Search results for: heat pipe limits
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4283

Search results for: heat pipe limits

3683 Performance Analysis of Hybrid Solar Photovoltaic-Thermal Collector with TRANSYS Simulator

Authors: Ashish Lochan, Anil K. Dahiya, Amit Verma

Abstract:

The idea of combining photovoltaic and solar thermal collector to provide electrical and heat energy is not new, however, it is an area of limited attention. Hybrid photovoltaic-thermals have become a focus point of interest in the field of solar energy. Integration of both (photovoltaic and thermal collector) provide greater opportunity for the use of renewable solar energy. This system converts solar energy into electricity and heat energy simultaneously. Theoretical performance analyses of hybrid PV/Ts have been carried out. Also, the temperature of water (as a heat carrier) have been calculated for different seasons with the help of TRANSYS.

Keywords: photovoltaic-thermal, solar energy, seasonal performance analysis, TRANSYS

Procedia PDF Downloads 635
3682 The Heating Prosumer: Optimal Simultaneous Use of Heat-Pumps and Solar Panels

Authors: Youssef El Makhrout, Aude Pommeret, Tunç Durmaz

Abstract:

This paper analyses the consequences of a heat pump on the optimal behavior of a prosumer. A theoretical microeconomic model is developed for household heating and electricity consumption to analyze the profitability of installing a solar PV system with a heat pump, battery storage, and grid use. The aim is to present the optimal scenario of investment in renewable energy equipment to cover domestic and heating needs. Simulation data of a French house of 170m² in Chambery are used in this paper. The house is divided into 5 zones with 3 heated zones of 89.4 m² occupied by two people. The analysis is based on hourly data for one year, from 00:00 01/01/2021 to 23:00 31/12/2021. Results indicate that without taking the cost of materials and no financial aid, the most profitable scenario for a household is when he owns solar panels, a heat pump, and battery storage. However, with the costs and financial aid of the French government for energy renovation, the net economic surplus change and the profitability during 20 years are important when the household decides to add a heat pump to existing solar panels. In this scenario, the household can realize 35.84% as a surplus change improvement, but this cannot cover all installation costs. The household can get benefits and cover all installation costs after exploiting financial support in the case of adopting a heat pump. The investment in a battery is still not profitable because of its high cost and the lack of financial aid. Some public policy recommendations are proposed, especially for solar panels and battery storage.

Keywords: household’s heating, prosumer, electricity consumption, renewable energy, welfare gain, comfort, solar PV, heat pumps, storage

Procedia PDF Downloads 46
3681 Application of Artificial Neural Network for Single Horizontal Bare Tube and Bare Tube Bundles (Staggered) of Large Particles: Heat Transfer Prediction

Authors: G. Ravindranath, S. Savitha

Abstract:

This paper presents heat transfer analysis of single horizontal bare tube and heat transfer analysis of staggered arrangement of bare tube bundles bare tube bundles in gas-solid (air-solid) fluidized bed and predictions are done by using Artificial Neural Network (ANN) based on experimental data. Fluidized bed provide nearly isothermal environment with high heat transfer rate to submerged objects i.e. due to through mixing and large contact area between the gas and the particle, a fully fluidized bed has little temperature variation and gas leaves at a temperature which is close to that of the bed. Measurement of average heat transfer coefficient was made by local thermal simulation technique in a cold bubbling air-fluidized bed of size 0.305 m. x 0.305 m. Studies were conducted for single horizontal Bare Tube of length 305mm and 28.6mm outer diameter and for bare tube bundles of staggered arrangement using beds of large (average particle diameter greater than 1 mm) particle (raagi and mustard). Within the range of experimental conditions influence of bed particle diameter ( Dp), Fluidizing Velocity (U) were studied, which are significant parameters affecting heat transfer. Artificial Neural Networks (ANNs) have been receiving an increasing attention for simulating engineering systems due to some interesting characteristics such as learning capability, fault tolerance, and non-linearity. Here, feed-forward architecture and trained by back-propagation technique is adopted to predict heat transfer analysis found from experimental results. The ANN is designed to suit the present system which has 3 inputs and 2 out puts. The network predictions are found to be in very good agreement with the experimental observed values of bare heat transfer coefficient (hb) and nusselt number of bare tube (Nub).

