Search results for: effect of radiation on QD LD
15225 A Three-Dimensional Investigation of Stabilized Turbulent Diffusion Flames Using Different Type of Fuel
Authors: Moataz Medhat, Essam E. Khalil, Hatem Haridy
Abstract:
In the present study, a numerical simulation study is used to 3-D model the steady-state combustion of a staged natural gas flame in a 300 kW swirl-stabilized burner, using ANSYS solver to find the highest combustion efficiency by changing the inlet air swirl number and burner quarl angle in a furnace and showing the effect of flue gas recirculation, type of fuel and staging. The combustion chamber of the gas turbine is a cylinder of diameter 1006.8 mm, and a height of 1651mm ending with a hood until the exhaust cylinder has been reached, where the exit of combustion products which have a diameter of 300 mm, with a height of 751mm. The model was studied by 15 degree of the circumference due to axisymmetric of the geometry and divided into a mesh of about 1.1 million cells. The numerical simulations were performed by solving the governing equations in a three-dimensional model using realizable K-epsilon equations to express the turbulence and non-premixed flamelet combustion model taking into consideration radiation effect. The validation of the results was done by comparing it with other experimental data to ensure the agreement of the results. The study showed two zones of recirculation. The primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. It is found that the increase in temperature in the external recirculation zone is a result of increasing the swirl number of the inlet air stream. Also it was found that recirculating part of the combustion products back to the combustion zone decreases pollutants formation especially nitrogen monoxide.Keywords: burner selection, natural gas, analysis, recirculation
Procedia PDF Downloads 16115224 An Approach for Detection Efficiency Determination of High Purity Germanium Detector Using Cesium-137
Authors: Abdulsalam M. Alhawsawi
Abstract:
Estimation of a radiation detector's efficiency plays a significant role in calculating the activity of radioactive samples. Detector efficiency is measured using sources that emit a variety of energies from low to high-energy photons along the energy spectrum. Some photon energies are hard to find in lab settings either because check sources are hard to obtain or the sources have short half-lives. This work aims to develop a method to determine the efficiency of a High Purity Germanium Detector (HPGe) based on the 662 keV gamma ray photon emitted from Cs-137. Cesium-137 is readily available in most labs with radiation detection and health physics applications and has a long half-life of ~30 years. Several photon efficiencies were calculated using the MCNP5 simulation code. The simulated efficiency of the 662 keV photon was used as a base to calculate other photon efficiencies in a point source and a Marinelli Beaker form. In the Marinelli Beaker filled with water case, the efficiency of the 59 keV low energy photons from Am-241 was estimated with a 9% error compared to the MCNP5 simulated efficiency. The 1.17 and 1.33 MeV high energy photons emitted by Co-60 had errors of 4% and 5%, respectively. The estimated errors are considered acceptable in calculating the activity of unknown samples as they fall within the 95% confidence level.Keywords: MCNP5, MonteCarlo simulations, efficiency calculation, absolute efficiency, activity estimation, Cs-137
Procedia PDF Downloads 11615223 Economic Stability in a Small Open Economy with Income Effect on Leisure Demand
Authors: Yu-Shan Hsu
Abstract:
This paper studies a two-sector growth model with a technology of social constant returns and with a utility that features either a zero or a positive income effect on the demand for leisure. The purpose is to investigate how the existence of aggregate instability or equilibrium indeterminacy depends on both the intensity of the income effect on the demand for leisure and the value of the labor supply elasticity. The main finding is that when there is a factor intensity reversal between the private perspective and the social perspective, indeterminacy arises even if the utility has a positive income effect on leisure demand. Moreover, we find that a smaller value of the labor supply elasticity increases the range of the income effect on leisure demand and thus increases the possibility of equilibrium indeterminacy. JEL classification: E3; O41Keywords: indeterminacy, non-separable preferences, income effect, labor supply elasticity
Procedia PDF Downloads 17715222 Study of Inhibition of the End Effect Based on AR Model Predict of Combined Data Extension and Window Function
Authors: Pan Hongxia, Wang Zhenhua
Abstract:
In this paper, the EMD decomposition in the process of endpoint effect adopted data based on AR model to predict the continuation and window function method of combining the two effective inhibition. Proven by simulation of the simulation signal obtained the ideal effect, then, apply this method to the gearbox test data is also achieved good effect in the process, for the analysis of the subsequent data processing to improve the calculation accuracy. In the end, under various working conditions for the gearbox fault diagnosis laid a good foundation.Keywords: gearbox, fault diagnosis, ar model, end effect
Procedia PDF Downloads 36615221 Epicatechin Metabolites and Its Effect on ROS Production in Bovine Aortic Endothelial Cells
Authors: Nasiruddin Khan
Abstract:
The action of (-)-epicatechin, a cocoa (Theobroma cacao) flavanol that modulates redox/oxidative stress are contributed mainly to their antioxidant properties. The present study investigates the concentration and time dependent effect of (-)-epicatechin metabolites 3MeEc, 4MeEc, and 4SulEc on the production of ROS on BAEC using L-012, Lucigenin as chemiluminescence dye and XO/HX system. Our result demonstrates that 3MeEc shows significant (P <0.05) lowering effect of ROS production in BAEC with increasing concentration of metabolite while L-012 was used as chemiluminescence dye but not in the case of Lucigenin. In XO/HX system, using L-012 as chemiluminescence dye, 3MeEc and 4MeEc showed significant lowering effect on ROS production with increasing concentration from 100-500nM as compared to the positive control (SOD). When Lucigenin was used as chemiluminescence dye, 3MeEc exerted significant lowering effect with increasing concentration when compared to the positive control (SOD) whereas 4MeEc showed significant lowering effect in ROS production from 250 nM on as compared to positive control. For 4SulEc, a significant lowering effect of ROS production was only observed at 100 and 250 nM. Overall, although each metabolite shows considerable effect, 3MeEc exhibited more pronounced effect on decreasing the production of ROS as compared to other two metabolites.Keywords: epicatechin metabolites, HO-1, Nrf2, ROS
