Search results for: categorical datasets
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 869

Search results for: categorical datasets

269 Classification of Hyperspectral Image Using Mathematical Morphological Operator-Based Distance Metric

Authors: Geetika Barman, B. S. Daya Sagar

Abstract:

In this article, we proposed a pixel-wise classification of hyperspectral images using a mathematical morphology operator-based distance metric called “dilation distance” and “erosion distance”. This method involves measuring the spatial distance between the spectral features of a hyperspectral image across the bands. The key concept of the proposed approach is that the “dilation distance” is the maximum distance a pixel can be moved without changing its classification, whereas the “erosion distance” is the maximum distance that a pixel can be moved before changing its classification. The spectral signature of the hyperspectral image carries unique class information and shape for each class. This article demonstrates how easily the dilation and erosion distance can measure spatial distance compared to other approaches. This property is used to calculate the spatial distance between hyperspectral image feature vectors across the bands. The dissimilarity matrix is then constructed using both measures extracted from the feature spaces. The measured distance metric is used to distinguish between the spectral features of various classes and precisely distinguish between each class. This is illustrated using both toy data and real datasets. Furthermore, we investigated the role of flat vs. non-flat structuring elements in capturing the spatial features of each class in the hyperspectral image. In order to validate, we compared the proposed approach to other existing methods and demonstrated empirically that mathematical operator-based distance metric classification provided competitive results and outperformed some of them.

Keywords: dilation distance, erosion distance, hyperspectral image classification, mathematical morphology

Procedia PDF Downloads 87
268 Size Effect on Shear Strength of Slender Reinforced Concrete Beams

Authors: Subhan Ahmad, Pradeep Bhargava, Ajay Chourasia

Abstract:

Shear failure in reinforced concrete beams without shear reinforcement leads to loss of property and life since a very little or no warning occurs before failure as in case of flexural failure. Shear strength of reinforced concrete beams decreases as its depth increases. This phenomenon is generally called as the size effect. In this paper, a comparative analysis is performed to estimate the performance of shear strength models in capturing the size effect of reinforced concrete beams made with conventional concrete, self-compacting concrete, and recycled aggregate concrete. Four shear strength models that account for the size effect in shear are selected from the literature and applied on the datasets of slender reinforced concrete beams. Beams prepared with conventional concrete, self-compacting concrete, and recycled aggregate concrete are considered for the analysis. Results showed that all the four models captured the size effect in shear effectively and produced conservative estimates of the shear strength for beams made with normal strength conventional concrete. These models yielded unconservative estimates for high strength conventional concrete beams with larger effective depths ( > 450 mm). Model of Bazant and Kim (1984) captured the size effect precisely and produced conservative estimates of shear strength of self-compacting concrete beams at all the effective depths. Also, shear strength models considered in this study produced unconservative estimates of shear strength for recycled aggregate concrete beams at all effective depths.

Keywords: reinforced concrete beams; shear strength; prediction models; size effect

Procedia PDF Downloads 161
267 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services

Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme

Abstract:

Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.

Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing

Procedia PDF Downloads 113
266 Comparison of Two Transcranial Magnetic Stimulation Protocols on Spasticity in Multiple Sclerosis - Pilot Study of a Randomized and Blind Cross-over Clinical Trial

Authors: Amanda Cristina da Silva Reis, Bruno Paulino Venâncio, Cristina Theada Ferreira, Andrea Fialho do Prado, Lucimara Guedes dos Santos, Aline de Souza Gravatá, Larissa Lima Gonçalves, Isabella Aparecida Ferreira Moretto, João Carlos Ferrari Corrêa, Fernanda Ishida Corrêa

Abstract:

Objective: To compare two protocols of Transcranial Magnetic Stimulation (TMS) on quadriceps muscle spasticity in individuals diagnosed with Multiple Sclerosis (MS). Method: Clinical, crossover study, in which six adult individuals diagnosed with MS and spasticity in the lower limbs were randomized to receive one session of high-frequency (≥5Hz) and low-frequency (≤ 1Hz) TMS on motor cortex (M1) hotspot for quadriceps muscle, with a one-week interval between the sessions. To assess the spasticity was applied the Ashworth scale and were analyzed the latency time (ms) of the motor evoked potential (MEP) and the central motor conduction time (CMCT) of the bilateral quadriceps muscle. Assessments were performed before and after each intervention. The difference between groups was analyzed using the Friedman test, with a significance level of 0.05 adopted. Results: All statistical analyzes were performed using the SPSS Statistic version 26 programs, with a significance level established for the analyzes at p<0.05. Shapiro Wilk normality test. Parametric data were represented as mean and standard deviation for non-parametric variables, median and interquartile range, and frequency and percentage for categorical variables. There was no clinical change in quadriceps spasticity assessed using the Ashworth scale for the 1 Hz (p=0.813) and 5 Hz (p= 0.232) protocols for both limbs. Motor Evoked Potential latency time: in the 5hz protocol, there was no significant change for the contralateral side from pre to post-treatment (p>0.05), and for the ipsilateral side, there was a decrease in latency time of 0.07 seconds (p<0.05 ); for the 1Hz protocol there was an increase of 0.04 seconds in the latency time (p<0.05) for the contralateral side to the stimulus, and for the ipsilateral side there was a decrease in the latency time of 0.04 seconds (p=<0.05), with a significant difference between the contralateral (p=0.007) and ipsilateral (p=0.014) groups. Central motor conduction time in the 1Hz protocol, there was no change for the contralateral side (p>0.05) and for the ipsilateral side (p>0.05). In the 5Hz protocol for the contralateral side, there was a small decrease in latency time (p<0.05) and for the ipsilateral side, there was a decrease of 0.6 seconds in the latency time (p<0.05) with a significant difference between groups (p=0.019). Conclusion: A high or low-frequency session does not change spasticity, but it is observed that when the low-frequency protocol was performed, there was an increase in latency time on the stimulated side, and a decrease in latency time on the non-stimulated side, considering then that inhibiting the motor cortex increases cortical excitability on the opposite side.

Keywords: multiple sclerosis, spasticity, motor evoked potential, transcranial magnetic stimulation

Procedia PDF Downloads 89
265 Mining Riding Patterns in Bike-Sharing System Connecting with Public Transportation

Authors: Chong Zhang, Guoming Tang, Bin Ge, Jiuyang Tang

Abstract:

With the fast growing road traffic and increasingly severe traffic congestion, more and more citizens choose to use the public transportation for daily travelling. Meanwhile, the shared bike provides a convenient option for the first and last mile to the public transit. As of 2016, over one thousand cities around the world have deployed the bike-sharing system. The combination of these two transportations have stimulated the development of each other and made significant contribution to the reduction of carbon footprint. A lot of work has been done on mining the riding behaviors in various bike-sharing systems. Most of them, however, treated the bike-sharing system as an isolated system and thus their results provide little reference for the public transit construction and optimization. In this work, we treat the bike-sharing and public transit as a whole and investigate the customers’ bike-and-ride behaviors. Specifically, we develop a spatio-temporal traffic delivery model to study the riding patterns between the two transportation systems and explore the traffic characteristics (e.g., distributions of customer arrival/departure and traffic peak hours) from the time and space dimensions. During the model construction and evaluation, we make use of large open datasets from real-world bike-sharing systems (the CitiBike in New York, GoBike in San Francisco and BIXI in Montreal) along with corresponding public transit information. The developed two-dimension traffic model, as well as the mined bike-and-ride behaviors, can provide great help to the deployment of next-generation intelligent transportation systems.

Keywords: riding pattern mining, bike-sharing system, public transportation, bike-and-ride behavior

Procedia PDF Downloads 783
264 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index

Authors: Todd Zhou, Mikhail Yurochkin

Abstract:

Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.

Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index

Procedia PDF Downloads 124
263 Effects of Dust Storm Events on Tuberculosis Incidence Rate in Northwest of China

Authors: Yun Wang, Ruoyu Wang, Tuo Chen, Guangxiu Liu, Guodong Chen, Wei Zhang

Abstract:

Tuberculosis (TB) is a major public health problem in China. China has the world's second largest tuberculosis epidemic (after India). Xinjiang almost has the highest annual attendance rate of TB in China, and the province is also famous because of its severe dust storms. The epidemic timing starts in February and ends in July, and the dust storm mainly distribute throughout the spring and early summer, which strongly indicate a close linkage between causative agent of TB and dust storm events. However, mechanisms responsible for the observed patterns are still not clearly indentified. By comparing the information on cases of TB from Centers for Disease Control of China annual reports with dust storm atmosphere datasets, we constructed the relationship between the large scale annual occurrence of TB in Xinjiang, a Northwest province of China, and dust storm occurrence. Regional atmospheric indexes of dust storm based on surface wind speed show a clear link between population dynamics of the disease and the climate disaster: the onset of epidemics and the dust storm defined by the atmospheric index share the same mean year. This study is the first that provides a clear demonstration of connections that exist between TB epidemics and dust storm events in China. The development of this study will undoubtedly help early warning for tuberculosis epidemic onset in China and help nationwide and international public health institutions and policy makers to better control TB disease in Norwest China.

Keywords: dust storm, tuberculosis, Xinjiang province, epidemic

Procedia PDF Downloads 446
262 A Review of Effective Gene Selection Methods for Cancer Classification Using Microarray Gene Expression Profile

Authors: Hala Alshamlan, Ghada Badr, Yousef Alohali

Abstract:

Cancer is one of the dreadful diseases, which causes considerable death rate in humans. DNA microarray-based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. In recent years, a DNA microarray technique has gained more attraction in both scientific and in industrial fields. It is important to determine the informative genes that cause cancer to improve early cancer diagnosis and to give effective chemotherapy treatment. In order to gain deep insight into the cancer classification problem, it is necessary to take a closer look at the proposed gene selection methods. We believe that they should be an integral preprocessing step for cancer classification. Furthermore, finding an accurate gene selection method is a very significant issue in a cancer classification area because it reduces the dimensionality of microarray dataset and selects informative genes. In this paper, we classify and review the state-of-art gene selection methods. We proceed by evaluating the performance of each gene selection approach based on their classification accuracy and number of informative genes. In our evaluation, we will use four benchmark microarray datasets for the cancer diagnosis (leukemia, colon, lung, and prostate). In addition, we compare the performance of gene selection method to investigate the effective gene selection method that has the ability to identify a small set of marker genes, and ensure high cancer classification accuracy. To the best of our knowledge, this is the first attempt to compare gene selection approaches for cancer classification using microarray gene expression profile.

Keywords: gene selection, feature selection, cancer classification, microarray, gene expression profile

Procedia PDF Downloads 454
261 Physical and Morphological Response to Land Reclamation Projects in a Wave-Dominated Bay

Authors: Florian Monetti, Brett Beamsley, Peter McComb, Simon Weppe

Abstract:

Land reclamation from the ocean has considerably increased over past decades to support worldwide rapid urban growth. Reshaping the coastline, however, inevitably affects coastal systems. One of the main challenges for coastal oceanographers is to predict the physical and morphological responses for nearshore systems to man-made changes over multiple time-scales. Fully-coupled numerical models are powerful tools for simulating the wide range of interactions between flow field and bedform morphology. Restricted and inconsistent measurements, combined with limited computational resources, typically make this exercise complex and uncertain. In the present study, we investigate the impact of proposed land reclamation within a wave-dominated bay in New Zealand. For this purpose, we first calibrated our morphological model based on the long-term evolution of the bay resulting from land reclamation carried out in the 1950s. This included the application of sedimentological spin-up and reduction techniques based on historical bathymetry datasets. The updated bathymetry, including the proposed modifications of the bay, was then used to predict the effect of the proposed land reclamation on the wave climate and morphology of the bay after one decade. We show that reshaping the bay induces a distinct symmetrical response of the shoreline which likely will modify the nearshore wave patterns and consequently recreational activities in the area.