Keywords: fluidized bed, large particles, particle diameter, ANN

Procedia PDF Downloads 349
3680 Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method

Authors: A. Srion, W. Thepsuwan, N. Monmaturapoj

Abstract:

Two Lithium disilicate (LD) glass ceramics based on SiO2-Li2O-K2O-Al2O3 system were prepared through glass melting method and then fabricated into dental crowns via hot pressing at 850˚C and 900˚C in order to study the effect of the pressing temperatures on theirs phase formation and microstructure. The factor such as heat treatment temperature (as-cast glass, 600˚C and 700˚C) of the glass ceramics used to press was also investigated the effect of an initial microstructure before pressing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine phase formation and microstructure of the samples, respectively. X-ray diffraction result shows that the main crystalline structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3, Ca5 (PO4)3F, SiO2 as minor phases. Glass compositions with different heat treatment temperatures exhibited a difference phase formation but have less effect during pressing. Scanning electron microscopy analysis showed microstructure of lath-like of Li2Si2O5 in all glasses. With increasing the initial heat treatment temperature, the longer the lath-like crystals of lithium disilicate were increased especially when using glass heat treatment at 700˚C followed by pressing at 900˚C. This could be suggested that LD1 heat treatment at 700˚C which pressing at 900˚C presented the best formation by hot pressing and compiled microstructure.

Keywords: lithium disilicate, hot pressing, dental crown, microstructure

Procedia PDF Downloads 306
3679 Application of Thermal Dimensioning Tools to Consider Different Strategies for the Disposal of High-Heat-Generating Waste

Authors: David Holton, Michelle Dickinson, Giovanni Carta

Abstract:

The principle of geological disposal is to isolate higher-activity radioactive wastes deep inside a suitable rock formation to ensure that no harmful quantities of radioactivity reach the surface environment. To achieve this, wastes will be placed in an engineered underground containment facility – the geological disposal facility (GDF) – which will be designed so that natural and man-made barriers work together to minimise the escape of radioactivity. Internationally, various multi-barrier concepts have been developed for the disposal of higher-activity radioactive wastes. High-heat-generating wastes (HLW, spent fuel and Pu) provide a number of different technical challenges to those associated with the disposal of low-heat-generating waste. Thermal management of the disposal system must be taken into consideration in GDF design; temperature constraints might apply to the wasteform, container, buffer and host rock. Of these, the temperature limit placed on the buffer component of the engineered barrier system (EBS) can be the most constraining factor. The heat must therefore be managed such that the properties of the buffer are not compromised to the extent that it cannot deliver the required level of safety. The maximum temperature of a buffer surrounding a container at the centre of a fixed array of heat-generating sources, arises due to heat diffusing from neighbouring heat-generating wastes, incrementally contributing to the temperature of the EBS. A range of strategies can be employed for managing heat in a GDF, including the spatial arrangements or patterns of those containers; different geometrical configurations can influence the overall thermal density in a disposal facility (or area within a facility) and therefore the maximum buffer temperature. A semi-analytical thermal dimensioning tool and methodology have been applied at a generic stage to explore a range of strategies to manage the disposal of high-heat-generating waste. A number of examples, including different geometrical layouts and chequer-boarding, have been illustrated to demonstrate how these tools can be used to consider safety margins and inform strategic disposal options when faced with uncertainty, at a generic stage of the development of a GDF.

Keywords: buffer, geological disposal facility, high-heat-generating waste, spent fuel

Procedia PDF Downloads 260
3678 Optimization of the Energy Consumption of the Pottery Kilns by the Use of Heat Exchanger as Recovery System and Modeling of Heat Transfer by Conduction Through the Walls of the Furnace

Authors: Maha Bakakri, Rachid Tadili, Fatiha Lemmini

Abstract:

Morocco is one of the few countries that have kept their traditional crafts, despite the competition of modern industry and its impact on manual labor. Therefore the optimization of energy consumption becomes an obligation and this is the purpose of this document. In this work we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the furnace, values which will be used later in the calculation of its thermal losses. In order to determine the major source of the thermal losses of the furnace we have established the heat balance of the furnace. The energy consumed, the useful energy and the thermal losses through the walls and the chimney of the furnace are calculated thanks to the experimental measurements which we realized for several firings. The results show that the energy consumption of this type of furnace is very high and that the main source of energy loss is mainly due to the heat losses of the combustion gases that escape from the furnace by the chimney while the losses through the walls are relatively small. it have opted for energy recovery as a solution where we can recover some of the heat lost through the use of a heat exchanger system using a double tube introduced into the flue gas exhaust stack compartment. The study on the heat recovery system is presented and the heat balance inside the exchanger is established. In this paper we also present the numerical modeling of heat transfer by conduction through the walls of the furnace. A numerical model has been established based on the finite volume method and the double scan method. It makes it possible to determine the temperature profile of the furnace and thus to calculate the thermal losses of its walls and to deduce the thermal losses due to the combustion gases. Validation of the model is done using the experimental measurements carried out on the furnace. The results obtained in this work, relating to the energy consumed during the operation of the furnace are important and are part of the energy efficiency framework that has become a key element in global energy policies. It is the fastest and cheapest way to solve energy, environmental and economic security problems.

