Search results for: automated facial recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2674

Search results for: automated facial recognition

2104 International Financial Reporting Standards and the Quality of Banks Financial Statement Information: Evidence from an Emerging Market-Nigeria

Authors: Ugbede Onalo, Mohd Lizam, Ahmad Kaseri, Otache Innocent

Abstract:

Giving the paucity of studies on IFRS adoption and quality of banks accounting quality, particularly in emerging economies, this study is motivated to investigate whether the Nigeria decision to adopt IFRS beginning from 1 January 2012 is associated with high quality accounting measures. Consistent with prior literatures, this study measure quality of financial statement information using earnings measurement, timeliness of loss recognition and value relevance. A total of twenty Nigeria banks covering a period of six years (2008-2013) divided equally into three years each (2008, 2009, 2010) pre adoption period and (2011, 2012, 2013) post adoption period were investigated. Following prior studies eight models were in all employed to investigate earnings management, timeliness of loss recognition and value relevance of Nigeria bank accounting quality for the different reporting regimes. Results suggest that IFRS adoption is associated with minimal earnings management, timely recognition of losses and high value relevance of accounting information. Summarily, IFRS adoption engenders higher quality of banks financial statement information compared to local GAAP. Hence, this study recommends the global adoption of IFRS and that Nigeria banks should embrace good corporate governance practices.

Keywords: IFRS, SAS, quality of accounting information, earnings measurement, discretionary accruals, non-discretionary accruals, total accruals, Jones model, timeliness of loss recognition, value relevance

Procedia PDF Downloads 465
2103 Modeling of Erosion and Sedimentation Impacts from off-Road Vehicles in Arid Regions

Authors: Abigail Rosenberg, Jennifer Duan, Michael Poteuck, Chunshui Yu

Abstract:

The Barry M. Goldwater Range, West in southwestern Arizona encompasses 2,808 square kilometers of Sonoran Desert. The hyper-arid range has an annual rainfall of less than 10 cm with an average high temperature of 41 degrees Celsius in July to an average low of 4 degrees Celsius in January. The range shares approximately 60 kilometers of the international border with Mexico. A majority of the range is open for recreational use, primarily off-highway vehicles. Because of its proximity to Mexico, the range is also heavily patrolled by U.S. Customs and Border Protection seeking to intercept and apprehend inadmissible people and illicit goods. Decades of off-roading and Border Patrol activities have negatively impacted this sensitive desert ecosystem. To assist the range program managers, this study is developing a model to identify erosion prone areas and calibrate the model’s parameters using the Automated Geospatial Watershed Assessment modeling tool.

Keywords: arid lands, automated geospatial watershed assessment, erosion modeling, sedimentation modeling, watershed modeling

Procedia PDF Downloads 374
2102 A Disappearing Radiolucency of the Mandible Caused by Inadvertent Trauma Following IMF Screw Placement

Authors: Anna Ghosh, Dominic Shields, Ceri McIntosh, Stephen Crank

Abstract:

A 29-year-old male was a referral to the maxillofacial unit following a referral from his general dental practitioner via a routine pathway regarding a large periapical lesion on the LR4 with root resorption. The patient was asymptomatic, the LR4 vital and unrestored, and this was an incidental finding at a routine check-up. The patient's past medical history was unremarkable. Examination revealed no extra or intra-oral pathology and non-mobile teeth. No focal neurology was detected. An orthopantogram demonstrated a well-defined unilocular corticated radiolucency associated with the LR4. The root appeared shortened with the radiolucency between the root and a radio-opacity, possibly representing the displacement of the apical tip of the tooth. It was recommended that the referring general practitioner should proceed with orthograde root canal therapy, after which time exploration, enucleation, and retrograde root filling of the LR4 would be carried out by a maxillofacial unit. The patient was reviewed six months later where, due to the COVID-19 pandemic, the patient had been unable to access general dental services for the root canal treatment. He was still entirely asymptomatic. A one-year review was planned in the hope this would allow time for the orthograde root canal therapy to be completed. At this review, the orthograde root canal therapy had still not been completed. Interestingly, a repeat orthopantogram revealed a significant reduction in size with good bony infill and a significant reduction in the size of the lesion. Due to the ongoing delays with primary care dental therapy, the patient was subsequently internally referred to the restorative dentistry department for care. The patient was seen again by oral and maxillo-facial surgery in mid-2022 where he still reports this tooth as asymptomatic with no focal neurology. The patient's history was fully reviewed, and noted that 15 years previously, the patient underwent open reduction and internal fixation of a left angle of mandible fracture. Temporary IMF involving IMF screws and fixation wires were employed to maintain occlusion during plating and subsequently removed post-operatively. It is proposed that the radiolucency was, as a result of the IMF screw placement, penetrating the LR4 root resulting in resorption of the tooth root and development of a radiolucency. This case highlights the importance of careful screw size and physical site location, and placement of IMF screws, as there can be permeant damage to a patient’s dentition.

