Search results for: fuzzy expert system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18100

Search results for: fuzzy expert system

17530 Information Technologies in Automotive Assembly Industry in Thailand

Authors: Jirarat Teeravaraprug, Usawadee Inklay

Abstract:

This paper gave an attempt in prioritizing information technologies that organizations should give concentration. The case study was organizations in the automotive assembly industry in Thailand. Data were first collected to gather all information technologies known and used in the automotive assembly industry in Thailand. Five experts from the industries were surveyed based on the concept of fuzzy DEMATEL. The information technologies were categorized into six groups, which were communication, transaction, planning, organization management, warehouse management, and transportation. The cause groups of information technologies for each group were analysed and presented. Moreover, the relationship between the used and the significant information technologies was given. Discussions based on the used information technologies and the research results are given.

Keywords: information technology, automotive assembly industry, fuzzy DEMATEL

Procedia PDF Downloads 319
17529 Empowering Indigenous Epistemologies in Geothermal Development

Authors: Te Kīpa Kēpa B. Morgan, Oliver W. Mcmillan, Dylan N. Taute, Tumanako N. Fa'aui

Abstract:

Epistemologies are ways of knowing. Indigenous Peoples are aware that they do not perceive and experience the world in the same way as others. So it is important when empowering Indigenous epistemologies, such as that of the New Zealand Māori, to also be able to represent a scientific understanding within the same analysis. A geothermal development assessment tool has been developed by adapting the Mauri Model Decision Making Framework. Mauri is a metric that is capable of representing the change in the life-supporting capacity of things and collections of things. The Mauri Model is a method of grouping mauri indicators as dimension averages in order to allow holistic assessment and also to conduct sensitivity analyses for the effect of worldview bias. R-shiny is the coding platform used for this Vision Mātauranga research which has created an expert decision support tool (DST) that combines a stakeholder assessment of worldview bias with an impact assessment of mauri-based indicators to determine the sustainability of proposed geothermal development. The initial intention was to develop guidelines for quantifying mātauranga Māori impacts related to geothermal resources. To do this, three typical scenarios were considered: a resource owner wishing to assess the potential for new geothermal development; another party wishing to assess the environmental and cultural impacts of the proposed development; an assessment that focuses on the holistic sustainability of the resource, including its surface features. Indicator sets and measurement thresholds were developed that are considered necessary considerations for each assessment context and these have been grouped to represent four mauri dimensions that mirror the four well-being criteria used for resource management in Aotearoa, New Zealand. Two case studies have been conducted to test the DST suitability for quantifying mātauranga Māori and other biophysical factors related to a geothermal system. This involved estimating mauri0meter values for physical features such as temperature, flow rate, frequency, colour, and developing indicators to also quantify qualitative observations about the geothermal system made by Māori. A retrospective analysis has then been conducted to verify different understandings of the geothermal system. The case studies found that the expert DST is useful for geothermal development assessment, especially where hapū (indigenous sub-tribal grouping) are conflicted regarding the benefits and disadvantages of their’ and others’ geothermal developments. These results have been supplemented with evaluations for the cumulative impacts of geothermal developments experienced by different parties using integration techniques applied to the time history curve of the expert DST worldview bias weighted plotted against the mauri0meter score. Cumulative impacts represent the change in resilience or potential of geothermal systems, which directly assists with the holistic interpretation of change from an Indigenous Peoples’ perspective.

Keywords: decision support tool, holistic geothermal assessment, indigenous knowledge, mauri model decision-making framework

Procedia PDF Downloads 170
17528 The AI Method and System for Analyzing Wound Status in Wound Care Nursing

Authors: Ho-Hsin Lee, Yue-Min Jiang, Shu-Hui Tsai, Jian-Ren Chen, Mei-Yu XU, Wen-Tien Wu

Abstract:

This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy.

Keywords: wound status analysis, AI-based system, multi-sensor integration, color-based guidance

Procedia PDF Downloads 91
17527 An Economic Order Quantity Model for Deteriorating Items with Ramp Type Demand, Time Dependent Holding Cost and Price Discount Offered on Backorders

Authors: Arjun Paul, Adrijit Goswami

Abstract:

In our present work, an economic order quantity inventory model with shortages is developed where holding cost is expressed as linearly increasing function of time and demand rate is a ramp type function of time. The items considered in the model are deteriorating in nature so that a small fraction of the items is depleted with the passage of time. In order to consider a more realistic situation, the deterioration rate is assumed to follow a continuous uniform distribution with the parameters involved being triangular fuzzy numbers. The inventory manager offers his customer a discount in case he is willing to backorder his demand when there is a stock-out. The optimum ordering policy and the optimum discount offered for each backorder are determined by minimizing the total cost in a replenishment interval. For better illustration of our proposed model in both the crisp and fuzzy sense and for providing richer insights, a numerical example is cited to exemplify the policy and to analyze the sensitivity of the model parameters.

