Search results for: deep ecology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2450

Search results for: deep ecology

1850 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation

Authors: Muhammad Zubair Khan, Yugyung Lee

Abstract:

Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.

Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network

Procedia PDF Downloads 102
1849 Bacterial Community Diversity in Soil under Two Tillage Systems

Authors: Dalia Ambrazaitienė, Monika Vilkienė, Danute Karcauskienė, Gintaras Siaudinis

Abstract:

The soil is a complex ecosystem that is part of our biosphere. The ability of soil to provide ecosystem services is dependent on microbial diversity. T Tillage is one of the major factors that affect soil properties. The no-till systems or shallow ploughless tillage are opposite of traditional deep ploughing, no-tillage systems, for instance, increase soil organic matter by reducing mineralization rates and stimulating litter concentrations of the top soil layer, whereas deep ploughing increases the biological activity of arable soil layer and reduces the incidence of weeds. The role of soil organisms is central to soil processes. Although the number of microbial species in soil is still being debated, the metagenomic approach to estimate microbial diversity predicted about 2000 – 18 000 bacterial genomes in 1 g of soil. Despite the key role of bacteria in soil processes, there is still lack of information about the bacterial diversity of soils as affected by tillage practices. This study focused on metagenomic analysis of bacterial diversity in long-term experimental plots of Dystric Epihypogleyic Albeluvisols in western part of Lithuania. The experiment was set up in 2013 and had a split-plot design where the whole-plot treatments were laid out in a randomized design with three replicates. The whole-plot treatments consisted of two tillage methods - deep ploughing (22-25 cm) (DP), ploughless tillage (7-10 cm) (PT). Three subsamples (0-20 cm) were collected on October 22, 2015 for each of the three replicates. Subsamples from the DP and PT systems were pooled together wise to make two composition samples, one representing deep ploughing (DP) and the other ploughless tillage (PT). Genomic DNA from soil sample was extracted from approximately 200 mg field-moist soil by using the D6005 Fungal/Bacterial Miniprep set (Zymo Research®) following the manufacturer’s instructions. To determine bacterial diversity and community composition, we employed a culture – independent approach of high-throughput pyrosequencing of the 16S rRNA gene. Metagenomic sequencing was made with Illumina MiSeq platform in Base Clear Company. The microbial component of soil plays a crucial role in cycling of nutrients in biosphere. Our study was a preliminary attempt at observing bacterial diversity in soil under two common but contrasting tillage practices. The number of sequenced reads obtained for PT (161 917) was higher than DP (131 194). The 10 most abundant genus in soil sample were the same (Arthrobacter, Candidatus Saccharibacteria, Actinobacteria, Acidobacterium, Mycobacterium, Bacillus, Alphaproteobacteria, Longilinea, Gemmatimonas, Solirubrobacter), just the percent of community part was different. In DP the Arthrobacter and Acidobacterium consist respectively 8.4 % and 2.5%, meanwhile in PT just 5.8% and 2.1% of all community. The Nocardioides and Terrabacter were observed just in PT. This work was supported by the project VP1-3.1-ŠMM-01-V-03-001 NKPDOKT and National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: deep ploughing, metagenomics, ploughless tillage, soil community analysis

Procedia PDF Downloads 246
1848 Sedimentological Study of Bivalve Fossils Site Locality in Hong Hoi Formation in Lampang, Thailand

Authors: Kritsada Moonpa, Kannipa Motanated, Weerapan Srichan

Abstract:

Hong Hoi Formation is a Middle Triassic deep marine succession presented in outcrops throughout the Lampang Basin of northern Thailand. The primary goal of this research is to diagnose the paleoenvironment, petrographic compositions, and sedimentary sources of the Hong Hoi Formation in Ban Huat, Ngao District. The Triassic Hong Hoi Formation is chosen because the outcrops are continuous and fossils are greatly exposed and abundant. Depositional environment is reconstructed through sedimentological studies along with facies analysis. The Hong Hoi Formation is petrographically divided into two major facies, they are: sandstones with mudstone interbeds, and mudstones or shale with sandstone interbeds. Sandstone beds are lithic arenite and lithic greywacke, volcanic lithic fragments are dominated. Sedimentary structures, paleocurrent data and lithofacies arrangement indicate that the formation deposited in a part of deep marine abyssal plain environment. The sedimentological and petrographic features suggest that during the deposition the Hong Hoi Formation received sediment supply from nearby volcanic arc. This suggested that the intensive volcanic activity within the Sukhothai Arc during the Middle Triassic is the main sediment source.

Keywords: Sukhothai zone, petrography, Hong Hoi formation, Lampang, Triassic

Procedia PDF Downloads 213
1847 Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation

Authors: Mahmut Yildirim

Abstract:

This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM.

Keywords: bidirectional long short-term memory, deep learning, maximum likelihood, OFDM with all index modulation, signal detection

Procedia PDF Downloads 72
1846 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 106
1845 Irish Film Tourism, Neocolonialism and Star Wars: Charting a Course Towards Ecologically and Culturally Considered Representation and Tourism on Skellig Michael

Authors: Rachel Gough

Abstract:

In 2014, Skellig Michael, an island off Ireland’s western seaboard and UNESCO world heritage site became a major setting in Disney’s Star Wars franchise. The subsequent influx of tourists to the site has proven to be a point of contention nationally. The increased visitor numbers have uplifted certain areas of the local economy, the mainland, but have caused irreparable damage to historic monuments and to endangered bird populations who breed on the island. Recent research carried out by a state body suggests far-reaching and longterm negative impacts on the island’s culture and environment, should the association with the Star Wars franchise persist. In spite of this, the film has been widely endorsed by the Irish government as providing a vital economic boost to historically marginalised rural areas through film tourism. This paper argues quite plainly that what is taking place on Skellig is neocolonialism. Skellig Michael’s unique resources, its aesthetic qualities, its ecosystem, and its cultural currency have been sold by the state to a multinational corporation, who profit from their use. Meanwhile, locals are left to do their best to turn a market trend into sustainable business at the expense of culture ecology and community. This paper intends to be the first dedicated study into the psychogeographic and cultural impact of Skellig Michael’s deterioration as a result of film tourism. It will discuss the projected impact of this incident on Irish culture more broadly and finally will attempt to lay out a roadmap for more collaborative filmmaking and touristic approach, which allows local cultures and ecosystem’s to thrive without drastically inhibiting cultural production. This paper will ultimately find that the consequences of this representation call for a requirement to read tourism as a split concept — namely into what we might loosely call “eco-tourism” and more capital-based “profit-bottom-line tourism.”

Keywords: ecology, film tourism, neocolonialism, sustainability

Procedia PDF Downloads 206
1844 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision

Authors: Lianzhong Zhang, Chao Huang

Abstract:

Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.

Keywords: SAR, sea-land segmentation, deep learning, transformer

Procedia PDF Downloads 181
1843 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 111
1842 Exploratory Analysis of A Review of Nonexistence Polarity in Native Speech

Authors: Deawan Rakin Ahamed Remal, Sinthia Chowdhury, Sharun Akter Khushbu, Sheak Rashed Haider Noori

Abstract:

Native Speech to text synthesis has its own leverage for the purpose of mankind. The extensive nature of art to speaking different accents is common but the purpose of communication between two different accent types of people is quite difficult. This problem will be motivated by the extraction of the wrong perception of language meaning. Thus, many existing automatic speech recognition has been placed to detect text. Overall study of this paper mentions a review of NSTTR (Native Speech Text to Text Recognition) synthesis compared with Text to Text recognition. Review has exposed many text to text recognition systems that are at a very early stage to comply with the system by native speech recognition. Many discussions started about the progression of chatbots, linguistic theory another is rule based approach. In the Recent years Deep learning is an overwhelming chapter for text to text learning to detect language nature. To the best of our knowledge, In the sub continent a huge number of people speak in Bangla language but they have different accents in different regions therefore study has been elaborate contradictory discussion achievement of existing works and findings of future needs in Bangla language acoustic accent.