Keywords: facial trauma, inter-maxillary fixation, mandibular radiolucency, oral and maxillo-facial surgery

Procedia PDF Downloads 136
2101 CompleX-Machine: An Automated Testing Tool Using X-Machine Theory

Authors: E. K. A. Ogunshile

Abstract:

This paper is aimed at creating an Automatic Java X-Machine testing tool for software development. The nature of software development is changing; thus, the type of software testing tools required is also changing. Software is growing increasingly complex and, in part due to commercial impetus for faster software releases with new features and value, increasingly in danger of containing faults. These faults can incur huge cost for software development organisations and users; Cambridge Judge Business School’s research estimated the cost of software bugs to the global economy is $312 billion. Beyond the cost, faster software development methodologies and increasing expectations on developers to become testers is driving demand for faster, automated, and effective tools to prevent potential faults as early as possible in the software development lifecycle. Using X-Machine theory, this paper will explore a new tool to address software complexity, changing expectations on developers, faster development pressures and methodologies, with a view to reducing the huge cost of fixing software bugs.

Keywords: conformance testing, finite state machine, software testing, x-machine

Procedia PDF Downloads 268
2100 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control

Authors: Ming-Yen Chang, Sheng-Hung Ke

Abstract:

This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.

Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride

Procedia PDF Downloads 66
2099 Classification System for Soft Tissue Injuries of Face: Bringing Objectiveness to Injury Severity

Authors: Garg Ramneesh, Uppal Sanjeev, Mittal Rajinder, Shah Sheerin, Jain Vikas, Singla Bhupinder

Abstract:

Introduction: Despite advances in trauma care, a classification system for soft tissue injuries of the face still needs to be objectively defined. Aim: To develop a classification system for soft tissue injuries of the face; that is objective, easy to remember, reproducible, universally applicable, aids in surgical management and helps to develop a structured data that can be used for future use. Material and Methods: This classification system includes those patients that need surgical management of facial injuries. Associated underlying bony fractures have been intentionally excluded. Depending upon the severity of soft tissue injury, these can be graded from 0 to IV (O-Abrasions, I-lacerations, II-Avulsion injuries with no skin loss, III-Avulsion injuries with skin loss that would need graft or flap cover, and IV-complex injuries). Anatomically, the face has been divided into three zones (Zone 1/2/3), as per aesthetic subunits. Zone 1e stands for injury of eyebrows; Zones 2 a/b/c stand for nose, upper eyelid and lower eyelid respectively; Zones 3 a/b/c stand for upper lip, lower lip and cheek respectively. Suffices R and L stand for right or left involved side, B for presence of foreign body like glass or pellets, C for extensive contamination and D for depth which can be graded as D 1/2/3 if depth is still fat, muscle or bone respectively. I is for damage to facial nerve or parotid duct. Results and conclusions: This classification system is easy to remember, clinically applicable and would help in standardization of surgical management of soft tissue injuries of face. Certain inherent limitations of this classification system are inability to classify sutured wounds, hematomas and injuries along or against Langer’s lines.