Keywords: fuzzy deterioration rate, price discount on backorder, ramp type demand, shortage, time varying holding cost

Procedia PDF Downloads 175
17526 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging

Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.

Keywords: breast, machine learning, MRI, radiomics

Procedia PDF Downloads 256
17525 Bridge Members Segmentation Algorithm of Terrestrial Laser Scanner Point Clouds Using Fuzzy Clustering Method

Authors: Donghwan Lee, Gichun Cha, Jooyoung Park, Junkyeong Kim, Seunghee Park

Abstract:

3D shape models of the existing structure are required for many purposes such as safety and operation management. The traditional 3D modeling methods are based on manual or semi-automatic reconstruction from close-range images. It occasions great expense and time consuming. The Terrestrial Laser Scanner (TLS) is a common survey technique to measure quickly and accurately a 3D shape model. This TLS is used to a construction site and cultural heritage management. However there are many limits to process a TLS point cloud, because the raw point cloud is massive volume data. So the capability of carrying out useful analyses is also limited with unstructured 3-D point. Thus, segmentation becomes an essential step whenever grouping of points with common attributes is required. In this paper, members segmentation algorithm was presented to separate a raw point cloud which includes only 3D coordinates. This paper presents a clustering approach based on a fuzzy method for this objective. The Fuzzy C-Means (FCM) is reviewed and used in combination with a similarity-driven cluster merging method. It is applied to the point cloud acquired with Lecia Scan Station C10/C5 at the test bed. The test-bed was a bridge which connects between 1st and 2nd engineering building in Sungkyunkwan University in Korea. It is about 32m long and 2m wide. This bridge was used as pedestrian between two buildings. The 3D point cloud of the test-bed was constructed by a measurement of the TLS. This data was divided by segmentation algorithm for each member. Experimental analyses of the results from the proposed unsupervised segmentation process are shown to be promising. It can be processed to manage configuration each member, because of the segmentation process of point cloud.

Keywords: fuzzy c-means (FCM), point cloud, segmentation, terrestrial laser scanner (TLS)

Procedia PDF Downloads 215
17524 Rule-Based Mamdani Type Fuzzy Modeling of Performances of Anode Side of Proton Exchange Membrane Fuel Cell Spin-Coated with Yttria-Stabilized Zirconia

Authors: Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input parameters voltage density (V/cm2), and current density (A/cm2), temperature (°C), time (s); output parameter power density (W/cm2) were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance of PEM fuel cell.

Keywords: proton exchange membrane (PEM), fuel cell, rule-based Mamdani-type fuzzy (RMBTF) modeling, yttria-stabilized zirconia (YSZ)

Procedia PDF Downloads 343
17523 The Intention to Use Telecare in People of Fall Experience: Application of Fuzzy Neural Network

Authors: Jui-Chen Huang, Shou-Hsiung Cheng

Abstract:

This study examined their willingness to use telecare for people who have had experience falling in the last three months in Taiwan. This study adopted convenience sampling and a structural questionnaire to collect data. It was based on the definition and the constructs related to the Health Belief Model (HBM). HBM is comprised of seven constructs: perceived benefits (PBs), perceived disease threat (PDT), perceived barriers of taking action (PBTA), external cues to action (ECUE), internal cues to action (ICUE), attitude toward using (ATT), and behavioral intention to use (BI). This study adopted Fuzzy Neural Network (FNN) to put forward an effective method. It shows the dependence of ATT on PB, PDT, PBTA, ECUE, and ICUE. The training and testing data RMSE (root mean square error) are 0.028 and 0.166 in the FNN, respectively. The training and testing data RMSE are 0.828 and 0.578 in the regression model, respectively. On the other hand, as to the dependence of ATT on BI, as presented in the FNN, the training and testing data RMSE are 0.050 and 0.109, respectively. The training and testing data RMSE are 0.529 and 0.571 in the regression model, respectively. The results show that the FNN method is better than the regression analysis. It is an effective and viable good way.