Keywords: coastal waves, impact of land reclamation, long-term coastal evolution, morphodynamic modeling

Procedia PDF Downloads 174
260 Narcissism in the Life of Howard Hughes: A Psychobiographical Exploration

Authors: Alida Sandison, Louise A. Stroud

Abstract:

Narcissism is a personality configuration which has both normal and pathological personality expressions. Narcissism is highly complex, and is linked to a broad field of research. There are both dimensional and categorical conceptualisations of narcissism, and a variety of theoretical formulations that have been put forward to understand the narcissistic personality configuration. Currently, Kernberg’s Object Relations theory is well supported for this purpose. The complexity and particular defense mechanisms at play in the narcissistic personality make it a difficult personality configuration worth further research. Psychobiography as a methodology allows for the exploration of the lived life, and is thus a useful methodology to surmount these inherent challenges. Narcissism has been a focus of academic interest for a long time, and although there is a lot of research done in this area, to the researchers' knowledge, narcissistic dynamics have never been explored within a psychobiographical format. Thus, the primary aim of the research was to explore and describe narcissism in the life of Howard Hughes, with the objective of gaining further insight into narcissism through the use of this unconventional research approach. Hughes was chosen as subject for the study as he is renowned as an eccentric billionaire who had his revolutionary effect on the world, but was concurrently disturbed within his personal pathologies. Hughes was dynamic in three different sectors, namely motion pictures, aviation and gambling. He became more and more reclusive as he entered into middle age. From his early fifties he was agoraphobic, and the social network of connectivity that could reasonably be expected from someone in the top of their field was notably distorted. Due to his strong narcissistic personality configuration, and the interpersonal difficulties he experienced, Hughes represents an ideal figure to explore narcissism. The study used a single case study design, and purposive sampling to select Hughes. Qualitative data was sampled, using secondary data sources. Given that Hughes was a famous figure, there is a plethora of information on his life, which is primarily autobiographical. This includes books written about his life, and archival material in the form of newspaper articles, interviews and movies. Gathered data were triangulated to avoid the effect of author bias, and increase the credibility of the data used. It was collected using Yin’s guidelines for data collection. Data was analysed using Miles and Huberman strategy of data analysis, which consists of three steps, namely, data reduction, data display, and conclusion drawing and verification. Patterns which emerged in the data highlighted the defense mechanisms used by Hughes, in particular that of splitting and projection, in defending his sense of self. These defense mechanisms help us to understand the high levels of entitlement and paranoia experienced by Hughes. Findings provide further insight into his sense of isolation and difference, and the consequent difficulty he experienced in maintaining connections with others. Findings furthermore confirm the effectiveness of Kernberg’s theory in understanding narcissism observing an individual life.

Keywords: Howard Hughes, narcissism, narcissistic defenses, object relations

Procedia PDF Downloads 357
259 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution

Authors: Pitigalage Chamath Chandira Peiris

Abstract:

A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.

Keywords: single image super resolution, computer vision, vision transformers, image restoration

Procedia PDF Downloads 105
258 Neural Graph Matching for Modification Similarity Applied to Electronic Document Comparison

Authors: Po-Fang Hsu, Chiching Wei

Abstract:

In this paper, we present a novel neural graph matching approach applied to document comparison. Document comparison is a common task in the legal and financial industries. In some cases, the most important differences may be the addition or omission of words, sentences, clauses, or paragraphs. However, it is a challenging task without recording or tracing the whole edited process. Under many temporal uncertainties, we explore the potentiality of our approach to proximate the accurate comparison to make sure which element blocks have a relation of edition with others. In the beginning, we apply a document layout analysis that combines traditional and modern technics to segment layouts in blocks of various types appropriately. Then we transform this issue into a problem of layout graph matching with textual awareness. Regarding graph matching, it is a long-studied problem with a broad range of applications. However, different from previous works focusing on visual images or structural layout, we also bring textual features into our model for adapting this domain. Specifically, based on the electronic document, we introduce an encoder to deal with the visual presentation decoding from PDF. Additionally, because the modifications can cause the inconsistency of document layout analysis between modified documents and the blocks can be merged and split, Sinkhorn divergence is adopted in our neural graph approach, which tries to overcome both these issues with many-to-many block matching. We demonstrate this on two categories of layouts, as follows., legal agreement and scientific articles, collected from our real-case datasets.

Keywords: document comparison, graph matching, graph neural network, modification similarity, multi-modal

Procedia PDF Downloads 179
257 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis

Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal

Abstract:

Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.

Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix

Procedia PDF Downloads 96
256 Predicting the Next Offensive Play Types will be Implemented to Maximize the Defense’s Chances of Success in the National Football League

Authors: Chris Schoborg, Morgan C. Wang

Abstract:

In the realm of the National Football League (NFL), substantial dedication of time and effort is invested by both players and coaches in meticulously analyzing the game footage of their opponents. The primary aim is to anticipate the actions of the opposing team. Defensive players and coaches are especially focused on deciphering their adversaries' intentions to effectively counter their strategies. Acquiring insights into the specific play type and its intended direction on the field would confer a significant competitive advantage. This study establishes pre-snap information as the cornerstone for predicting both the play type (e.g., deep pass, short pass, or run) and its spatial trajectory (right, left, or center). The dataset for this research spans the regular NFL season data for all 32 teams from 2013 to 2022. This dataset is acquired using the nflreadr package, which conveniently extracts play-by-play data from NFL games and imports it into the R environment as structured datasets. In this study, we employ a recently developed machine learning algorithm, XGBoost. The final predictive model achieves an impressive lift of 2.61. This signifies that the presented model is 2.61 times more effective than random guessing—a significant improvement. Such a model has the potential to markedly enhance defensive coaches' ability to formulate game plans and adequately prepare their players, thus mitigating the opposing offense's yardage and point gains.

Keywords: lift, NFL, sports analytics, XGBoost

Procedia PDF Downloads 56
255 Implications of Social Rights Adjudication on the Separation of Powers Doctrine: Colombian Case

Authors: Mariam Begadze

Abstract:

Separation of Powers (SOP) has often been the most frequently posed objection against the judicial enforcement of socio-economic rights. Although a lot has been written to refute those, very rarely has it been assessed what effect the current practice of social rights adjudication has had on the construction of SOP doctrine in specific jurisdictions. Colombia is an appropriate case-study on this question. The notion of collaborative SOP in the 1991 Constitution has affected the court’s conception of its role. On the other hand, the trends in the jurisprudence have further shaped the collaborative notion of SOP. Other institutional characteristics of the Colombian constitutional law have played its share role as well. Tutela action, particularly flexible and fast judicial action for individuals has placed the judiciary in a more confrontational relation vis-à-vis the political branches. Later interventions through abstract review of austerity measures further contributed to that development. Logically, the court’s activism in this sphere has attracted attacks from political branches, which have turned out to be unsuccessful precisely due to court’s outreach to the middle-class, whose direct reliance on the court has turned into its direct democratic legitimacy. Only later have the structural judgments attempted to revive the collaborative notion behind SOP doctrine. However, the court-supervised monitoring process of implementation has itself manifested fluctuations in the mode of collaboration, moving into more managerial supervision recently. This is not surprising considering the highly dysfunctional political system in Colombia, where distrust seems to be the default starting point in the interaction of the branches. The paper aims to answer the question, what the appropriate judicial tools are to realize the collaborative notion of SOP in a context where the court has to strike a balance between the strong executive and the weak and largely dysfunctional legislative branch. If the recurrent abuse lies in the indifference and inaction of legislative branches to engage with political issues seriously, what are the tools in the court’s hands to activate the political process? The answer to this question partly lies in the court’s other strand of jurisprudence, in which it combines substantive objections with procedural ones concerning the operation of the legislative branch. The primary example is the decision on value-added tax on basic goods, in which the court invalidated the law based on the absence of sufficient deliberation in Congress on the question of the bills’ implications on the equity and progressiveness of the entire taxing system. The decision led to Congressional rejection of an identical bill based on the arguments put forward by the court. The case perhaps is the best illustration of the collaborative notion of SOP, in which the court refrains from categorical pronouncements, while does its bit for activating political process. This also legitimizes the court’s activism based on its role to counter the most perilous abuse in the Colombian context – failure of the political system to seriously engage with serious political questions.

Keywords: Colombian constitutional court, judicial review, separation of powers, social rights

Procedia PDF Downloads 104
254 Non-Linear Regression Modeling for Composite Distributions

Authors: Mostafa Aminzadeh, Min Deng

Abstract:

Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.

Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions

Procedia PDF Downloads 34
253 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing

Authors: Abdelrahman Elsehsah, Abdelazim Negm, Eid Ashour, Mohamed Elsahabi

Abstract:

Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.

Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management

Procedia PDF Downloads 6
252 Digitalisation of the Railway Industry: Recent Advances in the Field of Dialogue Systems: Systematic Review

Authors: Andrei Nosov

Abstract:

This paper discusses the development directions of dialogue systems within the digitalisation of the railway industry, where technologies based on conversational AI are already potentially applied or will be applied. Conversational AI is one of the popular natural language processing (NLP) tasks, as it has great prospects for real-world applications today. At the same time, it is a challenging task as it involves many areas of NLP based on complex computations and deep insights from linguistics and psychology. In this review, we focus on dialogue systems and their implementation in the railway domain. We comprehensively review the state-of-the-art research results on dialogue systems and analyse them from three perspectives: type of problem to be solved, type of model, and type of system. In particular, from the perspective of the type of tasks to be solved, we discuss characteristics and applications. This will help to understand how to prioritise tasks. In terms of the type of models, we give an overview that will allow researchers to become familiar with how to apply them in dialogue systems. By analysing the types of dialogue systems, we propose an unconventional approach in contrast to colleagues who traditionally contrast goal-oriented dialogue systems with open-domain systems. Our view focuses on considering retrieval and generative approaches. Furthermore, the work comprehensively presents evaluation methods and datasets for dialogue systems in the railway domain to pave the way for future research. Finally, some possible directions for future research are identified based on recent research results.

Keywords: digitalisation, railway, dialogue systems, conversational AI, natural language processing, natural language understanding, natural language generation

Procedia PDF Downloads 63
251 Hysteresis Modeling in Iron-Dominated Magnets Based on a Deep Neural Network Approach

Authors: Maria Amodeo, Pasquale Arpaia, Marco Buzio, Vincenzo Di Capua, Francesco Donnarumma

Abstract:

Different deep neural network architectures have been compared and tested to predict magnetic hysteresis in the context of pulsed electromagnets for experimental physics applications. Modelling quasi-static or dynamic major and especially minor hysteresis loops is one of the most challenging topics for computational magnetism. Recent attempts at mathematical prediction in this context using Preisach models could not attain better than percent-level accuracy. Hence, this work explores neural network approaches and shows that the architecture that best fits the measured magnetic field behaviour, including the effects of hysteresis and eddy currents, is the nonlinear autoregressive exogenous neural network (NARX) model. This architecture aims to achieve a relative RMSE of the order of a few 100 ppm for complex magnetic field cycling, including arbitrary sequences of pseudo-random high field and low field cycles. The NARX-based architecture is compared with the state-of-the-art, showing better performance than the classical operator-based and differential models, and is tested on a reference quadrupole magnetic lens used for CERN particle beams, chosen as a case study. The training and test datasets are a representative example of real-world magnet operation; this makes the good result obtained very promising for future applications in this context.

Keywords: deep neural network, magnetic modelling, measurement and empirical software engineering, NARX

Procedia PDF Downloads 130
250 The Impact of Deprivation on the Prevalence of Common Mental Health Disorders in Clinical Commissioning Groups across England: A Retrospective, Cross-Sectional Study

Authors: Mohammed-Hareef Asunramu, Sana Hashemi, Raja Ohri, Luc Worthington, Nadia Zaman, Junkai Zhu

Abstract:

Background: The 2012 Health and Social Care Act committed to a ‘parity of esteem between mental and physical health services. Although this investment, aimed to both increase the quality of services and ensure the retention of mental health staff, questions remained regarding its ability to prevent mental health problems. One possible solution is a focus on the social determinants of health which have been shown to impact mental health. Aim: To examine the relationship between the index of multiple deprivations (IMD) and the prevalence of common mental health disorders (CMD) for CCGs in NHS England between 2019 and 2020. Design and setting: Cross-sectional analysis of 189 CCGs in NHS England. Methods: A multivariate linear regression model was utilized with CMD as outcome variable and IMD, age and ethnicity as explanatory variables. Datasets were obtained from Public Health England and the latest UK Census. Results: CCG IMD was found to have a significantly positive relationship with CMD. For every 1-point increase in IMD, CMD increases by 0.25%. Ethnicity had a significantly positive relationship with CMD. For every 1% increase in the population that identifies as BME, there is a 0.03% increase in CMD. Age had a significantly negative relationship with CMD. For every 1% increase in the population aged 60+, there is a 0.11% decrease in CMD. Conclusion: This study demonstrates that addressing mental health issues may require a multi-pronged approach. Beyond budget increases, it is essential to prioritize health equity, with careful considerations towards ethnic minorities and different age brackets.