Keywords: soft tissue injuries, face, avulsion, classification

Procedia PDF Downloads 383
2098 Trial of Resorbable versus Non-Resorbable Sutures for Traumatic Lacerations of the Face: A Demonstration of Maxillo-Facial Trainee Led Research

Authors: R. Botrugno, S Basyuni, G. Nugent, I. Jenkyn, A. Ferro, H. Bennett, C. Hjalmarsson, J. Chu, V. Santhanam

Abstract:

This trainee led randomised controlled trial (RCT) aims to assess various outcomes for resorbable versus non-resorbable sutures for traumatic lacerations to the face. Within this trial of resorbable versus non-resorbable sutures for traumatic lacerations of the face (TORNFace), patient recruitment was facilitated by trainees who were employed at an NHS University Teaching Hospital in the United Kingdom. The trainees received appropriate training prior to recruiting patients for the trial. This included the completion of a national research e-learning module and face-to-face training that was provided locally. The locally delivered training provided an understanding of the eligibility criteria for the trial and the consent process. Existing trainee skills were utilised involving clinical photography to record baseline data and delivering the intervention based on the treatment arm selected. Eligible patients who required primary closure of traumatic lacerations of the face were randomised into one of two treatment arms. These comprised of resorbable (vicryl rapide) or non-resorbable sutures (ethilon). Primarily the cosmetic outcome was assessed. Secondary outcomes included: complications rates, health care economics, and patient-reported outcomes. Remote follow-up of recruited patients utilised photographs of the facial laceration which had received the intervention. These took place at 1 week, 3 months and 6 months post-intervention. This study aims to demonstrate an example of trainee-led research within the specialty of oral and maxillofacial surgery. The available data for the randomised controlled trial will also be presented.

Keywords: laceration, suture, trauma, trial

Procedia PDF Downloads 137
2097 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 142
2096 An Assessment of Impact of Financial Statement Fraud on Profit Performance of Manufacturing Firms in Nigeria: A Study of Food and Beverage Firms in Nigeria

Authors: Wale Agbaje

Abstract:

The aim of this research study is to assess the impact of financial statement fraud on profitability of some selected Nigerian manufacturing firms covering (2002-2016). The specific objectives focused on to ascertain the effect of incorrect asset valuation on return on assets (ROA) and to ascertain the relationship between improper expense recognition and return on assets (ROA). To achieve these objectives, descriptive research design was used for the study while secondary data were collected from the financial reports of the selected firms and website of security and exchange commission. The analysis of covariance (ANCOVA) was used and STATA II econometric method was used in the analysis of the data. Altman model and operating expenses ratio was adopted in the analysis of the financial reports to create a dummy variable for the selected firms from 2002-2016 and validation of the parameters were ascertained using various statistical techniques such as t-test, co-efficient of determination (R2), F-statistics and Wald chi-square. Two hypotheses were formulated and tested using the t-statistics at 5% level of significance. The findings of the analysis revealed that there is a significant relationship between financial statement fraud and profitability in Nigerian manufacturing industry. It was revealed that incorrect assets valuation has a significant positive relationship and so also is the improper expense recognition on return on assets (ROA) which serves as a proxy for profitability. The implication of this is that distortion of asset valuation and expense recognition leads to decreasing profit in the long run in the manufacturing industry. The study therefore recommended that pragmatic policy options need to be taken in the manufacturing industry to effectively manage incorrect asset valuation and improper expense recognition in order to enhance manufacturing industry performance in the country and also stemming of financial statement fraud should be adequately inculcated into the internal control system of manufacturing firms for the effective running of the manufacturing industry in Nigeria.

Keywords: Althman's Model, improper expense recognition, incorrect asset valuation, return on assets

Procedia PDF Downloads 161
2095 High Speed Image Rotation Algorithm

Authors: Hee-Choul Kwon, Hyungjin Cho, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing step in image processing or image pattern recognition. It is implemented with rotation matrix multiplication. However it requires lots of floating point arithmetic operations and trigonometric function calculations, so it takes long execution time. We propose a new high speed image rotation algorithm without two major time-consuming operations. We compare the proposed algorithm with the conventional rotation one with various size images. Experimental results show that the proposed algorithm is superior to the conventional rotation ones.