Procedia PDF Downloads 23115220 Assessment of Hargreaves Equation for Estimating Monthly Reference Evapotranspiration in the South of Iran
Authors: Ali Dehgan Moroozeh, B. Farhadi Bansouleh
Abstract:
Evapotranspiration is one of the most important components of the hydrological cycle. Evapotranspiration (ETo) is an important variable in water and energy balances on the earth’s surface, and knowledge of the distribution of ET is a key factor in hydrology, climatology, agronomy and ecology studies. Many researchers have a valid relationship, which is a function of climate factors, to estimate the potential evapotranspiration presented to the plant water stress or water loss, prevent. The FAO-Penman method (PM) had been recommended as a standard method. This method requires many data and these data are not available in every area of world. So, other methods should be evaluated for these conditions. When sufficient or reliable data to solve the PM equation are not available then Hargreaves equation can be used. The Hargreaves equation (HG) requires only daily mean, maximum and minimum air temperature extraterrestrial radiation .In this study, Hargreaves method (HG) were evaluated in 12 stations in the North West region of Iran. Results of HG and M.HG methods were compared with results of PM method. Statistical analysis of this comparison showed that calibration process has had significant effect on efficiency of Hargreaves method.Keywords: evapotranspiration, hargreaves, equation, FAO-Penman method
Procedia PDF Downloads 39515219 Numerical Analysis of a Pilot Solar Chimney Power Plant
Authors: Ehsan Gholamalizadeh, Jae Dong Chung
Abstract:
Solar chimney power plant is a feasible solar thermal system which produces electricity from the Sun. The objective of this study is to investigate buoyancy-driven flow and heat transfer through a built pilot solar chimney system called 'Kerman Project'. The system has a chimney with the height and diameter of 60 m and 3 m, respectively, and the average radius of its solar collector is about 20 m, and also its average collector height is about 2 m. A three-dimensional simulation was conducted to analyze the system, using computational fluid dynamics (CFD). In this model, radiative transfer equation was solved using the discrete ordinates (DO) radiation model taking into account a non-gray radiation behavior. In order to modelling solar irradiation from the sun’s rays, the solar ray tracing algorithm was coupled to the computation via a source term in the energy equation. The model was validated with comparing to the experimental data of the Manzanares prototype and also the performance of the built pilot system. Then, based on the numerical simulations, velocity and temperature distributions through the system, the temperature profile of the ground surface and the system performance were presented. The analysis accurately shows the flow and heat transfer characteristics through the pilot system and predicts its performance.Keywords: buoyancy-driven flow, computational fluid dynamics, heat transfer, renewable energy, solar chimney power plant
Procedia PDF Downloads 26215218 The Effect of Transparent Oil Wood Stain on the Colour Stability of Spruce Wood during Weathering
Authors: Eliska Oberhofnerova, Milos Panek, Stepan Hysek, Martin Lexa
Abstract:
Nowadays the use of wood, both indoors and outdoors, is constantly increasing. However wood is a natural organic material and in the exterior is subjected to a degradation process caused by abiotic factors (solar radiation, rain, moisture, wind, dust etc.). This process affects only surface layers of wood but neglecting some of the basic rules of wood protection leads to increased possibility of biological agents attack and thereby influences a function of the wood element. The process of wood degradation can be decreased by proper surface treatment, especially in the case of less naturally durable wood species, as spruce. Modern coating systems are subjected to many requirements such as colour stability, hydrophobicity, low volatile organic compound (VOC) content, long service life or easy maintenance. The aim of this study is to evaluate the colour stability of spruce wood (Picea abies), as the basic parameter indicating the coating durability, treated with two layers of transparent natural oil wood stain and exposed to outdoor conditions. The test specimens were exposed for 2 years to natural weathering and 2000 hours to artificial weathering in UV-chamber. The colour parameters were measured before and during exposure to weathering by the spectrophotometer according to CIELab colour space. The comparison between untreated and treated wood and both testing procedures was carried out. The results showed a significant effect of coating on the colour stability of wood, as expected. Nevertheless, increasing colour changes of wood observed during the exposure to weathering differed according to applied testing procedure - natural and artificial.Keywords: colour stability, natural and artificial weathering, spruce wood, transparent coating
Procedia PDF Downloads 22015217 Many-Body Effect on Optical Gain of n+ Doping Tensile-Strained Ge/GeSiSn Quantum Wells
Abstract:
The many-body effect on band structure and optical gain of n+ doping tensile-strained Ge/GeSiSn quantum wells are investigated by using an 8-band k•p method. Phase diagram of Ge/GeSiSn quantum well is obtained. The E-k dispersion curves, band gap renormalization and optical gain spectra including many-body effect will be calculated and discussed. We find that the k.p method without many-body effect will overestimate the optical gain and transition energy.Keywords: Si photonics, many-body effect, optical gain, Ge-on-Si, Quantum well
Procedia PDF Downloads 73415216 Study of Residents' Perception of Tourism: The Case Study of Chabahar City, Iran