Keywords: TTR, NSTTR, text to text recognition, deep learning, natural language processing

Procedia PDF Downloads 132
1841 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50

Procedia PDF Downloads 128
1840 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO

Procedia PDF Downloads 112
1839 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: cancer classification, feature selection, deep learning, genetic algorithm

Procedia PDF Downloads 111
1838 Surface Passivation of Multicrystalline Silicon Solar Cell via Combination of LiBr/Porous Silicon and Grain Boundaies Grooving

Authors: Dimassi Wissem

Abstract:

In this work, we investigate the effect of combination between the porous silicon (PS) layer passivized with Lithium Bromide (LiBr) and grooving of grain boundaries (GB) in multi crystalline silicon. The grain boundaries were grooved in order to reduce the area of these highly recombining regions. Using optimized conditions, grooved GB's enable deep phosphorus diffusion and deep metallic contacts. We have evaluated the effects of LiBr on the surface properties of porous silicon on the performance of silicon solar cells. The results show a significant improvement of the internal quantum efficiency, which is strongly related to the photo-generated current. We have also shown a reduction of the surface recombination velocity and an improvement of the diffusion length after the LiBr process. As a result, the I–V characteristics under the dark and AM1.5 illumination were improved. It was also observed a reduction of the GB recombination velocity, which was deduced from light-beam-induced-current (LBIC) measurements. Such grooving in multi crystalline silicon enables passivization of GB-related defects. These results are discussed and compared to solar cells based on untreated multi crystalline silicon wafers.

Keywords: Multicrystalline silicon, LiBr, porous silicon, passivation

Procedia PDF Downloads 396
1837 Development of Polymer Nano-Particles as in vivo Imaging Agents for Photo-Acoustic Imaging

Authors: Hiroyuki Aoki

Abstract:

Molecular imaging has attracted much attention to visualize a tumor site in a living body on the basis of biological functions. A fluorescence in vivo imaging technique has been widely employed as a useful modality for small animals in pre-clinical researches. However, it is difficult to observe a site deep inside a body because of a short penetration depth of light. A photo-acoustic effect is a generation of a sound wave following light absorption. Because the sound wave is less susceptible to the absorption of tissues, an in vivo imaging method based on the photoacoustic effect can observe deep inside a living body. The current study developed an in vivo imaging agent for a photoacoustic imaging method. Nano-particles of poly(lactic acid) including indocyanine dye were developed as bio-compatible imaging agent with strong light absorption. A tumor site inside a mouse body was successfully observed in a photo-acoustic image. A photo-acoustic imaging with polymer nano-particle agent would be a powerful method to visualize a tumor.

Keywords: nano-particle, photo-acoustic effect, polymer, dye, in vivo imaging

Procedia PDF Downloads 155
1836 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
1835 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition

Authors: A. Degale Desta, Tamirat Kebamo

Abstract:

Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.

Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition

Procedia PDF Downloads 10
1834 Cantilever Shoring Piles with Prestressing Strands: An Experimental Approach

Authors: Hani Mekdash, Lina Jaber, Yehia Temsah

Abstract:

Underground space is becoming a necessity nowadays, especially in highly congested urban areas. Retaining underground excavations using shoring systems is essential in order to protect adjoining structures from potential damage or collapse. Reinforced Concrete Piles (RCP) supported by multiple rows of tie-back anchors are commonly used type of shoring systems in deep excavations. However, executing anchors can sometimes be challenging because they might illegally trespass neighboring properties or get obstructed by infrastructure and other underground facilities. A technique is proposed in this paper, and it involves the addition of eccentric high-strength steel strands to the RCP section through ducts without providing the pile with lateral supports. The strands are then vertically stressed externally on the pile cap using a hydraulic jack, creating a compressive strengthening force in the concrete section. An experimental study about the behavior of the shoring wall by pre-stressed piles is presented during the execution of an open excavation in an urban area (Beirut city) followed by numerical analysis using finite element software. Based on the experimental results, this technique is proven to be cost-effective and provides flexible and sustainable construction of shoring works.