Keywords: energy cunsumption, energy recovery, modeling, energy eficiency

Procedia PDF Downloads 49
3677 Experimental Study of Nucleate Pool Boiling Heat Transfer Characteristics on Laser-Processed Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With the fast growth of integrated circuits and the trend towards making electronic devices smaller, the heat dissipation load of electronic devices has continued to go over the limit. The high heat flux element would not only harm the operation and lifetime of the equipment but would also impede the performance upgrade brought about by the iteration of technological updates, which would have a direct negative impact on the economic and production cost benefits of rising industries. Hence, in high-tech industries like radar, information and communication, electromagnetic power, and aerospace, the development and implementation of effective heat dissipation technologies were urgently required. Pool boiling is favored over other cooling methods because of its capacity to dissipate a high heat flux at a low wall superheat without the usage of mechanical components. Enhancing the pool boiling performance by increasing the heat transfer coefficient via surface modification techniques has received a lot of attention. There are several surface modification methods feasible today, but the stability and durability of surface modification are the greatest priority. Thus, laser machining is an interesting choice for surface modification due to its low production cost, high scalability, and repeatability. In this study, different patterns of laser-processed copper surfaces are fabricated to investigate the nucleate pool boiling heat transfer performance of distilled water. The investigation showed that there is a significant enhancement in the pool boiling heat transfer performance of the laser-processed surface compared to the reference surface due to the notable increase in nucleation frequency and nucleation site density. It was discovered that the heat transfer coefficients increased when both the surface area ratio and the ratio of peak-to-valley height of the microstructure were raised. It is believed that the development of microstructures on the surface as a result of laser processing is the primary factor in the enhancement of heat transfer performance.

Keywords: heat transfer coefficient, laser processing, micro structured surface, pool boiling

Procedia PDF Downloads 66
3676 Optimization of a Flexible Thermoelectric Generator for Energy Harvesting from Human Skin to Power Wearable Electronics

Authors: Dessalegn Abera Waktole, Boru Jia, Zhengxing Zuo, Wei Wang, Nianling Kuang

Abstract:

A flexible thermoelectric generator is one method for recycling waste heat. This research provides the optimum performance of a flexible thermoelectric generator with optimal geometric parameters and a detailed structural design. In this research, a numerical simulation and experiment were carried out to develop an efficient, flexible thermoelectric generator for energy harvesting from human skin. Heteromorphic electrodes and a polyimide substrate with a copper-printed circuit board were introduced into the structural design of a flexible thermoelectric generator. The heteromorphic electrode was used as a heat sink and component of a flexible thermoelectric generator to enhance the temperature difference within the thermoelectric legs. Both N-type and P-type thermoelectric legs were made of bismuth selenium telluride (Bi1.7Te3.7Se0.3) and bismuth antimony telluride (Bi0.4Sb1.6Te3). The output power of the flexible thermoelectric generator was analyzed under different heat source temperatures and heat dissipation conditions. The COMSOL Multiphysics 5.6 software was used to conduct the simulation, which was validated by experiment. It is recorded that the maximum power output of 232.064μW was obtained by considering different wind speed conditions, the ambient temperature of 20℃, and the heat source temperature of 36℃ under various load resistance conditions, which range from 0.24Ω to 0. 91Ω. According to this finding, heteromorphic electrodes have a significant impact on the performance of the device.

Keywords: flexible thermoelectric generator, optimization, performance, temperature gradient, waste heat recovery

Procedia PDF Downloads 110
3675 Evaluation on Heat and Drought Tolerance Capacity of Chickpea

Authors: Derya Yucel, Nigar Angın, Dürdane Mart, Meltem Turkeri, Volkan Catalkaya, Celal Yucel

Abstract:

Chickpea (Cicer arietinum L.) is one of the important legumes widely grown for dietery proteins in semi-arid Mediteranean climatic conditions. To evaluate the genetic diversity with improved heat and drought tolerance capacity in chickpea, thirty-four selected chickpea genotypes were tested under different field-growing conditions (rainfed winter sowing, irrigated-late sowing and rainfed-late sowing) in 2015 growing season. A factorial experiment in randomized complete block design with 3 reps was conducted at the Eastern Mediterranean Research Institute Adana, Turkey. Based on grain yields under different growing conditions, several indices were calculated to identify economically higher-yielding chickpea genotypes with greater heat and drought tolerance capacity. Average across chickpea genotypes, the values of tolerance index, mean productivity, yield index, yield stability index, stress tolerance index, stress susceptibility index, and geometric mean productivity were ranged between 1.1 to 218, 38 to 202, 0.3 to 1.7, 0.2 to 1, 0.1 to 1.2, 0.02 to 1.4, and 36 to 170 for drought stress and 3 to 54, 23 to 118, 0.3 to 1.7, 0.4 to 0.9, 0.2 to 2, 0.2to 2.3, and 23 to 118 for heat stress, respectively. There were highly significant differences observed among the tested chickpea genotypes response to drought and heat stresses. Among the chickpea genotypes, the Aksu, Arda, Çakır, F4 09 (X 05 TH 21-16189), FLIP 03-108 were identified with a higher drought and heat tolerance capacity. Based on our field studies, it is suggested that the drought and heat tolerance indicators of plants can be used by breeders to select stress-resistant economically productive chickpea genotypes suitable to grow under Mediteranean climatic conditions.

Keywords: irrigation, rainfed, stress susceptibility, tolerance indice

Procedia PDF Downloads 220
3674 Experimental Study on the Heat Transfer Characteristics of the 200W Class Woofer Speaker

Authors: Hyung-Jin Kim, Dae-Wan Kim, Moo-Yeon Lee

Abstract:

The objective of this study is to experimentally investigate the heat transfer characteristics of 200 W class woofer speaker units with the input voice signals. The temperature and heat transfer characteristics of the 200 W class woofer speaker unit were experimentally tested with the several input voice signals such as 1500 Hz, 2500 Hz, and 5000 Hz respectively. From the experiments, it can be observed that the temperature of the woofer speaker unit including the voice-coil part increases with a decrease in input voice signals. Also, the temperature difference in measured points of the voice coil is increased with decrease of the input voice signals. In addition, the heat transfer characteristics of the woofer speaker in case of the input voice signal of 1500 Hz is 40% higher than that of the woofer speaker in case of the input voice signal of 5000 Hz at the measuring time of 200 seconds. It can be concluded from the experiments that initially the temperature of the voice signal increases rapidly with time, after a certain period of time it increases exponentially. Also during this time dependent temperature change, it can be observed that high voice signal is stable than low voice signal.

Keywords: heat transfer, temperature, voice coil, woofer speaker

Procedia PDF Downloads 339
3673 A Review on Enhancing Heat Transfer Processes by Open-Cell Metal Foams and Industrial Applications

Authors: S. Cheragh Dar, M. Saljooghi, A. Babrgir

Abstract:

In the last couple of decades researchers' attitudes were focused on developing and enhancing heat transfer processes by using new components or cellular solids that divide into stochastic structures and periodic structures. Open-cell metal foams are part of stochastic structures families that they can be considered as an avant-garde technology and they have unique properties, this porous media can have tremendous achievements in thermal processes. This paper argues and surveys postulating possible in industrial thermal issues which include: compact electronic cooling, heat exchanger, aerospace, fines, turbo machinery, automobiles, crygen tanks, biomechanics, high temperature filters and etc. Recently, by surveying exponential rate of publications in thermal open-cell metal foams, all can be demonstrated in a holistic view which can lead researchers to a new level of understanding in different industrial thermal sections.

Keywords: heat transfer, industrial thermal, cellular solids, open cell metal foam

Procedia PDF Downloads 281
3672 Validation Study of Radial Aircraft Engine Model

Authors: Lukasz Grabowski, Tytus Tulwin, Michal Geca, P. Karpinski

Abstract:

This paper presents the radial aircraft engine model which has been created in AVL Boost software. This model is a one-dimensional physical model of the engine, which enables us to investigate the impact of an ignition system design on engine performance (power, torque, fuel consumption). In addition, this model allows research under variable environmental conditions to reflect varied flight conditions (altitude, humidity, cruising speed). Before the simulation research the identifying parameters and validating of model were studied. In order to verify the feasibility to take off power of gasoline radial aircraft engine model, some validation study was carried out. The first stage of the identification was completed with reference to the technical documentation provided by manufacturer of engine and the experiments on the test stand of the real engine. The second stage involved a comparison of simulation results with the results of the engine stand tests performed on a WSK ’PZL-Kalisz’. The engine was loaded by a propeller in a special test bench. Identifying the model parameters referred to a comparison of the test results to the simulation in terms of: pressure behind the throttles, pressure in the inlet pipe, and time course for pressure in the first inlet pipe, power, and specific fuel consumption. Accordingly, the required coefficients and error of simulation calculation relative to the real-object experiments were determined. Obtained the time course for pressure and its value is compatible with the experimental results. Additionally the engine power and specific fuel consumption tends to be significantly compatible with the bench tests. The mapping error does not exceed 1.5%, which verifies positively the model of combustion and allows us to predict engine performance if the process of combustion will be modified. The next conducted tests verified completely model. The maximum mapping error for the pressure behind the throttles and the inlet pipe pressure is 4 %, which proves the model of the inlet duct in the engine with the charging compressor to be correct.