Authors: Majid Omidikhankahdani, Maryam Omidikhankahdani
Abstract:
Chabahar city located southeast of Iran and is one of strategic regional port in Oman sea aim of this study was measuring Chabahar city resident perceptions about tourism positive and negative effect. 322 participants selected via random sampling and fill questionnaire about their attitude toward tourism economic, social cultural and environment positive and negative impact. the result showed perspective of resident tourism have more positive effect than negative effect, also pair sample t test showed significant difference between positive and negative effect of tourism in favor positive effect.Keywords: tourism economic effect, tourism environment, residents attitude, tourism social-cultural
Procedia PDF Downloads 49615215 Parameters of Main Stage of Discharge between Artificial Charged Aerosol Cloud and Ground in Presence of Model Hydrometeor Arrays
Authors: D. S. Zhuravkova, A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, I. Y. Kalugina, N. Y. Lysov, A.V. Orlov
Abstract:
Investigation of the discharges from the artificial charged water aerosol clouds in presence of the arrays of the model hydrometeors could help to receive the new data about the peculiarities of the return stroke formation between the thundercloud and the ground when the large volumes of the hail particles participate in the lightning discharge initiation and propagation stimulation. Artificial charged water aerosol clouds of the negative or positive polarity with the potential up to one million volts have been used. Hail has been simulated by the group of the conductive model hydrometeors of the different form. Parameters of the impulse current of the main stage of the discharge between the artificial positively and negatively charged water aerosol clouds and the ground in presence of the model hydrometeors array and of its corresponding electromagnetic radiation have been determined. It was established that the parameters of the array of the model hydrometeors influence on the parameters of the main stage of the discharge between the artificial thundercloud cell and the ground. The maximal values of the main stage current impulse parameters and the electromagnetic radiation registered by the plate antennas have been found for the array of the model hydrometeors of the cylinder revolution form for the negatively charged aerosol cloud and for the array of the hydrometeors of the plate rhombus form for the positively charged aerosol cloud, correspondingly. It was found that parameters of the main stage of the discharge between the artificial charged water aerosol cloud and the ground in presence of the model hydrometeor array of the different considered forms depend on the polarity of the artificial charged aerosol cloud. In average, for all forms of the investigated model hydrometeors arrays, the values of the amplitude and the current rise of the main stage impulse current and the amplitude of the corresponding electromagnetic radiation for the artificial charged aerosol cloud of the positive polarity were in 1.1-1.9 times higher than for the charged aerosol cloud of the negative polarity. Thus, the received results could indicate to the possible more important role of the big volumes of the large hail arrays in the thundercloud on the parameters of the return stroke for the positive lightning.Keywords: main stage of discharge, hydrometeor form, lightning parameters, negative and positive artificial charged aerosol cloud
Procedia PDF Downloads 25615214 Effect of Chain Length on Skeletonema pseudocostatum as Probed by THz Spectroscopy
Authors: Ruqyyah Mushtaq, Chiacar Gamberdella, Roberta Miroglio, Fabio Novelli, Domenica Papro, M. Paturzo, A. Rubano, Angela Sardo
Abstract:
Microalgae, particularly diatoms, are well suited for monitoring environmental health, especially in assessing the quality of seas and rivers in terms of organic matter, nutrients, and heavy metal pollution. They respond rapidly to changes in habitat quality. In this study, we focused on Skeletonema pseudocostatum, a unicellular alga that forms chains depending on environmental conditions. Specifically, we explored whether metal toxicants could affect the growth of these algal chains, potentially serving as an ecotoxicological indicator of heavy metal pollution. We utilized THz spectroscopy in conjunction with standard optical microscopy to observe the formation of these chains and their response to toxicants. Despite the strong absorption of terahertz radiation in water, we demonstrate that changes in water absorption in the terahertz range due to water-diatom interaction can provide insights into diatom chain length.Keywords: THz-TDS spectroscopy, diatoms, marine ecotoxicology, marine pollution
Procedia PDF Downloads 3115213 The Effect of Arms Embargoes on Ongoing Armed Conflict: Are They Really Reducing Conflict Duration?
Authors: Mustafa Kirisci
Abstract:
Arms embargoes have not been adequately examined in terms of their effects on conflict duration. Prior research on arms embargoes has generally investigated the effect of arms embargoes on arms import/export practices and violations in arms embargoes, but it says little about the effect on conflict duration. This paper attempts to fill this gap and aims to investigate the effect of arms embargoes on conflict duration throughout the world. More precisely, the purpose of the paper is to understand how arms embargoes affect the duration of both internal and interstate conflicts. Given the theoretical framework, the main hypothesis of the paper is arms embargoes will have no reduction effect on conflict duration when arms transfer and region are controlled. This hypothesis is tested by using OLS regression. Results indicate that arms embargoes have no effect on both internal and interstate conflict duration. Another crucial result is that both small and major arms transfers made by the embargoed countries during the internal conflict increase the duration of the conflict, but no effect on interstate conflict duration. The final part concludes and provide explanations on what these results imply for finishing the conflict and bringing the peace.Keywords: arms embargo, arms transfer, internal conflict, international conflict
Procedia PDF Downloads 44315212 The Glycitin and 38 Combination Inhibit the UV-Induced Wrinkle Fomation in Human Primary Fibroblast
