positive effect of adopting improved beehives on rural households' income and asset holdings, showcasing its potential to uplift smallholder farmers and serve as an alternative mechanism for reducing poverty.Keywords: impact, adoption, endogenous switching regression, income, improved beehives
Procedia PDF Downloads 548835 Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding: Genetic Algorithm Approach
Authors: D. S. Nagesh, G. L. Datta
Abstract:
In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases, design of experiments technique to postulate multiple linear regression equations have been used. Nowadays, Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.Keywords: smaw, genetic algorithm, bead geometry, optimization/inverse mapping
Procedia PDF Downloads 4538834 Genetic Algorithm Approach for Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding
Authors: D. S. Nagesh, G. L. Datta
Abstract:
In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases design of experiments technique to postulate multiple linear regression equations have been used. Nowadays Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.Keywords: SMAW, genetic algorithm, bead geometry, optimization/inverse mapping
Procedia PDF Downloads 4218833 Maximum Efficiency of the Photovoltaic Cells Using a Genetic Algorithm
Authors: Latifa Sabri, Mohammed Benzirar, Mimoun Zazoui
Abstract:
The installation of photovoltaic systems is one of future sources to generate electricity without emitting pollutants. The photovoltaic cells used in these systems have demonstrated enormous efficiencies and advantages. Several researches have discussed the maximum efficiency of these technologies, but only a few experiences have succeeded to right weather conditions to get these results. In this paper, two types of cells were selected: crystalline and amorphous silicon. Using the method of genetic algorithm, the results show that for an ambient temperature of 25°C and direct irradiation of 625 W/m², the efficiency of crystalline silicon is 12% and 5% for amorphous silicon.Keywords: PV, maximum efficiency, solar cell, genetic algorithm
Procedia PDF Downloads 4248832 A Comparative Analysis on QRS Peak Detection Using BIOPAC and MATLAB Software
Authors: Chandra Mukherjee
Abstract:
The present paper is a representation of the work done in the field of ECG signal analysis using MATLAB 7.1 Platform. An accurate and simple ECG feature extraction algorithm is presented in this paper and developed algorithm is validated using BIOPAC software. To detect the QRS peak, ECG signal is processed by following mentioned stages- First Derivative, Second Derivative and then squaring of that second derivative. Efficiency of developed algorithm is tested on ECG samples from different database and real time ECG signals acquired using BIOPAC system. Firstly we have lead wise specified threshold value the samples above that value is marked and in the original signal, where these marked samples face change of slope are spotted as R-peak. On the left and right side of the R-peak, faces change of slope identified as Q and S peak, respectively. Now the inbuilt Detection algorithm of BIOPAC software is performed on same output sample and both outputs are compared. ECG baseline modulation correction is done after detecting characteristics points. The efficiency of the algorithm is tested using some validation parameters like Sensitivity, Positive Predictivity and we got satisfied value of these parameters.Keywords: first derivative, variable threshold, slope reversal, baseline modulation correction
Procedia PDF Downloads 4118831 Automatic Multi-Label Image Annotation System Guided by Firefly Algorithm and Bayesian Method
Authors: Saad M. Darwish, Mohamed A. El-Iskandarani, Guitar M. Shawkat
Abstract:
Nowadays, the amount of available multimedia data is continuously on the rise. The need to find a required image for an ordinary user is a challenging task. Content based image retrieval (CBIR) computes relevance based on the visual similarity of low-level image features such as color, textures, etc. However, there is a gap between low-level visual features and semantic meanings required by applications. The typical method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, a multi-label image annotation system guided by Firefly and Bayesian method is proposed. Firstly, images are segmented using the maximum variance intra cluster and Firefly algorithm, which is a swarm-based approach with high convergence speed, less computation rate and search for the optimal multiple threshold. Feature extraction techniques based on color features and region properties are applied to obtain the representative features. After that, the images are annotated using translation model based on the Net Bayes system, which is efficient for multi-label learning with high precision and less complexity. Experiments are performed using Corel Database. The results show that the proposed system is better than traditional ones for automatic image annotation and retrieval.Keywords: feature extraction, feature selection, image annotation, classification
Procedia PDF Downloads 5868830 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic
Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam
Abstract:
In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.Keywords: decision support system, data mining, knowledge discovery, data discovery, fuzzy logic