Keywords: fall, fuzzy neural network, health belief model, telecare, willingness

Procedia PDF Downloads 174
17522 Conceptual Knowledge Structure Updates after Instructor Provided Structural Feedback: An Exploratory Study Applied with Undergraduate Architectural Engineering Students

Authors: Roy B. Clariana, Ryan L. Solnosky

Abstract:

Structural feedback is any form of feedback that aims to improve the quality of students’ domain-normative conceptual interrelationships. Research with structural feedback points to the potential mediating role of network graphs as feedback for tuning students’ conceptual understanding; for example, improved content knowledge and motivation were observed for undergraduate students who accessed the instructor’s networks of course content. This exploratory study uses a one-group pretest-posttest design to examine the effects of instructor-provided network feedback during lectures on students’ knowledge structure measured using a concept sorting task at the pretest and posttest. Undergraduate students in an architectural engineering course (n = 32) completed a lesson module and then an end-of-unit quiz on building with wood and wood framing. Three weeks later, as a review, students completed a sorting task that used 26 terms from that lesson, then a week later, the sorting task data were used to create a group-average network, this network along with the instructor’s expert network were added to that week’s lecture slides and were compared and discussed during class time. A week later, students completed the sorting task again. The pre and post-sorting data were rendered into pathfinder networks, and then these students’ networks were compared to five referent networks, specifically the textbook chapter network, the lecture slides network, a network of the end-of-unit quiz, the actual expert network that served as the feedback intervention, and the group-average network. Inspection of means shows that knowledge structure measures improved for all five measures from pre-to-post, becoming more like the lesson content and like the expert. Repeated measures analysis with follow-up paired samples t-tests showed pre-to-post significant increases for both the end-of-unit quiz and the expert network referents. The findings show that instructor presentation of structural feedback as networks improved or ‘tuned’ students’ knowledge structure of the lesson content. This approach only takes a few extra minutes of class time and is fairly simple to implement in ordinary classrooms, and so it has wide potential to support classroom instruction and student learning. Further research is needed to determine how critical it is to present both the group-average network along with the expert network for comparison in order to highlight group-level misconceptions, or is presenting only the expert network sufficient? If a group-level network is necessary, then a simple clicker-like classroom tool could be developed to collect sorting task data during lectures that could then immediately provide the group-average network for class discussion and reflection.

Keywords: classroom instruction, engineering education, knowledge structure, pathfinder networks, structural feedback

Procedia PDF Downloads 49
17521 Improved Particle Swarm Optimization with Cellular Automata and Fuzzy Cellular Automata

Authors: Ramin Javadzadeh

Abstract:

The particle swarm optimization are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Particle swarm optimization is introduced for the first time to overcome its problems. The fuzzy cellular automata is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the Particle swarm optimization algorithms.

Keywords: cellular automata, cellular learning automata, local search, optimization, particle swarm optimization

Procedia PDF Downloads 583
17520 Tree-Based Inference for Regionalization: A Comparative Study of Global Topological Perturbation Methods

Authors: Orhun Aydin, Mark V. Janikas, Rodrigo Alves, Renato Assuncao

Abstract:

In this paper, a tree-based perturbation methodology for regionalization inference is presented. Regionalization is a constrained optimization problem that aims to create groups with similar attributes while satisfying spatial contiguity constraints. Similar to any constrained optimization problem, the spatial constraint may hinder convergence to some global minima, resulting in spatially contiguous members of a group with dissimilar attributes. This paper presents a general methodology for rigorously perturbing spatial constraints through the use of random spanning trees. The general framework presented can be used to quantify the effect of the spatial constraints in the overall regionalization result. We compare several types of stochastic spanning trees used in inference problems such as fuzzy regionalization and determining the number of regions. Performance of stochastic spanning trees is juxtaposed against the traditional permutation-based hypothesis testing frequently used in spatial statistics. Inference results for fuzzy regionalization and determining the number of regions is presented on the Local Area Personal Incomes for Texas Counties provided by the Bureau of Economic Analysis.