Keywords: deprivation, health inequality, mental health, social determinants

Procedia PDF Downloads 127
249 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph

Authors: Zhifei Hu, Feng Xia

Abstract:

In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.

Keywords: graph attention network, knowledge graph, recommendation, information propagation

Procedia PDF Downloads 117
248 Motivational Profiles of the Entrepreneurial Career in Spanish Businessmen

Authors: Magdalena Suárez-Ortega, M. Fe. Sánchez-García

Abstract:

This paper focuses on the analysis of the motivations that lead people to undertake and consolidate their business. It is addressed from the framework of planned behavior theory, which recognizes the importance of the social environment and cultural values, both in the decision to undertake business and in business consolidation. Similarly, it is also based on theories of career development, which emphasize the importance of career management competencies and their connections to other vital aspects of people, including their roles within their families and other personal activities. This connects directly with the impact of entrepreneurship on the career and the professional-personal project of each individual. This study is part of the project titled Career Design and Talent Management (Ministry of Economy and Competitiveness of Spain, State Plan 2013-2016 Excellence Ref. EDU2013-45704-P). The aim of the study is to identify and describe entrepreneurial competencies and motivational profiles in a sample of 248 Spanish entrepreneurs, considering the consolidated profile and the profile in transition (n = 248).In order to obtain the information, the Questionnaire of Motivation and conditioners of the entrepreneurial career (MCEC) has been applied. This consists of 67 items and includes four scales (E1-Conflicts in conciliation, E2-Satisfaction in the career path, E3-Motivations to undertake, E4-Guidance Needs). Cluster analysis (mixed method, combining k-means clustering with a hierarchical method) was carried out, characterizing the groups profiles according to the categorical variables (chi square, p = 0.05), and the quantitative variables (ANOVA). The results have allowed us to characterize three motivational profiles relevant to the motivation, the degree of conciliation between personal and professional life, and the degree of conflict in conciliation, levels of career satisfaction and orientation needs (in the entrepreneurial project and life-career). The first profile is formed by extrinsically motivated entrepreneurs, professionally satisfied and without conflict of vital roles. The second profile acts with intrinsic motivation and also associated with family models, and although it shows satisfaction with their professional career, it finds a high conflict in their family and professional life. The third is composed of entrepreneurs with high extrinsic motivation, professional dissatisfaction and at the same time, feel the conflict in their professional life by the effect of personal roles. Ultimately, the analysis has allowed us to line the kinds of entrepreneurs to different levels of motivation, satisfaction, needs and articulation in professional and personal life, showing characterizations associated with the use of time for leisure, and the care of the family. Associations related to gender, age, activity sector, environment (rural, urban, virtual), and the use of time for domestic tasks are not identified. The model obtained and its implications for the design of training actions and orientation to entrepreneurs is also discussed.

Keywords: motivation, entrepreneurial career, guidance needs, life-work balance, job satisfaction, assessment

Procedia PDF Downloads 301
247 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 79
246 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 411
245 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: computer vision, deep learning, object detection, semiconductor

Procedia PDF Downloads 136
244 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model

Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo

Abstract:

In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.

Keywords: climatic change, artificial neural networks, dorado fish, CPUE

Procedia PDF Downloads 243
243 A Fast Community Detection Algorithm

Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun

Abstract:

Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.