Authors: Manh Tin Ho, Phorl Sophors, Ga Young Seo, Young Mee Kim, Youngho Lim, Moonjae Cho
Abstract:
UV radiation in sunlight is one of the most potential factor induced skin ageing and photocarcinogenesis. UV may induce the melanin production and wrinkle formation. Recently, the natural secondary compounds have been reported that had the beneficial protective effects from UV light. In this study, we investigated the effects of two different compounds, glycitin and 38, on human dermal fibroblast. We first only treated the 38 on melanocyte cell to test the proliferation inhibition of 38 on this cell line. Then, we induced the combination of glycitin and 38 on human dermal fibroblast in 48h and investigate the proliferation, collagen production and the metalloproteinase family expression. The 38 alone could inhibit the proliferation of melanocyte which indicated the reduction of melanin production. The combination of glycitin and 38 truly increased the fibroblast proliferation and even they could recover the UV-induced and H2O2-induced damaged fibroblast proliferation. The co-treatment also promoted the collagen IV expression significantly and accelerated the total collagen secretion. In addition, metalloproteinase (MMPs) family such as MMP1, MMP2, MMP7 was down-regulated in transcriptional level. In conclusion, the combination of glycitin and 38 has induced the fibroblast proliferation even when it was damaged by UV exposure and H2O2, whereas augmented collagen production and inhibited the MMPs caused the wrinkle formation and decreased the melanocyte proliferation, suggested an potential UV-protective therapy.Keywords: UV radiation, wrinkle, ageing, glycitin, dermal fibroblast
Procedia PDF Downloads 23715211 Factors Associated to Down Syndrome Causes in Patients of Cytogenetics Laboratory, Faculty of Medicine, Universitas Padjadjaran in 2014─2015
Authors: Bremmy Laksono, Nurul Qomarilla, Riksa Parikrama, Dyan K. Nugrahaeni, Willyanti Soewondo, Dadang S. H. Effendi, Eriska Rianti, Arlette S. Setiawan, Ine Sasmita, Risti S. Primanti, Erna Kurnikasari, Yunia Sribudiani
Abstract:
Down syndrome is a chromosomal abnormality of chromosome 21 which can appear in man or woman. Maternal age and paternal age, history of radiation are the common risk factors. This study was conducted to observe risk factors which related as causes of Down syndrome. In this case control study using purposive sampling technique, 84 respondents were chosen from Cell Culture and Cytogenetics Laboratory patients in Faculty of Medicine, Universitas Padjadjaran, Indonesia. They were used as study samples and divided into 42 Down syndrome cases and 42 control respondents. This study used univariate and bivariate analysis (chi-square). Samples population were West Java residents, the biggest province in Indonesia in number of population. The results showed maternal age, paternal age, history of radiation exposure and family history were not significantly related to Down syndrome baby. Moreover, all of those factors also did not contribute to the risk of having a child with Down syndrome in patients at Cell Culture and Cytogenetics Laboratory, Faculty of Medicine, Universitas Padjadjaran. Therefore, we should investigate other risk factors of Down syndrome in West Java population.Keywords: down syndrome, family history, maternal age, paternal age, risk factor
Procedia PDF Downloads 40515210 Impact of the Transport on the Urban Heat Island
Authors: L. Haddad, Z. Aouachria
Abstract:
The development of transport systems has negative impacts on the environment although it has beneficial effects on society.. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface of any town. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. In this object, we perform a numerical simulation of the plume generated by the cars exhaust gases and show that these gases form a screening effect above the urban city which cause the heat island in the presence of wind flow. This study allows us: i. To understand the different mechanisms of interactions between these phenomena. ii. To consider appropriate technical solutions to mitigate the effects of the heat island.Keywords: atmospheric pollution, impact on the health, urban transport, heat island
Procedia PDF Downloads 39515209 238U, 40K, 226Ra, 222Rn and Trace Metals in Chemical Fertilizers in Saudi Arabia Markets
Authors: Fatimh Alshahri, Muna Alqahtani
Abstract:
The specific activities of 238U, 226Ra, 40K and 222Rn in chemical fertilizers were measured using gamma ray spectrometer and Cr-39 detector. In this study 21 chemical fertilizers were collected from Eastern Saudi Arabia markets. The specific activities of 238U ranged from 23 ± 0.5 to 3900 ± 195 Bq kgˉ¹, 226Ra ranged from 5.6 ± 2.8 to 392 ± 18 Bq kgˉ¹ and 40K ranged from 18.4 ± 3 to 16476 ± 820 Bq kgˉ¹. The radon concentrations and the radon exhalation rates were found to vary from 3.2 ± 1.2 to 1531.6 ± 160 Bq mˉ³ and from 1.6 to 773.7 mBq mˉ² hˉ¹, respectively. Radium equivalent activities (Raeq) were calculated for the analyzed samples to assess the radiation hazards arising due to the use of these chemical fertilizers in the agriculture soil. The Raeq for Six local samples (NPK and SSP) and one imported sample (SOP) were greater than the acceptable value 370 Bq kgˉ¹. The total air absorbed doses rates in air 1 m above the ground (D) were calculated for all samples. All samples, except one imported granule sample (DAP), were higher than the estimated average global terrestrial radiation of 55 nGy hˉ¹. The highest annual effective dose was in TSP fertilizers (2.1 mSvyˉ¹). The results show that the local TSP, imported SOP and local NPK (sample 13) fertilizers were unacceptable for use as fertilizers in agricultural soil. Furthermore, the toxic elements and trace metals (Pb, Cd, Cr, Co, Ni, Hg and As) were determined using atomic absorption spectrometer. The concentrations of chromium in chemical fertilizers were higher than the global values.Keywords: chemical fertilizers, 238U, 222Rn, trace metals, Saudi Arabia
Procedia PDF Downloads 59715208 Verification of Dosimetric Commissioning Accuracy of Flattening Filter Free Intensity Modulated Radiation Therapy and Volumetric Modulated Therapy Delivery Using Task Group 119 Guidelines
Authors: Arunai Nambi Raj N., Kaviarasu Karunakaran, Krishnamurthy K.