Keywords: regionalization, constrained clustering, probabilistic inference, fuzzy clustering

Procedia PDF Downloads 211
17519 A New Method Separating Relevant Features from Irrelevant Ones Using Fuzzy and OWA Operator Techniques

Authors: Imed Feki, Faouzi Msahli

Abstract:

Selection of relevant parameters from a high dimensional process operation setting space is a problem frequently encountered in industrial process modelling. This paper presents a method for selecting the most relevant fabric physical parameters for each sensory quality feature. The proposed relevancy criterion has been developed using two approaches. The first utilizes a fuzzy sensitivity criterion by exploiting from experimental data the relationship between physical parameters and all the sensory quality features for each evaluator. Next an OWA aggregation procedure is applied to aggregate the ranking lists provided by different evaluators. In the second approach, another panel of experts provides their ranking lists of physical features according to their professional knowledge. Also by applying OWA and a fuzzy aggregation model, the data sensitivity-based ranking list and the knowledge-based ranking list are combined using our proposed percolation technique, to determine the final ranking list. The key issue of the proposed percolation technique is to filter automatically and objectively the relevant features by creating a gap between scores of relevant and irrelevant parameters. It permits to automatically generate threshold that can effectively reduce human subjectivity and arbitrariness when manually choosing thresholds. For a specific sensory descriptor, the threshold is defined systematically by iteratively aggregating (n times) the ranking lists generated by OWA and fuzzy models, according to a specific algorithm. Having applied the percolation technique on a real example, of a well known finished textile product especially the stonewashed denims, usually considered as the most important quality criteria in jeans’ evaluation, we separate the relevant physical features from irrelevant ones for each sensory descriptor. The originality and performance of the proposed relevant feature selection method can be shown by the variability in the number of physical features in the set of selected relevant parameters. Instead of selecting identical numbers of features with a predefined threshold, the proposed method can be adapted to the specific natures of the complex relations between sensory descriptors and physical features, in order to propose lists of relevant features of different sizes for different descriptors. In order to obtain more reliable results for selection of relevant physical features, the percolation technique has been applied for combining the fuzzy global relevancy and OWA global relevancy criteria in order to clearly distinguish scores of the relevant physical features from those of irrelevant ones.

Keywords: data sensitivity, feature selection, fuzzy logic, OWA operators, percolation technique

Procedia PDF Downloads 586
17518 Prioritization in a Maintenance, Repair and Overhaul (MRO) System Based on Fuzzy Logic at Iran Khodro (IKCO)

Authors: Izadi Banafsheh, Sedaghat Reza

Abstract:

Maintenance, Repair, and Overhaul (MRO) of machinery are a key recent issue concerning the automotive industry. It has always been a debated question what order or priority should be adopted for the MRO of machinery. This study attempts to examine several criteria including process sensitivity, average time between machine failures, average duration of repair, availability of parts, availability of maintenance personnel and workload through a literature review and experts survey so as to determine the condition of the machine. According to the mentioned criteria, the machinery were ranked in four modes below: A) Need for inspection, B) Need for minor repair, C) Need for part replacement, and D) Need for major repair. The Fuzzy AHP was employed to determine the weighting of criteria. At the end, the obtained weights were ranked through the AHP for each criterion, three groups were specified: shaving machines, assembly and painting in four modes. The statistical population comprises the elite in the Iranian automotive industry at IKCO covering operation managers, CEOs and maintenance professionals who are highly specialized in MRO and perfectly knowledgeable in how the machinery function. The information required for this study were collected from both desk research and field review, which eventually led to construction of a questionnaire handed out to the sample respondents in order to collect information on the subject matter. The results of the AHP for weighting the criteria revealed that the availability of maintenance personnel was the top priority at coefficient of 0.206, while the process sensitivity took the last priority at coefficient of 0.066. Furthermore, the results of TOPSIS for prioritizing the IKCO machinery suggested that at the mode where there is need for inspection, the assembly machines took the top priority while paining machines took the third priority. As for the mode where there is need for minor repairs, the assembly machines took the top priority while the third priority belonged to the shaving machines. As for the mode where there is need for parts replacement, the assembly machines took the top priority while the third belonged to the paining machinery. Finally, as for the mode where there is need for major repair, the assembly machines took the top priority while the third belonged to the paining machinery.