Keywords: high speed rotation operation, image processing, image rotation, pattern recognition, transformation matrix

Procedia PDF Downloads 506
2094 A Greedy Alignment Algorithm Supporting Medication Reconciliation

Authors: David Tresner-Kirsch

Abstract:

Reconciling patient medication lists from multiple sources is a critical task supporting the safe delivery of patient care. Manual reconciliation is a time-consuming and error-prone process, and recently attempts have been made to develop efficiency- and safety-oriented automated support for professionals performing the task. An important capability of any such support system is automated alignment – finding which medications from a list correspond to which medications from a different source, regardless of misspellings, naming differences (e.g. brand name vs. generic), or changes in treatment (e.g. switching a patient from one antidepressant class to another). This work describes a new algorithmic solution to this alignment task, using a greedy matching approach based on string similarity, edit distances, concept extraction and normalization, and synonym search derived from the RxNorm nomenclature. The accuracy of this algorithm was evaluated against a gold-standard corpus of 681 medication records; this evaluation found that the algorithm predicted alignments with 99% precision and 91% recall. This performance is sufficient to support decision support applications for medication reconciliation.

Keywords: clinical decision support, medication reconciliation, natural language processing, RxNorm

Procedia PDF Downloads 285
2093 An Analysis of Packaging Materials for an Energy-Efficient Wrapping System

Authors: John Sweeney, Martin Leeming, Raj Thaker, Cristina L. Tuinea-Bobe

Abstract:

Shrink wrapping is widely used as a method for secondary packaging to assemble individual items, such as cans or other consumer products, into single packages. This method involves conveying the packages into heated tunnels and so has the disadvantages that it is energy-intensive, and, in the case of aerosol products, potentially hazardous. We are developing an automated packaging system that uses stretch wrapping to address both these problems, by using a mechanical rather than a thermal process. In this study, we present a comparative study of shrink wrapping and stretch wrapping materials to assess the relative capability of candidate stretch wrap polymer film in terms of mechanical response. The stretch wrap materials are of oriented polymer and therefore elastically anisotropic. We are developing material constitutive models that include both anisotropy and nonlinearity. These material models are to be incorporated into computer simulations of the automated stretch wrapping system. We present results showing the validity of these models and the feasibility of applying them in the simulations.

Keywords: constitutive model, polymer, mechanical testing, wrapping system

Procedia PDF Downloads 293
2092 Meta Mask Correction for Nuclei Segmentation in Histopathological Image

Authors: Jiangbo Shi, Zeyu Gao, Chen Li

Abstract:

Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.

Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations

Procedia PDF Downloads 140
2091 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing

Procedia PDF Downloads 286
2090 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio

Procedia PDF Downloads 160
2089 Design and Field Programmable Gate Array Implementation of Radio Frequency Identification for Boosting up Tag Data Processing

Authors: G. Rajeshwari, V. D. M. Jabez Daniel

Abstract:

Radio Frequency Identification systems are used for automated identification in various applications such as automobiles, health care and security. It is also called as the automated data collection technology. RFID readers are placed in any area to scan large number of tags to cover a wide distance. The placement of the RFID elements may result in several types of collisions. A major challenge in RFID system is collision avoidance. In the previous works the collision was avoided by using algorithms such as ALOHA and tree algorithm. This work proposes collision reduction and increased throughput through reading enhancement method with tree algorithm. The reading enhancement is done by improving interrogation procedure and increasing the data handling capacity of RFID reader with parallel processing. The work is simulated using Xilinx ISE 14.5 verilog language. By implementing this in the RFID system, we can able to achieve high throughput and avoid collision in the reader at a same instant of time. The overall system efficiency will be increased by implementing this.