Keywords: 1D-model, aircraft engine, performance, validation

Procedia PDF Downloads 317
3671 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation

Authors: Ying Xin, Shigeki Kametani

Abstract:

This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does. In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.

Keywords: energy-saving, variable refrigerant flow, gas engine heat pump, electric driven heat pump, air conditioning system

Procedia PDF Downloads 278
3670 Applying Different Working Fluids in a Combined Power and Ejector Refrigeration Cycle with Low Temperature Heat Sources

Authors: Samad Jafarmadar, Amin Habibzadeh

Abstract:

A power and cooling cycle, which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources, is discussed in this paper. 13 working fluids including wet, dry, and isentropic fluids are studied in order to find their performances on the combined cycle. Various operating conditions’ effects on the proposed cycle are examined by fixing power/refrigeration ratio. According to the results, dry and isentropic fluids have better performance compared with wet fluids.

Keywords: combined power and refrigeration cycle, low temperature heat sources, organic rankine cycle, working fluids

Procedia PDF Downloads 245
3669 The Effect of Mean Pressure on the Performance of a Low-Grade Heat-Driven Thermoacoustic Cooler

Authors: Irna Farikhah

Abstract:

Converting low-grade waste heat into useful energy such as sound energy which can then be used to generate acoustic power in a thermoacoustic engine has become an attracting issue for researchers. The generated power in thermoacoustic engine can be used for driving a thermoacoustic cooler when they are installed in a tube. This cooler system can be called as a heat-driven thermoacoustic cooler. In this study, low heating temperature of the engine is discussed. In addition, having high efficiency of the whole cooler is also essential. To design a thermoacoustic cooler having high efficiency with using low-grade waste heat for the engine, the effect of mean pressure is investigated. By increasing the mean pressure, the heating temperature to generate acoustic power can be decreased from 557 °C to 300 °C. Moreover, the efficiency of the engine and cooler regenerators attain 67% and 47% of the upper limit values, respectively and 49% of the acoustical work generated by the engine regenerator is utilized in the cooler regenerator. As a result, the efficiency of the whole cooler becomes 15% of the upper limit value.

Keywords: cooler, mean pressure, performance, thermoacoustic

Procedia PDF Downloads 238
3668 Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: Study of Regeneration Heat Duty

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

A high-pressure carbon dioxide (CO₂) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO₂ concentration, CO₂ loading, reboiler power supply, and regeneration heat duty to choose the most efficient solution in terms of CO₂ removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on the electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that piperazine, in addition to the mixture of piperazine and monoethanolamine (MEA), demands the highest regeneration heat duty compared with other studied single and blended amine solutions, respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of the process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO₂ content in the outlet gas, rich-CO₂ loading, and regeneration heat duty.

Keywords: absorption, amine solutions, aspen HYSYS, CO₂ loading, piperazine, regeneration heat duty

Procedia PDF Downloads 163
3667 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN

Authors: Ajoy Kumar Das, Prasenjit Dey

Abstract:

Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.

Keywords: forced convection, square cylinder, nanofluid, neural network

Procedia PDF Downloads 307
3666 Numerical Study of Natural Convection Heat Transfer in a Two-Dimensional Vertical Conical PartiallyAnnular Space

Authors: Belkacem Ould Said, Nourddine Retiel, Abdelilah Benazza, Mohamed Aichouni

Abstract:

In this paper, a numerical study of two-dimensional steady flow has been made of natural convection in a differentially heated vertical conical partially annular space. The heat transfer is assumed to take place by natural convection. The inner and outer surfaces of annulus are maintained at uniform wall temperature. The annulus is filled with air. The CFD FLUENT12.0 code is used to solve the governing equations of mass, momentum and energy using constant properties and the Boussinesq approximation for density variation. The streamlines and the isotherms of the fluid are presented for different annuli with different boundary conditions and Rayleigh numbers. Emphasis is placed on the influences of the height of the inner vertical cone on the flow and the temperature fields. In addition, the effects on the heat transfer are discussed for various values of physical parameters of the fluid and geometric parameters of the annulus. The heat transfer on the hot walls of the annulus is also calculated in order to make comparisons between the cylinder annulus for boundary conditions and several Rayleigh numbers. A good agreement of Nusselt number has been found between the present predictions and reference from the literature data.