Abstract:
The purpose of this study was to create American Association of Physicist in Medicine (AAPM) Task Group 119 (TG 119) benchmark plans for flattening filter free beam (FFF) deliveries of intensity modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT) in the Eclipse treatment planning system. The planning data were compared with the flattening filter (FF) IMRT & VMAT plan data to verify the dosimetric commissioning accuracy of FFF deliveries. AAPM TG 119 proposed a set of test cases called multi-target, mock prostate, mock head and neck, and C-shape to ascertain the overall accuracy of IMRT planning, measurement, and analysis. We used these test cases to investigate the performance of the Eclipse Treatment planning system for the flattening filter free beam deliveries. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two arc VMAT technique for both the beam deliveries (6 MV FF, 6MV FFF, 10 MV FF and 10 MV FFF). The planning objectives and dose were set as described in TG 119. The dose prescriptions for multi-target, mock prostate, mock head and neck, and C-shape were taken as 50, 75.6, 50 and 50 Gy, respectively. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC‑13) ion chamber. The composite planar dose and per-field gamma analysis were measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). FFF beam deliveries of IMRT and VMAT plans were comparable to flattening filter beam deliveries. Our planning and quality assurance results matched with TG 119 data. AAPM TG 119 test cases are useful to generate FFF benchmark plans. From the obtained data in this study, we conclude that the commissioning of FFF IMRT and FFF VMAT delivery were found within the limits of TG-119 and the performance of the Eclipse treatment planning system for FFF plans were found satisfactorily.Keywords: flattening filter free beams, intensity modulated radiation therapy, task group 119, volumetric modulated arc therapy
Procedia PDF Downloads 14615207 Effect of Using PCMs and Transparency Rations on Energy Efficiency and Thermal Performance of Buildings in Hot Climatic Regions. A Simulation-Based Evaluation
Authors: Eda K. Murathan, Gulten Manioglu
Abstract:
In the building design process, reducing heating and cooling energy consumption according to the climatic region conditions of the building are important issues to be considered in order to provide thermal comfort conditions in the indoor environment. Applying a phase-change material (PCM) on the surface of a building envelope is the new approach for controlling heat transfer through the building envelope during the year. The transparency ratios of the window are also the determinants of the amount of solar radiation gain in the space, thus thermal comfort and energy expenditure. In this study, a simulation-based evaluation was carried out by using Energyplus to determine the effect of coupling PCM and transparency ratio when integrated into the building envelope. A three-storey building, a 30m x 30m sized floor area and 10m x 10m sized courtyard are taken as an example of the courtyard building model, which is frequently seen in the traditional architecture of hot climatic regions. 8 zones (10m x10m sized) with 2 exterior façades oriented in different directions on each floor were obtained. The percentage of transparent components on the PCM applied surface was increased at every step (%30, %40, %50). For every zone differently oriented, annual heating, cooling energy consumptions, and thermal comfort based on the Fanger method were calculated. All calculations are made for the zones of the intermediate floor of the building. The study was carried out for Diyarbakır provinces representing the hot-dry climate region and Antalya representing the hot-humid climate region. The increase in the transparency ratio has led to a decrease in heating energy consumption but an increase in cooling energy consumption for both provinces. When PCM is applied to all developed options, It was observed that heating and cooling energy consumption decreased in both Antalya (6.06%-19.78% and %1-%3.74) and Diyarbakır (2.79%-3.43% and 2.32%-4.64%) respectively. When the considered building is evaluated under passive conditions for the 21st of July, which represents the hottest day of the year, it is seen that the user feels comfortable between 11 pm-10 am with the effect of night ventilation for both provinces.Keywords: building envelope, heating and cooling energy consumptions, phase change material, transparency ratio
Procedia PDF Downloads 17615206 A Study on Evaluation for Performance Verification of Ni-63 Radioisotope Betavoltaic Battery
Authors: Youngmok Yun, Bosung Kim, Sungho Lee, Kyeongsu Jeon, Hyunwook Hwangbo, Byounggun Choi
Abstract:
A betavoltaic battery converts nuclear energy released as beta particles (β-) directly into electrical energy. Betavoltaic cells are analogous to photovoltaic cells. The beta particle’s kinetic energy enters a p-n junction and creates electron-hole pairs. Subsequently, the built-in potential of the p-n junction accelerates the electrons and ions to their respective collectors. The major challenges are electrical conversion efficiencies and exact evaluation. In this study, the performance of betavoltaic battery was evaluated. The betavoltaic cell was evaluated in the same condition as radiation from radioactive isotope using by FE-SEM(field emission scanning electron microscope). The average energy of the radiation emitted from the Ni-63 radioisotope is 17.42 keV. FE-SEM is capable of emitting an electron beam of 1-30keV. Therefore, it is possible to evaluate betavoltaic cell without radioactive isotopes. The betavoltaic battery consists of radioisotope that is physically connected on the surface of Si-based PN diode. The performance of betavoltaic battery can be estimated by the efficiency of PN diode unit cell. The current generated by scanning electron microscope with fixed accelerating voltage (17keV) was measured by using faraday cup. Electrical characterization of the p-n junction diode was performed by using Nano Probe Work Station and I-V measurement system. The output value of the betavoltaic cells developed by this research team was 0.162 μw/cm2 and the efficiency was 1.14%.Keywords: betavoltaic, nuclear, battery, Ni-63, radio-isotope
Procedia PDF Downloads 25815205 Viability Study of the Use of Solar Energy for Water Heating in Homes in Brazil
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