Keywords: antenna, anti-collision protocols, data management system, reader, reading enhancement, tag

Procedia PDF Downloads 306
2088 Application of Pattern Recognition Technique to the Quality Characterization of Superficial Microstructures in Steel Coatings

Authors: H. Gonzalez-Rivera, J. L. Palmeros-Torres

Abstract:

This paper describes the application of traditional computer vision techniques as a procedure for automatic measurement of the secondary dendrite arm spacing (SDAS) from microscopic images. The algorithm is capable of finding the lineal or curve-shaped secondary column of the main microstructure, measuring its length size in a micro-meter and counting the number of spaces between dendrites. The automatic characterization was compared with a set of 1728 manually characterized images, leading to an accuracy of −0.27 µm for the length size determination and a precision of ± 2.78 counts for dendrite spacing counting, also reducing the characterization time from 7 hours to 2 minutes.

Keywords: dendrite arm spacing, microstructure inspection, pattern recognition, polynomial regression

Procedia PDF Downloads 45
2087 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave

Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora

Abstract:

The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.

Keywords: Enterococcus faecalis, image treatment, octave and network neuronal

Procedia PDF Downloads 230
2086 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech

Authors: Monica Gonzalez Machorro

Abstract:

Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.

Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment

Procedia PDF Downloads 127
2085 Visualization-Based Feature Extraction for Classification in Real-Time Interaction

Authors: Ágoston Nagy

Abstract:

This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.

Keywords: gesture recognition, machine learning, real-time interaction, visualization

Procedia PDF Downloads 353
2084 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision

Authors: Zahow Muoftah

Abstract:

Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.

Keywords: computer vision, banana, apple, detection, classification

Procedia PDF Downloads 106
2083 Three Visions of a Conflict: The Case of La Araucania, Chile

Authors: Maria Barriga

Abstract:

The article focuses on the analysis of three images of the last five years that represent different visions of social groups in the context of the so call “Conflicto Mapuche” in la Araucanía, Chile. Using a multimodal social semiotic approach, we analyze the meaning making of these images and the social groups strategies to achieve visibility and recognition in political contexts. We explore the making and appropriation of symbols and concepts and analyze the different strategies that groups use to built hegemonic views. Among these strategies, we compare the use of digital technologies in design these images and the influence of Chilean Estate's vision on the Mapuche political conflict. Finally, we propose visual strategies to improve basic conditions for dialogue and recognition among these groups.

Keywords: visual culture, power, conflict, indigenous people

Procedia PDF Downloads 285
2082 Developmental Psycholinguistic Approach to Conversational Skills - A Continuum of the Sensitivity to Gricean Maxims

Authors: Zsuzsanna Schnell, Francesca Ervas

Abstract:

Background: the experimental pragmatic study confirms a basic tenet in the Relevance theoretical views in language philosophy. It draws up a developmental trajectory of the maxims, revealing the cognitive difficulty of their interpretation, their relative place to each other, and the order they may follow in development. A central claim of the present research is that social-cognitive skills play a significant role in inferential meaning construction. Children passing the False Belief Test are significantly more successful in tasks measuring the recognition of the infringement of conversational maxims. Aims and method: Preschoolers’ conversational skills and pragmatic competence is examined in view of their mentalization skills. In doing so it use a measure of linguistic tasks, containing 5 short scenarios for each Gricean maxim. it measure preschoolers’ ToM performance with a first- and a second order ToM task and compare participants’ ability to recognize the infringement of the Gricean maxims in view of their social cognitive skills. Results: Findings suggest that Theory of Mind has a predictive force of 75% concerning the ability to follow Gricean maxims efficiently. ToM proved to be a significant factor in predicting the group’s performance and success rates in 3 out of 4 maxim infringement recognition tasks: in the Quantity, Relevance and Manner conditions, but not in the Quality trial. Conclusions: the results confirm that children’s communicative competence in social contexts requires the development of higher-order social-cognitive reasoning, and reveal the cognitive effort needed for the recognition of the infringement of each maxim, yielding a continuum of their cognitive difficulty and trajectory of development.