Keywords: deep excavation, prestressing, pre-stressed piles, shoring system

Procedia PDF Downloads 117
1833 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 372
1832 Blue Economy and Marine Mining

Authors: Fani Sakellariadou

Abstract:

The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.

Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts

Procedia PDF Downloads 83
1831 The Effect of Austempering Temperature on Anisotropy of TRIP Steel

Authors: Abdolreza Heidari Noosh Abad, Amir Abedi, Davood Mirahmadi khaki

Abstract:

The high strength and flexibility of TRIP steels are the major reasons for them being widely used in the automobile industry. Deep drawing is regarded as a common metal sheet manufacturing process is used extensively in the modern industry, particularly automobile industry. To investigate the potential of deep drawing characteristic of materials, steel sheet anisotropy is studied and expressed as R-Value. The TRIP steels have a multi-phase microstructure consisting typically of ferrite, bainite and retained austenite. The retained austenite appears to be the most effective phase in the microstructure of the TRIP steels. In the present research, Taguchi method has been employed to study investigates the effect of austempering temperature parameters on the anisotropy property of the TRIP steel. To achieve this purpose, a steel with chemical composition of 0.196C -1.42Si-1.41Mn, has been used and annealed at 810oC, and then austempered at 340-460oC for 3, 6, and 9 minutes. The results shows that the austempering temperature has a direct relationship with R-value, respectively. With increasing austempering temperature, residual austenite grain size increases as well as increased solubility, which increases the amount of R-value. According to the results of the Taguchi method, austempering temperature’s p-value less than 0.05 is due to effective on R-value.

Keywords: Taguchi method, hot rolling, thermomechanical process, anisotropy, R-value

Procedia PDF Downloads 326
1830 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling

Authors: Amin Nezarat, Naeime Seifadini

Abstract:

Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.

Keywords: predicting, deep learning, neural network, urban trip

Procedia PDF Downloads 138
1829 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 9
1828 Feasibility of Voluntary Deep Inspiration Breath-Hold Radiotherapy Technique Implementation without Deep Inspiration Breath-Hold-Assisting Device

Authors: Auwal Abubakar, Shazril Imran Shaukat, Noor Khairiah A. Karim, Mohammed Zakir Kassim, Gokula Kumar Appalanaido, Hafiz Mohd Zin

Abstract:

Background: Voluntary deep inspiration breath-hold radiotherapy (vDIBH-RT) is an effective cardiac dose reduction technique during left breast radiotherapy. This study aimed to assess the accuracy of the implementation of the vDIBH technique among left breast cancer patients without the use of a special device such as a surface-guided imaging system. Methods: The vDIBH-RT technique was implemented among thirteen (13) left breast cancer patients at the Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia. Breath-hold monitoring was performed based on breath-hold skin marks and laser light congruence observed on zoomed CCTV images from the control console during each delivery. The initial setup was verified using cone beam computed tomography (CBCT) during breath-hold. Each field was delivered using multiple beam segments to allow a delivery time of 20 seconds, which can be tolerated by patients in breath-hold. The data were analysed using an in-house developed MATLAB algorithm. PTV margin was computed based on van Herk's margin recipe. Results: The setup error analysed from CBCT shows that the population systematic error in lateral (x), longitudinal (y), and vertical (z) axes was 2.28 mm, 3.35 mm, and 3.10 mm, respectively. Based on the CBCT image guidance, the Planning target volume (PTV) margin that would be required for vDIBH-RT using CCTV/Laser monitoring technique is 7.77 mm, 10.85 mm, and 10.93 mm in x, y, and z axes, respectively. Conclusion: It is feasible to safely implement vDIBH-RT among left breast cancer patients without special equipment. The breath-hold monitoring technique is cost-effective, radiation-free, easy to implement, and allows real-time breath-hold monitoring.