Keywords: maintenance, repair, overhaul, MRO, prioritization of machinery, fuzzy logic, AHP, TOPSIS

Procedia PDF Downloads 269
17517 GCM Based Fuzzy Clustering to Identify Homogeneous Climatic Regions of North-East India

Authors: Arup K. Sarma, Jayshree Hazarika

Abstract:

The North-eastern part of India, which receives heavier rainfall than other parts of the subcontinent, is of great concern now-a-days with regard to climate change. High intensity rainfall for short duration and longer dry spell, occurring due to impact of climate change, affects river morphology too. In the present study, an attempt is made to delineate the North-Eastern region of India into some homogeneous clusters based on the Fuzzy Clustering concept and to compare the resulting clusters obtained by using conventional methods and non conventional methods of clustering. The concept of clustering is adapted in view of the fact that, impact of climate change can be studied in a homogeneous region without much variation, which can be helpful in studies related to water resources planning and management. 10 IMD (Indian Meteorological Department) stations, situated in various regions of the North-east, have been selected for making the clusters. The results of the Fuzzy C-Means (FCM) analysis show different clustering patterns for different conditions. From the analysis and comparison it can be concluded that non conventional method of using GCM data is somehow giving better results than the others. However, further analysis can be done by taking daily data instead of monthly means to reduce the effect of standardization.

Keywords: climate change, conventional and nonconventional methods of clustering, FCM analysis, homogeneous regions

Procedia PDF Downloads 365
17516 [Keynote Talk]: Analysis of Intelligent Based Fault Tolerant Capability System for Solar Photovoltaic Energy Conversion

Authors: Albert Alexander Stonier

Abstract:

Due to the fossil fuel exhaustion and environmental pollution, renewable energy sources especially solar photovoltaic system plays a predominant role in providing energy to the consumers. It has been estimated that by 2050 the renewable energy sources will satisfy 50% of the total energy requirement of the world. In this context, the faults in the conversion process require a special attention which is considered as a major problem. A fault which remains even for a few seconds will cause undesirable effects to the system. The presentation comprises of the analysis, causes, effects and mitigation methods of various faults occurring in the entire solar photovoltaic energy conversion process. In order to overcome the faults in the system, an intelligent based artificial neural networks and fuzzy logic are proposed which can significantly mitigate the faults. Hence the presentation intends to find the problem in renewable energy and provides the possible solution to overcome it with simulation and experimental results. The work performed in a 3kWp solar photovoltaic plant whose results cites the improvement in reliability, availability, power quality and fault tolerant ability.

Keywords: solar photovoltaic, power electronics, power quality, PWM

Procedia PDF Downloads 262
17515 Development of Fault Diagnosis Technology for Power System Based on Smart Meter

Authors: Chih-Chieh Yang, Chung-Neng Huang

Abstract:

In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.

Keywords: ANFIS, fault diagnosis, power system, smart meter

Procedia PDF Downloads 124
17514 A Prediction Model of Tornado and Its Impact on Architecture Design

Authors: Jialin Wu, Zhiwei Lian, Jieyu Tang, Jingyun Shen

Abstract:

Tornado is a serious and unpredictable natural disaster, which has an important impact on people's production and life. The probability of being hit by tornadoes in China was analyzed considering the principles of tornado formation. Then some suggestions on layout and shapes for newly-built buildings were provided combined with the characteristics of tornado wind fields. Fuzzy clustering and inverse closeness methods were used to evaluate the probability levels of tornado risks in various provinces based on classification and ranking. GIS was adopted to display the results. Finally, wind field single-vortex tornado was studied to discuss the optimized design of rural low-rise houses in Yancheng, Jiangsu as an example. This paper may provide enough data to support building and urban design in some specific regions.

Keywords: tornado probability, computational fluid dynamics, fuzzy mathematics, optimal design

Procedia PDF Downloads 116
17513 Soft Computing Approach for Diagnosis of Lassa Fever

Authors: Roseline Oghogho Osaseri, Osaseri E. I.

Abstract:

Lassa fever is an epidemic hemorrhagic fever caused by the Lassa virus, an extremely virulent arena virus. This highly fatal disorder kills 10% to 50% of its victims, but those who survive its early stages usually recover and acquire immunity to secondary attacks. One of the major challenges in giving proper treatment is lack of fast and accurate diagnosis of the disease due to multiplicity of symptoms associated with the disease which could be similar to other clinical conditions and makes it difficult to diagnose early. This paper proposed an Adaptive Neuro Fuzzy Inference System (ANFIS) for the prediction of Lass Fever. In the design of the diagnostic system, four main attributes were considered as the input parameters and one output parameter for the system. The input parameters are Temperature on admission (TA), White Blood Count (WBC), Proteinuria (P) and Abdominal Pain (AP). Sixty-one percent of the datasets were used in training the system while fifty-nine used in testing. Experimental results from this study gave a reliable and accurate prediction of Lassa fever when compared with clinically confirmed cases. In this study, we have proposed Lassa fever diagnostic system to aid surgeons and medical healthcare practictionals in health care facilities who do not have ready access to Polymerase Chain Reaction (PCR) diagnosis to predict possible Lassa fever infection.