Keywords: maxim infringement recognition, social cognition, Gricean maxims, developmental pragmatics

Procedia PDF Downloads 7
2081 Becoming a Warrior: Conspiracy, Dramaturgy, and Follower Charisma on the Far Right

Authors: Anthony Albanese

Abstract:

While much of the literature concerning Max Weber’s concept of charisma has addressed the importance of the follower’s recognition of and devotion to the charismatic leader, very little has been said about the processes that lead to the development of follower charisma. This article examines this largely overlooked aspect of the concept, as doing so (1) exacts the dynamics behind charisma’s transferability by moving beyond follower-centric models that focus on the recognition of the leader and toward one that emphasizes the follower’s generation and exhibition of charisma, (2) bridges a crucial gap between the rather wanting “losers of modernization” thesis and the social actor’s proclivity to produce stories and self-cast in said stories, (3) presents authoritarian dispositions as a reaction to the weakening effects everydayness have on charisma, and (4) complicates Weber’s formulation by reassessing the role of continually demonstrable mastery. To illustrate these dynamics, one should turn to the January 6th Capitol attack in the United States.

Keywords: max weber, extremism, right-wing populism, charisma

Procedia PDF Downloads 92
2080 Metallacyclodimeric Array Containing Both Suprachannels and Cages: Selective Reservoir and Recognition of Diiodomethane

Authors: Daseul Lee, Jeong Jun Lee, Ok-Sang Jung

Abstract:

Self-assembly of a series of ZnX2 (X- = Cl-, Br-, and I-) with 2,3-bis(4’-nicotinamidephenoxy)naphthalene (L) as a new bidentate pyridyl-donor ligand yields systematic metallacyclodimeric unit, [ZnX2L]2. The supramolecule constitutes a characteristically stacked forming both 1D suprachannels and cages. Weak C-H⋯π and inter-digitated π⋯π interactions are main driving forces in the formation of both suprachannels and cages. The slightly different features between the suprachannel and cage have been investigated by 1H NMR and TG analysis, which solvent quantitatively exchange within only suprachannels. Photo-unstable CH2I2 molecules are stabilized via capturing within suprachannels, which is monitored by UV-Vis spectroscopy. Furthermore, the photoluminescence intensity, from the chromophore naphthyl moiety of [ZnCl2L]2, gradually decreases with the addition of CH2I2. And washing off the CH2I2 by dichloromethane returned the PL intensity back to its approximately original signal.

Keywords: metallacyclodimer, suprachannel, π⋯π interaction, molecular recognition

Procedia PDF Downloads 322
2079 On the Bias and Predictability of Asylum Cases

Authors: Panagiota Katsikouli, William Hamilton Byrne, Thomas Gammeltoft-Hansen, Tijs Slaats

Abstract:

An individual who demonstrates a well-founded fear of persecution or faces real risk of being subjected to torture is eligible for asylum. In Danish law, the exact legal thresholds reflect those established by international conventions, notably the 1951 Refugee Convention and the 1950 European Convention for Human Rights. These international treaties, however, remain largely silent when it comes to how states should assess asylum claims. As a result, national authorities are typically left to determine an individual’s legal eligibility on a narrow basis consisting of an oral testimony, which may itself be hampered by several factors, including imprecise language interpretation, insecurity or lacking trust towards the authorities among applicants. The leaky ground, on which authorities must assess their subjective perceptions of asylum applicants' credibility, questions whether, in all cases, adjudicators make the correct decision. Moreover, the subjective element in these assessments raises questions on whether individual asylum cases could be afflicted by implicit biases or stereotyping amongst adjudicators. In fact, recent studies have uncovered significant correlations between decision outcomes and the experience and gender of the assigned judge, as well as correlations between asylum outcomes and entirely external events such as weather and political elections. In this study, we analyze a publicly available dataset containing approximately 8,000 summaries of asylum cases, initially rejected, and re-tried by the Refugee Appeals Board (RAB) in Denmark. First, we look for variations in the recognition rates, with regards to a number of applicants’ features: their country of origin/nationality, their identified gender, their identified religion, their ethnicity, whether torture was mentioned in their case and if so, whether it was supported or not, and the year the applicant entered Denmark. In order to extract those features from the text summaries, as well as the final decision of the RAB, we applied natural language processing and regular expressions, adjusting for the Danish language. We observed interesting variations in recognition rates related to the applicants’ country of origin, ethnicity, year of entry and the support or not of torture claims, whenever those were made in the case. The appearance (or not) of significant variations in the recognition rates, does not necessarily imply (or not) bias in the decision-making progress. None of the considered features, with the exception maybe of the torture claims, should be decisive factors for an asylum seeker’s fate. We therefore investigate whether the decision can be predicted on the basis of these features, and consequently, whether biases are likely to exist in the decisionmaking progress. We employed a number of machine learning classifiers, and found that when using the applicant’s country of origin, religion, ethnicity and year of entry with a random forest classifier, or a decision tree, the prediction accuracy is as high as 82% and 85% respectively. tentially predictive properties with regards to the outcome of an asylum case. Our analysis and findings call for further investigation on the predictability of the outcome, on a larger dataset of 17,000 cases, which is undergoing.