Keywords: natural convection, heat transfer, numerical simulation, conical partially, annular space

Procedia PDF Downloads 290
3665 Comparative Assessment of the Thermal Tolerance of Spotted Stemborer, Chilo partellus Swinhoe (Lepidoptera: Crambidae) and Its Larval Parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae)

Authors: Reyard Mutamiswa, Frank Chidawanyika, Casper Nyamukondiwa

Abstract:

Under stressful thermal environments, insects adjust their behaviour and physiology to maintain key life-history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we therefore investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. In laboratory experiments, we determined lethal temperature assays (upper and lower lethal temperatures) using direct plunge protocols in programmable water baths (Systronix, Scientific, South Africa), effects of ramping rate on critical thermal limits following standardized protocols using insulated double-jacketed chambers (‘organ pipes’) connected to a programmable water bath (Lauda Eco Gold, Lauda DR.R. Wobser GMBH and Co. KG, Germany), supercooling points (SCPs) following dynamic protocols using a Pico logger connected to a programmable water bath, heat knock-down time (HKDT) and chill-coma recovery (CCRT) time following static protocols in climate chambers (HPP 260, Memmert GmbH + Co.KG, Germany) connected to a camera (HD Covert Network Camera, DS-2CD6412FWD-20, Hikvision Digital Technology Co., Ltd, China). When exposed for two hours to a static temperature, lower lethal temperatures ranged -9 to 6; -14 to -2 and -1 to 4ºC while upper lethal temperatures ranged from 37 to 48; 41 to 49 and 36 to 39ºC for C. partellus eggs, larvae and C. sesamiae adults respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean SCPs for C. partellus larvae, pupae and adults were -11.82±1.78, -10.43±1.73 and -15.75±2.47 respectively with adults having the lowest SCPs. Heat knock-down time and chill-coma recovery time varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the later recovered significantly faster following chill-coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host-parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect-natural enemy interactions under rapidly changing thermal environments.

Keywords: chill-coma recovery time, climate change, heat knock-down time, lethal temperatures, supercooling point

Procedia PDF Downloads 222
3664 Simulation Study of the Microwave Heating of the Hematite and Coal Mixture

Authors: Prasenjit Singha, Sunil Yadav, Soumya Ranjan Mohantry, Ajay Kumar Shukla

Abstract:

Temperature distribution in the hematite ore mixed with 7.5% coal was predicted by solving a 1-D heat conduction equation using an implicit finite difference approach. In this work, it was considered a square slab of 20 cm x 20 cm, which assumed the coal to be uniformly mixed with hematite ore. It was solved the equations with the use of MATLAB 2018a software. Heat transfer effects in this 1D dimensional slab convective and the radiative boundary conditions are also considered. Temperature distribution obtained inside hematite slab by considering microwave heating time, thermal conductivity, heat capacity, carbon percentage, sample dimensions, and many other factors such as penetration depth, permittivity, and permeability of coal and hematite ore mixtures. The resulting temperature profile can be used as a guiding tool for optimizing the microwave-assisted carbothermal reduction process of hematite slab was extended to other dimensions as well, viz., 1 cm x 1 cm, 5 cm x 5 cm, 10 cm x 10 cm, 20 cm x 20 cm. The model predictions are in good agreement with experimental results.

Keywords: hematite ore, coal, microwave processing, heat transfer, implicit method, temperature distribution

Procedia PDF Downloads 140
3663 The Effect of Radiation on Unsteady MHD Flow past a Vertical Porous Plate in the Presence of Heat Flux

Authors: Pooja Sharma

Abstract:

In the present paper the effects of radiation is studied on unsteady flow of viscous incompressible electrically conducting fluid past a vertical porous plate embedded in the porous medium in the presence of constant heat flux. A uniform Transverse Magnetic field is considered and induced magnetic field is supposed as negligible. The non-linear governing equations are solved numerically. Numerical results of the velocity and temperature fields are shown through graphs. The results illustrates that the appropriator combination of regulated values of thermo-physical parameters is expedient for controlling the flow system.