The sun is an inexhaustible source and harnessing its potential both for heating and for power generation is one of the most promising and necessary alternatives, mainly due to environmental issues. However, it should be noted that this has always been present in the generation of energy on the planet, only indirectly, as it is responsible for virtually all other energy sources, such as: Generates the evaporation source of the water cycle, which allows the impoundment and the consequent generation of electricity (hydroelectricity); Winds are caused by large-scale atmospheric induction caused by solar radiation; Oil, coal and natural gas were generated from waste plants and animals that originally obtained the energy needed for its development of solar radiation. Thus, the idea of using solar energy for practical purposes for the benefit of man is not new, as it accompanies the story since the beginning of time, which means that the sun was always of utmost importance in the design of shelters, or homes is, constructed by taking into consideration the use of sunlight, practicing what was being lost through the centuries, until a time when the buildings started to be designed completely independent of the sun. However, the climatic rigors still needed to be fought, only artificially and today seen as unsustainable, with additional facilities fueled by energy consumption. This paper presents a study on the feasibility of using solar energy for heating water in homes, developing a simplified methodology covering the mode of operation of solar water heaters, solar potential existing alternative systems of Brazil, the international market, and barriers encountered.Keywords: solar energy, solar heating, solar project, water heating
Procedia PDF Downloads 33215204 Variability Studies of Seyfert Galaxies Using Sloan Digital Sky Survey and Wide-Field Infrared Survey Explorer Observations
Authors: Ayesha Anjum, Arbaz Basha
Abstract:
Active Galactic Nuclei (AGN) are the actively accreting centers of the galaxies that host supermassive black holes. AGN emits radiation in all wavelengths and also shows variability across all the wavelength bands. The analysis of flux variability tells us about the morphology of the site of emission radiation. Some of the major classifications of AGN are (a) Blazars, with featureless spectra. They are subclassified as BLLacertae objects, Flat Spectrum Radio Quasars (FSRQs), and others; (b) Seyferts with prominent emission line features are classified into Broad Line, Narrow Line Seyferts of Type 1 and Type 2 (c) quasars, and other types. Sloan Digital Sky Survey (SDSS) is an optical telescope based in Mexico that has observed and classified billions of objects based on automated photometric and spectroscopic methods. A sample of blazars is obtained from the third Fermi catalog. For variability analysis, we searched for light curves for these objects in Wide-Field Infrared Survey Explorer (WISE) and Near Earth Orbit WISE (NEOWISE) in two bands: W1 (3.4 microns) and W2 (4.6 microns), reducing the final sample to 256 objects. These objects are also classified into 155 BLLacs, 99 FSRQs, and 2 Narrow Line Seyferts, namely, PMNJ0948+0022 and PKS1502+036. Mid-infrared variability studies of these objects would be a contribution to the literature. With this as motivation, the present work is focused on studying a final sample of 256 objects in general and the Seyferts in particular. Owing to the fact that the classification is automated, SDSS has miclassified these objects into quasars, galaxies, and stars. Reasons for the misclassification are explained in this work. The variability analysis of these objects is done using the method of flux amplitude variability and excess variance. The sample consists of observations in both W1 and W2 bands. PMN J0948+0022 is observed between MJD from 57154.79 to 58810.57. PKS 1502+036 is observed between MJD from 57232.42 to 58517.11, which amounts to a period of over six years. The data is divided into different epochs spanning not more than 1.2 days. In all the epochs, the sources are found to be variable in both W1 and W2 bands. This confirms that the object is variable in mid-infrared wavebands in both long and short timescales. Also, the sources are observed for color variability. Objects either show a bluer when brighter trend (BWB) or a redder when brighter trend (RWB). The possible claim for the object to be BWB (present objects) is that the longer wavelength radiation emitted by the source can be suppressed by the high-energy radiation from the central source. Another result is that the smallest radius of the emission source is one day since the epoch span used in this work is one day. The mass of the black holes at the centers of these sources is found to be less than or equal to 108 solar masses, respectively.Keywords: active galaxies, variability, Seyfert galaxies, SDSS, WISE
Procedia PDF Downloads 12915203 Is There a Month Effect on the Deposits Interest Rates? Evidence from the Greek Banking Industry during the Period 2003-13
Authors: Konstantopoulos N., Samitas A., E. Vasileiou, Kinias I.
Abstract:
This article introduces a new view on the month effect study. Applying a Markov Switching Regime model on data from the Greek Time Deposits (TDs) market for the time span January 2003 to October 2013, we examine if there is a month effect on the Greek banking industry. The empirical findings provide convincing evidence for a new king of monthly anomaly. The explanation for the specific abnormality may be the upward deposits window dressing. Further research should be done in order to examine if the specific calendar effect exists in other countries or it is only a Greek phenomenon.Keywords: calendar anomalies, banking crisis, month effect, Greek banking industry
Procedia PDF Downloads 37015202 Finding the Reaction Constant between Humic Acid and Aluminum Ion by Fluorescence Quenching Effect
Authors: Wen Po Cheng, Chen Zhao Feng, Ruey Fang Yu, Lin Jia Jun, Lin Ji Ye, Chen Yuan Wei
Abstract:
Humic acid was used as the removal target for evaluating the coagulation efficiency in this study. When the coagulant ions mix with a humic acid solution, a Fluorescence quenching effect may be observed conditionally. This effect can be described by Stern-Volmer linear equation which can be used for quantifying the quenching value (Kq) of the Fluorescence quenching effect. In addition, a Complex-Formation Titration (CFT) theory was conducted and the result was used to explain the electron-neutralization capability of the coagulant (AlCl₃) at different pH. The results indicated that when pH of the ACl₃ solution was between 6 and 8, fluorescence quenching effect obviously occurred. The maximum Kq value was found to be 102,524 at pH 6. It means that the higher the Kq value is, the better complex reaction between a humic acid and aluminum salts will be. Through the Kq value study, the optimum pH can be quantified when the humic acid solution is coagulated with aluminum ions.Keywords: humic acid, fluorescence quenching effect, complex reaction, titration
Procedia PDF Downloads 57815201 Reduce the Environmental Impacts of the Intensive Use of Glass in New Buildings in Khartoum, Sudan
Authors: Sawsan Domi
Abstract:
Khartoum is considering as one of the hottest cities all over the world, the mean monthly outdoor temperature remains above 30 ºC. Solar Radiation on Building Surfaces considered within the world highest values. Buildings in Khartoum is receiving huge amounts of watts/m2. Northern, eastern and western facades always receive a greater amount than the south ones. Therefore, these facades of the building must be better protected than the others. One of the most important design limits affecting indoor thermal comfort and energy conservation are building envelope design, self-efficiency in building materials and optical and thermo-physical properties of the building envelope. A small sun-facing glazing area is very important to provide thermal comfort in hot dry climates because of the intensive sunshine. This study aims to propose a work plan to help minimize the negative environmental effect of the climate on buildings taking the intensive use of glazing. In the last 15 years, there was a rapid growth in building sector in Khartoum followed by many of wrong strategies getting away of being environmental friendly. The intensive use of glazing on facades increased to commercial, industrial and design aspects, while the glass envelope led to quick increase in temperature by the reflection affects the sun on faces, cars and bodies. Logically, being transparent by using glass give a sense of open spaces, allowing natural lighting and sometimes natural ventilation keeping dust and insects away. In the other hand, it costs more and give more overheated. And this is unsuitable for a hot dry climate city like Khartoum. Many huge projects permitted every year from the Ministry of Planning in Khartoum state, with a design based on the intensive use of glazing on facades. There are no Laws or Regulations to control using materials in construction, the last building code -building code 2008- Khartoum state- only focused in using sustainable materials with no consider to any environmental aspects. Results of the study will help increase the awareness for architects, engineers and public about this environmentally problem. Objectives vary between Improve energy performance in buildings and Provide high levels of thermal comfort in the inner environment. As a future project, what are the changes that can happen in building permits codes and regulations. There could be recommendations for the governmental sector such as Obliging the responsible authorities to version environmental friendly laws in building construction fields and Support Renewable energy sector in buildings.Keywords: building envelope, building regulations, glazed facades, solar radiation
Procedia PDF Downloads 21915200 Effects of Radiation on Mixed Convection in Power Law Fluids along Vertical Wedge Embedded in a Saturated Porous Medium under Prescribed Surface Heat Flux Condition
Authors: Qaisar Ali, Waqar A. Khan, Shafiq R. Qureshi
Abstract:
Heat transfer in Power Law Fluids across cylindrical surfaces has copious engineering applications. These applications comprises of areas such as underwater pollution, bio medical engineering, filtration systems, chemical, petroleum, polymer, food processing, recovery of geothermal energy, crude oil extraction, pharmaceutical and thermal energy storage. The quantum of research work with diversified conditions to study the effects of combined heat transfer and fluid flow across porous media has increased considerably over last few decades. The most non-Newtonian fluids of practical interest are highly viscous and therefore are often processed in the laminar flow regime. Several studies have been performed to investigate the effects of free and mixed convection in Newtonian fluids along vertical and horizontal cylinder embedded in a saturated porous medium, whereas very few analysis have been performed on Power law fluids along wedge. In this study, boundary layer analysis under the effects of radiation-mixed convection in power law fluids along vertical wedge in porous medium have been investigated using an implicit finite difference method (Keller box method). Steady, 2-D laminar flow has been considered under prescribed surface heat flux condition. Darcy, Boussinesq and Roseland approximations are assumed to be valid. Neglecting viscous dissipation effects and the radiate heat flux in the flow direction, the boundary layer equations governing mixed convection flow over a vertical wedge are transformed into dimensionless form. The single mathematical model represents the case for vertical wedge, cone and plate by introducing the geometry parameter. Both similar and Non- similar solutions have been obtained and results for Non similar case have been presented/ plotted. Effects of radiation parameter, variable heat flux parameter, wedge angle parameter ‘m’ and mixed convection parameter have been studied for both Newtonian and Non-Newtonian fluids. The results are also compared with the available data for the analysis of heat transfer in the prescribed range of parameters and found in good agreement. Results for the details of dimensionless local Nusselt number, temperature and velocity fields have also been presented for both Newtonian and Non-Newtonian fluids. Analysis of data revealed that as the radiation parameter or wedge angle is increased, the Nusselt number decreases whereas it increases with increase in the value of heat flux parameter at a given value of mixed convection parameter. Also, it is observed that as viscosity increases, the skin friction co-efficient increases which tends to reduce the velocity. Moreover, pseudo plastic fluids are more heat conductive than Newtonian and dilatant fluids respectively. All fluids behave identically in pure forced convection domain.Keywords: porous medium, power law fluids, surface heat flux, vertical wedge
Procedia PDF Downloads 31215199 Enhancing Precision in Abdominal External Beam Radiation Therapy: Exhale Breath Hold Technique for Respiratory Motion Management
Authors: Stephanie P. Nigro
Abstract:
The Exhale Breath Hold (EBH) technique presents a promising approach to enhance the precision and efficacy of External Beam Radiation Therapy (EBRT) for abdominal tumours, which include liver, pancreas, kidney, and adrenal glands. These tumours are challenging to treat due to their proximity to organs at risk (OARs) and the significant motion induced by respiration and physiological variations, such as stomach filling. Respiratory motion can cause up to 40mm of displacement in abdominal organs, complicating accurate targeting. While current practices like limiting fasting help reduce motion related to digestive processes, they do not address respiratory motion. 4DCT scans are used to assess this motion, but they require extensive workflow time and expose patients to higher doses of radiation. The EBH technique, which involves holding the breath in an exhale with no air in the lungs, stabilizes internal organ motion, thereby reducing respiratory-induced motion. The primary benefit of EBH is the reduction in treatment volume sizes, specifically the Internal Target Volume (ITV) and Planning Target Volume (PTV), as demonstrated by smaller ITVs when gated in EBH. This reduction also improves the quality of 3D Cone Beam CT (CBCT) images by minimizing respiratory artifacts, facilitating soft tissue matching akin to stereotactic treatments. Patients suitable for EBH must meet criteria including the ability to hold their breath for at least 15 seconds and maintain a consistent breathing pattern. For those who do not qualify, the traditional 4DCT protocol will be used. The implementation involves an EBH planning scan and additional short EBH scans to ensure reproducibility and assist in contouring and volume expansions, with a Free Breathing (FB) scan used for setup purposes. Treatment planning on EBH scans leads to smaller PTVs, though intrafractional and interfractional breath hold variations must be accounted for in margins. The treatment decision process includes performing CBCT in EBH intervals, with careful matching and adjustment based on soft tissue and fiducial markers. Initial studies at two sites will evaluate the necessity of multiple CBCTs, assessing shifts and the benefits of initial versus mid-treatment CBCT. Considerations for successful implementation include thorough patient coaching, staff training, and verification of breath holds, despite potential disadvantages such as longer treatment times and patient exhaustion. Overall, the EBH technique offers significant improvements in the accuracy and quality of abdominal EBRT, paving the way for more effective and safer treatments for patients.Keywords: abdominal cancers, exhale breath hold, radiation therapy, respiratory motion