Keywords: vDIBH, cone beam computed tomography, radiotherapy, left breast cancer

Procedia PDF Downloads 57
1827 Analysis and Design of Offshore Triceratops under Ultra-Deep Waters

Authors: Srinivasan Chandrasekaran, R. Nagavinothini

Abstract:

Offshore platforms for ultra-deep waters are form-dominant by design; hybrid systems with large flexibility in horizontal plane and high rigidity in vertical plane are preferred due to functional complexities. Offshore triceratops is relatively a new-generation offshore platform, whose deck is partially isolated from the supporting buoyant legs by ball joints. They allow transfer of partial displacements of buoyant legs to the deck but restrain transfer of rotational response. Buoyant legs are in turn taut-moored to the sea bed using pre-tension tethers. Present study will discuss detailed dynamic analysis and preliminary design of the chosen geometric, which is necessary as a proof of validation for such design applications. A detailed numeric analysis of triceratops at 2400 m water depth under random waves is presented. Preliminary design confirms member-level design requirements under various modes of failure. Tether configuration, proposed in the study confirms no pull-out of tethers as stress variation is comparatively lesser than the yield value. Presented study shall aid offshore engineers and contractors to understand suitability of triceratops, in terms of design and dynamic response behaviour.

Keywords: offshore structures, triceratops, random waves, buoyant legs, preliminary design, dynamic analysis

Procedia PDF Downloads 204
1826 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach

Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya

Abstract:

A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.

Keywords: deep learning, hidden Markov model, pothole, speed breaker

Procedia PDF Downloads 144
1825 Settlement of the Foundation on the Improved Soil: A Case Study

Authors: Morteza Karami, Soheila Dayani

Abstract:

Deep Soil Mixing (DSM) is a soil improvement technique that involves mechanically mixing the soil with a binder material to improve its strength, stiffness, and durability. This technique is typically used in geotechnical engineering applications where weak or unstable soil conditions exist, such as in building foundations, embankment support, or ground improvement projects. In this study, the settlement of the foundation on the improved soil using the wet DSM technique has been analyzed for a case study. Before DSM production, the initial soil mixture has been determined based on the laboratory tests and then, the proper mix designs have been optimized based on the pilot scale tests. The results show that the spacing and depth of the DSM columns depend on the soil properties, the intended loading conditions, and other factors such as the available space and equipment limitations. Moreover, monitoring instruments installed in the pilot area verify that the settlement of the foundation has been placed in an acceptable range to ensure that the soil mixture is providing the required strength and stiffness to support the structure or load. As an important result, if the DSM columns touch or penetrate into the stiff soil layer, the settlement of the foundation can be significantly decreased. Furthermore, the DSM columns should be allowed to cure sufficiently before placing any significant loads on the structure to prevent excessive deformation or settlement.

Keywords: deep soil mixing, soil mixture, settlement, instrumentation, curing age

Procedia PDF Downloads 85
1824 Eco-Friendly Cleansers Initiation for Eco-Campsite Development in Khao Yai National Park, Thailand

Authors: Tatsanawalai Utarasakul

Abstract:

Environmental impact has occurred at Khao Yai National Park, especially the water pollution by tourist activities as a result of 800,000 tourists visiting annually. To develop an eco-campsite, eco-friendly cleansers were implemented in Lam Ta Khlong and Pha Kluay Mai Campsites for tourists and restaurants. The results indicated the positive effects of environmentally friendly cleansers on water quality in Lam Ta Khlong River and can be implemented in other protected areas to decrease chemical contamination in ecosystems.