Procedia PDF Downloads 3358829 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model
Authors: Shivahari Revathi Venkateswaran
Abstract:
Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering
Procedia PDF Downloads 718828 Blind Watermarking Using Discrete Wavelet Transform Algorithm with Patchwork
Authors: Toni Maristela C. Estabillo, Michaela V. Matienzo, Mikaela L. Sabangan, Rosette M. Tienzo, Justine L. Bahinting
Abstract:
This study is about blind watermarking on images with different categories and properties using two algorithms namely, Discrete Wavelet Transform and Patchwork Algorithm. A program is created to perform watermark embedding, extraction and evaluation. The evaluation is based on three watermarking criteria namely: image quality degradation, perceptual transparency and security. Image quality is measured by comparing the original properties with the processed one. Perceptual transparency is measured by a visual inspection on a survey. Security is measured by implementing geometrical and non-geometrical attacks through a pass or fail testing. Values used to measure the following criteria are mostly based on Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The results are based on statistical methods used to interpret and collect data such as averaging, z Test and survey. The study concluded that the combined DWT and Patchwork algorithms were less efficient and less capable of watermarking than DWT algorithm only.Keywords: blind watermarking, discrete wavelet transform algorithm, patchwork algorithm, digital watermark
Procedia PDF Downloads 2688827 Novel Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we propose a novel inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multi-class. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.Keywords: bayesian rule, gaussian process classification model with multiclass, gaussian process prior, human action classification, laplace approximation, variational EM algorithm
Procedia PDF Downloads 3348826 Modeling and Optimization of Micro-Grid Using Genetic Algorithm
Authors: Mehrdad Rezaei, Reza Haghmaram, Nima Amjadi
Abstract:
This paper proposes an operating and cost optimization model for micro-grid (MG). This model takes into account emission costs of NOx, SO2, and CO2, together with the operation and maintenance costs. Wind turbines (WT), photovoltaic (PV) arrays, micro turbines (MT), fuel cells (FC), diesel engine generators (DEG) with different capacities are considered in this model. The aim of the optimization is minimizing operation cost according to constraints, supply demand and safety of the system. The proposed genetic algorithm (GA), with the ability to fine-tune its own settings, is used to optimize the micro-grid operation.Keywords: micro-grid, optimization, genetic algorithm, MG
Procedia PDF Downloads 5118825 Fast and Scale-Adaptive Target Tracking via PCA-SIFT
Authors: Yawen Wang, Hongchang Chen, Shaomei Li, Chao Gao, Jiangpeng Zhang
Abstract:
As the main challenge for target tracking is accounting for target scale change and real-time, we combine Mean-Shift and PCA-SIFT algorithm together to solve the problem. We introduce similarity comparison method to determine how the target scale changes, and taking different strategies according to different situation. For target scale getting larger will cause location error, we employ backward tracking to reduce the error. Mean-Shift algorithm has poor performance when tracking scale-changing target due to the fixed bandwidth of its kernel function. In order to overcome this problem, we introduce PCA-SIFT matching. Through key point matching between target and template, that adjusting the scale of tracking window adaptively can be achieved. Because this algorithm is sensitive to wrong match, we introduce RANSAC to reduce mismatch as far as possible. Furthermore target relocating will trigger when number of match is too small. In addition we take comprehensive consideration about target deformation and error accumulation to put forward a new template update method. Experiments on five image sequences and comparison with 6 kinds of other algorithm demonstrate favorable performance of the proposed tracking algorithm.Keywords: target tracking, PCA-SIFT, mean-shift, scale-adaptive
Procedia PDF Downloads 4338824 Comparative Analysis of Two Different Ant Colony Optimization Algorithm for Solving Travelling Salesman Problem
Authors: Sourabh Joshi, Tarun Sharma, Anurag Sharma
Abstract:
Ant Colony Optimization is heuristic Algorithm which has been proven a successful technique applied on number of combinatorial optimization problems. Two variants of Ant Colony Optimization algorithm named Ant System and Max-Min Ant System are implemented in MATLAB to solve travelling Salesman Problem and the results are compared. In, this paper both systems are analyzed by solving the some Travelling Salesman Problem and depict which system solve the problem better in term of cost and time.Keywords: Ant Colony Optimization, Travelling Salesman Problem, Ant System, Max-Min Ant System
Procedia PDF Downloads 4838823 Identification of the Parameters of a AC Servomotor Using Genetic Algorithm
Authors: J. G. Batista, K. N. Sousa, ¬J. L. Nunes, R. L. S. Sousa, G. A. P. Thé
Abstract:
This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measured and/or expected values.Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control
Procedia PDF Downloads 470