Procedia PDF Downloads 2615198 Improving Radiation Efficiency Using Metamaterial in Pyramidal Horn Antenna
Authors: Amit Kumar Baghel, Sisir Kumar Nayak
Abstract:
The proposed metamaterial design help to increase the radiation efficiency at 2.9 GHz by reducing the side and back lobes by making the phase difference of the waves emerging from the phase center of the horn antenna same after passing through metamaterial array. The unit cell of the metamaterial is having concentric ring structure made of copper of 0.035 mm thickness on both sides of FR4 sheet. The inner ring diameter is kept as 3 mm, and the outer ring diameters are changed according to the path and tramission phase difference of the unit cell from the phase center of the antenna in both the horizontal and vertical direction, i.e., in x- and y-axis. In this case, the ring radius varies from 3.19 mm to 6.99 mm with the respective S21 phase difference of -62.25° to -124.64°. The total phase difference can be calculated by adding the path difference of the respective unit cell in the array to the phase difference of S21. Taking one of the unit cell as the reference, the total phase difference between the reference unit cell and other cells must be integer multiple of 360°. The variation of transmission coefficient S21 with the ring radius is greater than -6 dB. The array having 5 x 5 unit cell is kept inside the pyramidal horn antenna (L X B X H = 295.451 x 384.233 x 298.66 mm3) at a distance of 36.68 mm from the waveguide throat. There is an improvement in side lobe level in E-plane by 14.6 dB when the array is used. The front to back lobe ration is increased by 1 dB by using the array. The proposed antenna with metamaterial array can be used in beam shaping for wireless power transfer applications.Keywords: metamaterial, side lobe level, front to back ratio, beam forming
Procedia PDF Downloads 27415197 The Preventive Effect of Metformin on Paclitaxel-Induced Peripheral Neuropathy
Authors: AliAkbar Hafezi, Jamshid Abedi, Jalal Taherian, Behnam Kadkhodaei, Mahsa Elahi
Abstract:
Background. Peripheral neuropathy is a common side effect of the administration of neurotoxic chemotherapy agents. This adverse effect is a major dose-limiting factor of many commonly used chemotherapy drugs. Currently, there are no Food and Drug Administration (FDA) approved medications for the prevention or treatment of chemotherapy-induced peripheral neuropathy. Therefore, this study was performed to investigate the efficacy and safety of metformin on paclitaxel-induced peripheral neuropathy (PIPN). Methods. In this randomized clinical trial, cancer patients who were candidates for chemotherapy with paclitaxel referred to the radiation oncology departments in Iran from 2022 to 2023 were studied. Patients were randomly divided into two groups; 1- Case group (n = 30) received metformin 500 mg orally twice a day after meals during chemotherapy with paclitaxel, and 2- Control group (30 people) received chemotherapy without metformin or any additional medication. Patients were visited in terms of numbness or other neurological symptoms two weeks before chemotherapy, 1-2 days before and weekly during chemotherapy, and at the end of the study. They were assessed by nerve conduction study (NCS) before intervention and one week after the end of chemotherapy. The primary outcome was the efficacy in reducing PIPN and the secondary outcome was adverse effects. Eventually, the outcomes were compared between the two groups of patients. Results. A total of 60 female cancer patients receiving chemotherapy with paclitaxel were evaluated in two groups. The groups were matched in terms of age, body mass index, fasting blood sugar, smoking, pathologic stage, and creatinine levels. The results showed that 18 patients (60.0 %) in the case group and 23 patients (76.6 %) in the control group had PIPN clinically (P = 0.267), and NCS showed 11 patients (36.6 %) in the case group and 15 patients (50.0 %) in the control group suffered from PIPN which no significant difference was observed between the two groups (P = 0.435). Diarrhea (n = 3; 10.0 %) and nausea (n = 3; 10.0 %) were the most common side effects of metformin in the case group and no serious side effects (lactic acidosis and anemia) were found in these patients. Conclusion. This study indicated that metformin did not significantly prevent PIPN in cancer patients receiving chemotherapy, although the frequency of peripheral neuropathy in the case group was lower than in the control group. The use of metformin in the patients had acceptable safety and no serious side effects were reported.Keywords: peripheral neuropathy, chemotherapy, paclitaxel, metformin
Procedia PDF Downloads 4315196 Empirical Investigation of Bullwhip Effect with Sensitivity Analysis in Supply Chain
Authors: Shoaib Yousaf
Abstract:
The main purpose of this research is to the empirical investigation of the bullwhip effect under sensitivity analysis in the two-tier supply chain. The simulation modeling technique has been applied in this research as a research methodology to see the sensitivity analysis of the bullwhip effect in the rice industry of Pakistan. The research comprises two case studies that have been chosen as a sample. The results of this research have confirmed that reduction in production delay reduces the bullwhip effect, which conforms to the time compressing paradigm and the significance of the reduction in production delay to lessen demand amplification. The result of this research also indicates that by increasing the value of time to adjust inventory decreases the bullwhip effect. Furthermore, by decreasing the value of alpha increases the damping effect of the exponential smoother, it is not surprising that it also reduces the bullwhip effect. Moreover, by reducing the value of time to work in progress also reduces the bullwhip effect. This research will help practitioners and operation managers to reduces the major costs of their products in three ways. They can reduce their i) inventory levels, ii) better utilize their capacity and iii) improve their forecasting techniques. However, this study is based on two tier supply chain, while in reality the supply chain has got many tiers. Hence, future work will be extended across more than two-tier supply chains.Keywords: bullwhip effect, rice industry, supply chain dynamics, simulation, sensitivity analysis
Procedia PDF Downloads 144