Keywords: sustainable tourism management, eco-campsite, Khao Yai National Park, ecology

Procedia PDF Downloads 394
1823 Wearable Antenna for Diagnosis of Parkinson’s Disease Using a Deep Learning Pipeline on Accelerated Hardware

Authors: Subham Ghosh, Banani Basu, Marami Das

Abstract:

Background: The development of compact, low-power antenna sensors has resulted in hardware restructuring, allowing for wireless ubiquitous sensing. The antenna sensors can create wireless body-area networks (WBAN) by linking various wireless nodes across the human body. WBAN and IoT applications, such as remote health and fitness monitoring and rehabilitation, are becoming increasingly important. In particular, Parkinson’s disease (PD), a common neurodegenerative disorder, presents clinical features that can be easily misdiagnosed. As a mobility disease, it may greatly benefit from the antenna’s nearfield approach with a variety of activities that can use WBAN and IoT technologies to increase diagnosis accuracy and patient monitoring. Methodology: This study investigates the feasibility of leveraging a single patch antenna mounted (using cloth) on the wrist dorsal to differentiate actual Parkinson's disease (PD) from false PD using a small hardware platform. The semi-flexible antenna operates at the 2.4 GHz ISM band and collects reflection coefficient (Γ) data from patients performing five exercises designed for the classification of PD and other disorders such as essential tremor (ET) or those physiological disorders caused by anxiety or stress. The obtained data is normalized and converted into 2-D representations using the Gabor wavelet transform (GWT). Data augmentation is then used to expand the dataset size. A lightweight deep-learning (DL) model is developed to run on the GPU-enabled NVIDIA Jetson Nano platform. The DL model processes the 2-D images for feature extraction and classification. Findings: The DL model was trained and tested on both the original and augmented datasets, thus doubling the dataset size. To ensure robustness, a 5-fold stratified cross-validation (5-FSCV) method was used. The proposed framework, utilizing a DL model with 1.356 million parameters on the NVIDIA Jetson Nano, achieved optimal performance in terms of accuracy of 88.64%, F1-score of 88.54, and recall of 90.46%, with a latency of 33 seconds per epoch.

Keywords: antenna, deep-learning, GPU-hardware, Parkinson’s disease

Procedia PDF Downloads 7
1822 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks

Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft

Abstract:

Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: autonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 395
1821 EcoLife and Greed Index Measurement: An Alternative Tool to Promote Sustainable Communities and Eco-Justice

Authors: Louk Aourelien Andrianos, Edward Dommen, Athena Peralta

Abstract:

Greed, as epitomized by overconsumption of natural resources, is at the root of ecological destruction and unsustainability of modern societies. Presently economies rely on unrestricted structural greed which fuels unlimited economic growth, overconsumption, and individualistic competitive behavior. Structural greed undermines the life support system on earth and threatens ecological integrity, social justice and peace. The World Council of Churches (WCC) has developed a program on ecological and economic justice (EEJ) with the aim to promote an economy of life where the economy is embedded in society and society in ecology. This paper aims at analyzing and assessing the economy of life (EcoLife) by offering an empirical tool to measure and monitor the root causes and effects of unsustainability resulting from human greed on global, national, institutional and individual levels. This holistic approach is based on the integrity of ecology and economy in a society founded on justice. The paper will discuss critical questions such as ‘what is an economy of life’ and ‘how to measure and control it from the effect of greed’. A model called GLIMS, which stands for Greed Lines and Indices Measurement System is used to clarify the concept of greed and help measuring the economy of life index by fuzzy logic reasoning. The inputs of the model are from statistical indicators of natural resources consumption, financial realities, economic performance, social welfare and ethical and political facts. The outputs are concrete measures of three primary indices of ecological, economic and socio-political greed (ECOL-GI, ECON-GI, SOCI-GI) and one overall multidimensional economy of life index (EcoLife-I). EcoLife measurement aims to build awareness of an economy life and to address the effects of greed in systemic and structural aspects. It is a tool for ethical diagnosis and policy making.

Keywords: greed line, sustainability indicators, fuzzy logic, eco-justice, World Council of Churches (WCC)

Procedia PDF Downloads 320