Keywords: heat transfer, radiation, MHD flow, porous medium

Procedia PDF Downloads 420
3662 To Optimise the Mechanical Properties of Structural Concrete by Partial Replacement of Natural Aggregates by Glass Aggregates

Authors: Gavin Gengan, Hsein Kew

Abstract:

Glass from varying recycling processes is considered a material that can be used as aggregate. Waste glass is available from different sources and has been used in the construction industry over the last decades. This current study aims to use recycled glass as a partial replacement for conventional aggregate materials. The experimental programme was designed to optimise the mechanical properties of structural concrete made with recycled glass aggregates (GA). NA (natural aggregates) was partially substituted by GA in a mix design of concrete of 30N/mm2 in proportions of 10%, 20%, and 25% 30%, 40%, and 50%. It was found that with an increasing proportion of GA, there is a decline in compressive strength. The optimum percentage replacement of NA by GA is 25%. The heat of hydration was also investigated with thermocouples placed in the concrete. This revealed an early acceleration of hydration heat in glass concrete, resulting from the thermal properties of glass. The gain in the heat of hydration and the better bonding of glass aggregates together with the pozzolanic activity of the finest glass particles caused the concrete to develop early age and long-term strength higher than that of control concrete

Keywords: concrete, compressive strength, glass aggregates, heat of hydration, pozzolanic

Procedia PDF Downloads 188
3661 Design of Tube Expanders with Groove Shapes to Reduce Deformation of Tube Inner Grooves in Copper Tube Expansion

Authors: I. Sin, H. Kim, S. Park

Abstract:

Fin-tube heat exchangers have grooves inside tubes to improve heat exchange performance. However, during the tube expansion process, heat exchange efficiency is decreased due to large deformation of tube inner grooves. Therefore, the objective of this study is to design a tube expander with groove shapes on its outer surface to minimize deformation of the inner grooves in copper tube expansion for fin-tube heat exchangers. In order to achieve this goal, first, we have tried to calculate tube inner groove deformation by the currently used tube expander without groove shapes on its surface. The tube inner groove deformation was acquired by elastoplastic finite element analysis from the boundary conditions with one tube end fixed and friction between the tube and tube expander (friction coefficient: 0.15). The tube expansion process was simulated by inserting the tube expander into the tube with a speed of 90 mm/s. The analysis results showed that tube inner groove heights were decreased by approximately 8 % from 0.15 mm to 0.138 mm with stress concentrations observed at the groove end, consistent with experimental results. Based on the current results, we are trying to design a novel shape of the tube expander with grooves to further reduce deformation tube inner grooves in copper tube expansion. For this, we will select major design variables of tube expander groove shapes by conducting sensitivity analysis and then optimize the design variables using the Taguchi method.

Keywords: tube expansion, tube expander, heat exchanger, finite element

Procedia PDF Downloads 306
3660 Numerical Study of Fluid Flow and Heat Transfer in the Spongy-Porous Media

Authors: Zeinab Sayed Abdel Rehim, M. A. Ziada, H. Salwa El-Deeb

Abstract:

Numerical study of fluid flow, heat transfer and thermal energy storing or released in/from spongy-porous media to predict the thermal performance and characteristics of the porous media as packed bed system is presented in this work. This system is cylindrical channel filled with porous media (carbon foam). The system consists of working fluid (air) and spongy-porous medium; they act as the heat exchanger (heating or cooling modes) where thermal interaction occurs between the working fluid and the porous medium. The spongy-porous media are defined by the different type of porous medium employed in the storing or cooling modes. Two different porous media are considered in this study: Carbon foam, and Silicon rubber. The flow of the working fluid (air) is one dimensional in the axial direction from the top to downward and steady state conditions. The numerical results of transient temperature distribution for both working fluid and the spongy-porous medium phases and the amount of stored/realized heat inside/from the porous medium for each case with respect to the operating parameters and the spongy-porous media characteristics are illustrated.

Keywords: fluid flow, heat transfer, numerical analysis, spongy-porous media, thermal performance, transient conditions

Procedia PDF Downloads 524
3659 A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters.

Keywords: Brownian motion, convection, finite element method, magnetic field, nanofluid, stretching sheet

Procedia PDF Downloads 199
3658 Study of Heat Conduction in Multicore Chips

Authors: K. N. Seetharamu, Naveen Teggi, Kiranakumar Dhavalagi, Narayana Kamath

Abstract:

A method of temperature calculations is developed to study the conditions leading to hot spot occurrence on multicore chips. A physical model which has salient features of multicore chips is incorporated for the analysis. The model consists of active and background cell laid out in a checkered pattern, and this pattern repeats itself in each fine grain active cells. The die has three layers i) body ii) buried oxide layer iii) wiring layer, stacked one above the other with heat source placed at the interface between wiring and buried oxide layer. With this model we propose analytical method to calculate the target hotspot temperature, heat flow to top and bottom layers of the die and thermal resistance components at each granularity level, assuming appropriate values of die dimensions and parameters. Finally we attempt to find an easier method for the calculation of the target hotspot temperature using graph.