Keywords: anfis, lassa fever, medical diagnosis, soft computing

Procedia PDF Downloads 243
17512 Breast Cancer Risk is Predicted Using Fuzzy Logic in MATLAB Environment

Authors: S. Valarmathi, P. B. Harathi, R. Sridhar, S. Balasubramanian

Abstract:

Machine learning tools in medical diagnosis is increasing due to the improved effectiveness of classification and recognition systems to help medical experts in diagnosing breast cancer. In this study, ID3 chooses the splitting attribute with the highest gain in information, where gain is defined as the difference between before the split versus after the split. It is applied for age, location, taluk, stage, year, period, martial status, treatment, heredity, sex, and habitat against Very Serious (VS), Very Serious Moderate (VSM), Serious (S) and Not Serious (NS) to calculate the gain of information. The ranked histogram gives the gain of each field for the breast cancer data. The doctors use TNM staging which will decide the risk level of the breast cancer and play an important decision making field in fuzzy logic for perception based measurement. Spatial risk area (taluk) of the breast cancer is calculated. Result clearly states that Coimbatore (North and South) was found to be risk region to the breast cancer than other areas at 20% criteria. Weighted value of taluk was compared with criterion value and integrated with Map Object to visualize the results. ID3 algorithm shows the high breast cancer risk regions in the study area. The study has outlined, discussed and resolved the algorithms, techniques / methods adopted through soft computing methodology like ID3 algorithm for prognostic decision making in the seriousness of the breast cancer.

Keywords: ID3 algorithm, breast cancer, fuzzy logic, MATLAB

Procedia PDF Downloads 500
17511 Defuzzification of Periodic Membership Function on Circular Coordinates

Authors: Takashi Mitsuishi, Koji Saigusa

Abstract:

This paper presents circular polar coordinates transformation of periodic fuzzy membership function. The purpose is identification of domain of periodic membership functions in consequent part of IF-THEN rules. The proposed methods are applied to the simple color construct system.

Keywords: periodic membership function, polar coordinates transformation, defuzzification, circular coordinates

Procedia PDF Downloads 291
17510 Knowledge Based Behaviour Modelling and Execution in Service Robotics

Authors: Suraj Nair, Aravindkumar Vijayalingam, Alexander Perzylo, Alois Knoll

Abstract:

In the last decade robotics research and development activities have grown rapidly, especially in the domain of service robotics. Integrating service robots into human occupied spaces such as homes, offices, hospitals, etc. has become increasingly worked upon. The primary motive is to ease daily lives of humans by taking over some of the household/office chores. However, several challenges remain in systematically integrating such systems in human shared work-spaces. In addition to sensing and indoor-navigation challenges, programmability of such systems is a major hurdle due to the fact that the potential user cannot be expected to have knowledge in robotics or similar mechatronic systems. In this paper, we propose a cognitive system for service robotics which allows non-expert users to easily model system behaviour in an underspecified manner through abstract tasks and objects associated with them. The system uses domain knowledge expressed in the form of an ontology along with logical reasoning mechanisms to infer all the missing pieces of information required for executing the tasks. Furthermore, the system is also capable of recovering from failed tasks arising due to on-line disturbances by using the knowledge base and inferring alternate methods to execute the same tasks. The system is demonstrated through a coffee fetching scenario in an office environment using a mobile robot equipped with sensors and software capabilities for autonomous navigation and human-interaction through natural language.

Keywords: cognitive robotics, reasoning, service robotics, task based systems

Procedia PDF Downloads 219
17509 A Fast Parallel and Distributed Type-2 Fuzzy Algorithm Based on Cooperative Mobile Agents Model for High Performance Image Processing

Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah

Abstract:

The aim of this paper is to present a distributed implementation of the Type-2 Fuzzy algorithm in a parallel and distributed computing environment based on mobile agents. The proposed algorithm is assigned to be implemented on a SPMD (Single Program Multiple Data) architecture which is based on cooperative mobile agents as AVPE (Agent Virtual Processing Element) model in order to improve the processing resources needed for performing the big data image segmentation. In this work we focused on the application of this algorithm in order to process the big data MRI (Magnetic Resonance Images) image of size (n x m). It is encapsulated on the Mobile agent team leader in order to be split into (m x n) pixels one per AVPE. Each AVPE perform and exchange the segmentation results and maintain asynchronous communication with their team leader until the convergence of this algorithm. Some interesting experimental results are obtained in terms of accuracy and efficiency analysis of the proposed implementation, thanks to the mobile agents several interesting skills introduced in this distributed computational model.