Keywords: complex network, social network, community detection, network hierarchy

Procedia PDF Downloads 228
242 Healthcare Providers’ Perception Towards Utilization of Health Information Applications and Its Associated Factors in Healthcare Delivery in Health Facilities in Cape Coast Metropolis, Ghana

Authors: Richard Okyere Boadu, Godwin Adzakpah, Nathan Kumasenu Mensah, Kwame Adu Okyere Boadu, Jonathan Kissi, Christiana Dziyaba, Rosemary Bermaa Abrefa

Abstract:

Information and communication technology (ICT) has significantly advanced global healthcare, with electronic health (e-Health) applications improving health records and delivery. These innovations, including electronic health records, strengthen healthcare systems. The study investigates healthcare professionals' perceptions of health information applications and their associated factors in the Cape Coast Metropolis of Ghana's health facilities. Methods: We used a descriptive cross-sectional study design to collect data from 632 healthcare professionals (HCPs), in the three purposively selected health facilities in the Cape Coast municipality of Ghana in July 2022. Shapiro-Wilk test was used to check the normality of dependent variables. Descriptive statistics were used to report means with corresponding standard deviations for continuous variables. Proportions were also reported for categorical variables. Bivariate regression analysis was conducted to determine the factors influencing the Benefits of Information Technology (BoIT); Barriers to Information Technology Use (BITU); and Motives of Information Technology Use (MoITU) in healthcare delivery. Stata SE version 15 was used for the analysis. A p-value of less than 0.05 served as the basis for considering a statistically significant accepting hypothesis. Results: Healthcare professionals (HCPs) generally perceived moderate benefits (Mean score (M)=5.67) from information technology (IT) in healthcare. However, they slightly agreed that barriers like insufficient computers (M=5.11), frequent system downtime (M=5.09), low system performance (M=5.04), and inadequate staff training (M=4.88) hindered IT utilization. Respondents slightly agreed that training (M=5.56), technical support (M=5.46), and changes in work procedures (M=5.10) motivated their IT use. Bivariate regression analysis revealed significant influences of education, working experience, healthcare profession, and IT training on attitudes towards IT utilization in healthcare delivery (BoIT, BITU, and MoITU). Additionally, the age of healthcare providers, education, and working experience significantly influenced BITU. Ultimately, age, education, working experience, healthcare profession, and IT training significantly influenced MoITU in healthcare delivery. Conclusions: Healthcare professionals acknowledge moderate benefits of IT in healthcare but encounter barriers like inadequate resources and training. Motives for IT use include staff training and support. Bivariate regression analysis shows education, working experience, profession, and IT training significantly influence attitudes toward IT adoption. Targeted interventions and policies can enhance IT utilization in the Cape Coast Metropolis, Ghana.

Keywords: health information application, utilization of information application, information technology use, healthcare

Procedia PDF Downloads 65
241 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images

Authors: U. Datta

Abstract:

The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.

Keywords: co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection

Procedia PDF Downloads 135
240 Membrane-Localized Mutations as Predictors of Checkpoint Blockade Efficacy in Cancer

Authors: Zoe Goldberger, Priscilla S. Briquez, Jeffrey A. Hubbell

Abstract:

Tumor cells have mutations resulting from genetic instability that the immune system can actively recognize. Immune checkpoint immunotherapy (ICI) is commonly used in the clinic to re-activate immune reactions against mutated proteins, called neoantigens, resulting in tumor remission in cancer patients. However, only around 20% of patients show durable response to ICI. While tumor mutational burden (TMB) has been approved by the Food and Drug Administration (FDA) as a criterion for ICI therapy, the relevance of the subcellular localizations of the mutated proteins within the tumor cell has not been investigated. Here, we hypothesized that localization of mutations impacts the effect of immune responsiveness to ICI. We analyzed publicly available tumor mutation sequencing data of ICI treated patients from 3 independent datasets. We extracted the subcellular localization from the UniProtKB/Swiss-Prot database and quantified the proportion of membrane, cytoplasmic, nuclear, or secreted mutations per patient. We analyzed this information in relation to response to ICI treatment and overall survival of patients showing with 1722 ICI-treated patients that high mutational burden localized at the membrane (mTMB), correlate with ICI responsiveness, and improved overall survival in multiple cancer types. We anticipate that our results will ameliorate predictability of cancer patient response to ICI with potential implications in clinical guidelines to tailor ICI treatment. This would not only increase patient survival for those receiving ICI, but also patients’ quality of life by reducing the number of patients enduring non-effective ICI treatments.

Keywords: cancer, immunotherapy, membrane neoantigens, efficacy prediction, biomarkers

Procedia PDF Downloads 109