Keywords: checkered pattern, granularity level, heat conduction, multicore chips, target hotspot temperature

Procedia PDF Downloads 444
3657 Experimental Study on the Effect of Storage Conditions on Thermal Hazard of Nitrocellulose

Authors: Hua Chai, Qiangling Duan, Huiqi Cao, Mi Li, Jinhua Sun

Abstract:

Nitrocellulose (NC), a kind of energetic material, has been widely used in the industrial and military fields. However, this material can also cause serious social disasters due to storage conditions. Thermal hazard of nitrocellulose (NC) was experimentally investigated using the CALVET heat flux calorimeter C80, and three kinds of storage conditions were considered in the experiments: (1) drying time, (2) moisture content, (3) cycles. The results showed that the heat flow curves of NC moved to the low-temperature direction firstly and then slightly moved back by increasing the drying hours. Moisture that was responsible for the appearance of small exothermic peaks was proven to be the unfavorable safety factor yet it could increase the onset temperature of the main peak to some extent. And cycles could both lower the onset temperature and the maximum heat flow but enlarged the peak temperature. Besides, relevant kinetic parameters such as the heat of reaction (ΔH) and the activation energy (Ea) were obtained and compared. It was found that all the three conditions could reduce the values of Ea and most of them produced larger reaction heat. In addition, the critical explosion temperature (Tb) of the NC samples were derived. It was clear that not only the drying time but also the cycles would increase the thermal hazard of the NC. Yet, the right amount of water helped to reduce the thermal hazard.

Keywords: C80, nitrocellulose, storage conditions, the critical explosion temperature, thermal hazard

Procedia PDF Downloads 149
3656 The System of Uniform Criteria for the Characterization and Evaluation of Elements of Economic Structure: The Territory, Infrastructure, Processes, Technological Chains, the End Products

Authors: Aleksandr A. Gajour, Vladimir G. Merzlikin, Vladimir I. Veselov

Abstract:

This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with the spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the polar regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under limited and unlimited amount of heat-energy resources are analyzed.

Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes

Procedia PDF Downloads 385
3655 Performance Study of Scraped Surface Heat Exchanger with Helical Ribbons

Authors: S. Ali, M. Baccar

Abstract:

In this work, numerical simulations were carried out using a specific CFD code in order to study the performance of an innovative Scraped Surface Heat Exchanger (SSHE) with helical ribbons for Bingham fluids (threshold fluids). The resolution of three-dimensional form of the conservation equations (continuity, momentum and energy equations) was carried out basing on the finite volume method (FVM). After studying the effect of dimensionless numbers (axial Reynolds, rotational Reynolds and Oldroyd numbers) on the hydrodynamic and thermal behaviors within SSHE, a parametric study was developed, by varying the width of the helical ribbon, the clearance between the stator wall and the tip of the ribbon and the number of turns of the helical ribbon, in order to improve the heat transfer inside the exchanger. The effect of these geometrical numbers on the hydrodynamic and thermal behaviors was discussed.

Keywords: heat transfer, helical ribbons, hydrodynamic behavior, parametric study, SSHE, thermal behavior

Procedia PDF Downloads 202
3654 Effects of Daily Temperature Changes on Transient Heat and Moisture Transport in Unsaturated Soils

Authors: Davood Yazdani Cherati, Ali Pak, Mehrdad Jafarzadeh

Abstract:

This research contains the formulation of a two-dimensional analytical solution to transient heat, and moisture flow in a semi-infinite unsaturated soil environment under the influence of daily temperature changes. For this purpose, coupled energy conservation and mass fluid continuity equations governing hydrothermal behavior of unsaturated soil media are presented in terms of temperature and volumetric moisture content. In consideration of the soil environment as an infinite half-space and by linearization of the governing equations, Laplace–Fourier transformation is conducted to convert differential equations with partial derivatives (PDEs) to ordinary differential equations (ODEs). The obtained ODEs are solved, and the inverse transformations are calculated to determine the solution to the system of equations. Results indicate that heat variation induces moisture transport in both horizontal and vertical directions.

Keywords: analytical solution, heat conduction, hydrothermal analysis, laplace–fourier transformation, two-dimensional

Procedia PDF Downloads 200