Keywords: distributed type-2 fuzzy algorithm, image processing, mobile agents, parallel and distributed computing

Procedia PDF Downloads 408
17508 On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region

Authors: T. Penkova, A. Korobko, V. Nicheporchuk, L. Nozhenkova, A. Metus

Abstract:

This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.

Keywords: decision making support systems, emergency risk assessment, natural and anthropogenic safety, on-line control, territory

Procedia PDF Downloads 390
17507 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: balance control, synchronization control, two-wheel inverted pendulum, TWIP

Procedia PDF Downloads 373
17506 Credible Autopsy Report for Investigators and Judiciary

Authors: Sudhir K. Gupta

Abstract:

Introduction: When a forensic doctor determines that a suspicious death is a suicide, homicide, or accident, the decision virtually becomes incontestable by the investigating police officer, and it becomes an issue whether the medical opinion was created with necessary checks and balances on the other probabilities of the case. It is suggested that the opinion of Forensic Medical experts is conventional, mutable, and shifting from one expert to another. The determination of suicide, accident, or homicide is mandatorily required, which is the Gold Standard for conducting death investigations. Forensic investigations serve many audiences, but the court is by far the most critical. The likely questions on direct and cross-examination determine how forensic doctors gather and handle evidence and what conclusions they reach. Methodology: The author interacted with the investigative authority, and a crime scene visit was also done along with the perusal of the Postmortem report, subsequent opinion, and crime scene photographs and statements of the witness and accused. Further analysis of all relevant scientific documents and opinions of other forensic doctors, forensic scientists, and ballistic experts involved in these cases was done to arrive at an opinion with scientific justification. Findings: The opinions arrived at by the author and how they helped the judiciary in delivering justice in these cases have been discussed in this article. This can help the readers to understand the process involved in formulating a credible forensic medical expert opinion for investigators and the judiciary. Conclusion: A criminal case might be won or lost over doubt cast on the chain of custody. Medically trained forensic doctors, therefore, learn to practice their profession in legally appropriate ways, and opinions must be based on medical justifications with credible references.

Keywords: forensic doctor, professional credibility, investigation, expert opinion

Procedia PDF Downloads 61
17505 Applications of Artificial Neural Networks in Civil Engineering

Authors: Naci Büyükkaracığan

Abstract:

Artificial neural networks (ANN) is an electrical model based on the human brain nervous system and working principle. Artificial neural networks have been the subject of an active field of research that has matured greatly over the past 55 years. ANN now is used in many fields. But, it has been viewed that artificial neural networks give better results in particular optimization and control systems. There are requirements of optimization and control system in many of the area forming the subject of civil engineering applications. In this study, the first artificial intelligence systems are widely used in the solution of civil engineering systems were examined with the basic principles and technical aspects. Finally, the literature reviews for applications in the field of civil engineering were conducted and also artificial intelligence techniques were informed about the study and its results.

Keywords: artificial neural networks, civil engineering, Fuzzy logic, statistics

Procedia PDF Downloads 387
17504 A Fermatean Fuzzy MAIRCA Approach for Maintenance Strategy Selection of Process Plant Gearbox Using Sustainability Criteria

Authors: Soumava Boral, Sanjay K. Chaturvedi, Ian Howard, Kristoffer McKee, V. N. A. Naikan

Abstract:

Due to strict regulations from government to enhance the possibilities of sustainability practices in industries, and noting the advances in sustainable manufacturing practices, it is necessary that the associated processes are also sustainable. Maintenance of large scale and complex machines is a pivotal task to maintain the uninterrupted flow of manufacturing processes. Appropriate maintenance practices can prolong the lifetime of machines, and prevent associated breakdowns, which subsequently reduces different cost heads. Selection of the best maintenance strategies for such machines are considered as a burdensome task, as they require the consideration of multiple technical criteria, complex mathematical calculations, previous fault data, maintenance records, etc. In the era of the fourth industrial revolution, organizations are rapidly changing their way of business, and they are giving their utmost importance to sensor technologies, artificial intelligence, data analytics, automations, etc. In this work, the effectiveness of several maintenance strategies (e.g., preventive, failure-based, reliability centered, condition based, total productive maintenance, etc.) related to a large scale and complex gearbox, operating in a steel processing plant is evaluated in terms of economic, social, environmental and technical criteria. As it is not possible to obtain/describe some criteria by exact numerical values, these criteria are evaluated linguistically by cross-functional experts. Fuzzy sets are potential soft-computing technique, which has been useful to deal with linguistic data and to provide inferences in many complex situations. To prioritize different maintenance practices based on the identified sustainable criteria, multi-criteria decision making (MCDM) approaches can be considered as potential tools. Multi-Attributive Ideal Real Comparative Analysis (MAIRCA) is a recent addition in the MCDM family and has proven its superiority over some well-known MCDM approaches, like TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ELECTRE (ELimination Et Choix Traduisant la REalité). It has a simple but robust mathematical approach, which is easy to comprehend. On the other side, due to some inherent drawbacks of Intuitionistic Fuzzy Sets (IFS) and Pythagorean Fuzzy Sets (PFS), recently, the use of Fermatean Fuzzy Sets (FFSs) has been proposed. In this work, we propose the novel concept of FF-MAIRCA. We obtain the weights of the criteria by experts’ evaluation and use them to prioritize the different maintenance practices according to their suitability by FF-MAIRCA approach. Finally, a sensitivity analysis is carried out to highlight the robustness of the approach.

Keywords: Fermatean fuzzy sets, Fermatean fuzzy MAIRCA, maintenance strategy selection, sustainable manufacturing, MCDM

Procedia PDF Downloads 130
17503 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets

Authors: Selin Guney, Andres Riquelme

Abstract:

Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.

Keywords: commodity, forecast, fuzzy, Markov

Procedia PDF Downloads 203
17502 Effect of 3-Dimensional Knitted Spacer Fabrics Characteristics on Its Thermal and Compression Properties

Authors: Veerakumar Arumugam, Rajesh Mishra, Jiri Militky, Jana Salacova

Abstract:

The thermo-physiological comfort and compression properties of knitted spacer fabrics have been evaluated by varying the different spacer fabric parameters. Air permeability and water vapor transmission of the fabrics were measured using the Textest FX-3300 air permeability tester and PERMETEST. Then thermal behavior of fabrics was obtained by Thermal conductivity analyzer and overall moisture management capacity was evaluated by moisture management tester. Spacer Fabrics compression properties were also tested using Kawabata Evaluation System (KES-FB3). In the KES testing, the compression resilience, work of compression, linearity of compression and other parameters were calculated from the pressure-thickness curves. Analysis of Variance (ANOVA) was performed using new statistical software named QC expert trilobite and Darwin in order to compare the influence of different fabric parameters on thermo-physiological and compression behavior of samples. This study established that the raw materials, type of spacer yarn, density, thickness and tightness of surface layer have significant influence on both thermal conductivity and work of compression in spacer fabrics. The parameter which mainly influence on the water vapor permeability of these fabrics is the properties of raw material i.e. the wetting and wicking properties of fibers. The Pearson correlation between moisture capacity of the fabrics and water vapour permeability was found using statistical software named QC expert trilobite and Darwin. These findings are important requirements for the further designing of clothing for extreme environmental conditions.

Keywords: 3D spacer fabrics, thermal conductivity, moisture management, work of compression (WC), resilience of compression (RC)

Procedia PDF Downloads 527
17501 Cervical Cell Classification Using Random Forests

Authors: Dalwinder Singh, Amandeep Verma, Manpreet Kaur, Birmohan Singh

Abstract:

The detection of pre-cancerous changes using a Pap smear test of cervical cell is the important step for the early diagnosis of cervical cancer. The Pap smear test consists of a sample of human cells taken from the cervix which are analysed to detect cancerous and pre-cancerous stage of the given subject. The manual analysis of these cells is labor intensive and time consuming process which relies on expert cytotechnologist. In this paper, a computer assisted system for the automated analysis of the cervical cells has been proposed. We propose a morphology based approach to the nucleus detection and segmentation of the cytoplasmic region of the given single or multiple overlapped cell. Further, various texture and region based features are calculated from these cells to classify these into normal and abnormal cell. Experimental results on public available dataset show that our system has achieved satisfactory success rate.

Keywords: cervical cancer, cervical tissue, mathematical morphology, texture features

Procedia PDF Downloads 505