Keywords: asylum adjudications, automated decision-making, machine learning, text mining

Procedia PDF Downloads 95
2078 Spectrum of Bacteria Causing Oral and Maxillofacial Infections and Their Antibiotic Susceptibility among Patients Attending Muhimbili National Hospital

Authors: Sima E. Rugarabamu, Mecky I. Matee, Elison N. M. Simon

Abstract:

Background: In Tanzania bacteriological studies of etiological agents of oro-facial infections are very limited, and very few have investigated anaerobes. The aim of this study was to determine the spectrum of bacterial agents involved in oral and maxillofacial infections in patients attending Muhimbili National Hospital, Dar-es-salaam, Tanzania. Method: This was a hospital based descriptive cross-sectional study that was conducted in the Department of Oral and Maxillofacial Surgery of the Muhimbili National Hospital in Dar es Salaam, Tanzania from 1st January 2014 to 31st August 2014. Seventy (70) patients with various forms of oral and maxillofacial infections who were recruited for the study. The study participants were interviewed using a prepared questionnaire after getting their consent. Pus aspirate was cultured on Blood agar, Chocolate Agar, MacConkey agar and incubated aerobically at 37°C. Imported blood agar was used for anaerobic culture whereby they were incubated at 37°Cin anaerobic jars in an atmosphere of generated using commercial gas-generating kits in accordance with manufacturer’s instructions. Plates were incubated at 37°C for 24 hours (For aerobic culture and 48 hours for anaerobic cultures). Gram negative rods were identified using API 20E while all other isolates were identified by conventional biochemical tests. Antibiotic sensitivity testing for isolated aerobic and anaerobic bacteria was detected by the disk diffusion, agar dilution and E-test using routine and commercially available antibiotics used to treat oral facial infections. Results: This study comprised of 41 (58.5%) males and 29 (41.5%) females with a mean age of 32 years SD +/-15.1 and a range of 19 to 70 years. A total of 161 bacteria strains were isolated from specimens obtained from 70 patients which were an average of 2.3 isolates per patient. Of these 103 were aerobic organism and 58 were strict anaerobes. A complex mix of strict anaerobes and facultative anaerobes accounted for 87% of all infections.The most frequent aerobes isolated was streptococcus spp 70 (70%) followed by Staphylococcus spp 18 (18%). Other organisms such as Klebsiella spp 4 (4%), Proteus spp 5 (5%) and Pseudomonas spp 2 (2%) were also seen. The anaerobic group was dominated by Prevotella spp 25 (43%) followed by Peptostreptococcus spp 18 (31%); other isolates were Pseudomonas spp 2 (1%), black pigmented Pophyromonas spp 4 (5%), Fusobacterium spp 3 (3%) and Bacteroides spp 5 (8%). Majority of these organisms were sensitive to Amoxicillin (98%), Gentamycin (89%), and Ciprofloxacin (100%). A 40% resistance to metronidazole was observed in Bacteroides spp otherwise this drug and others displayed good activity against anaerobes. Conclusions: Oral and maxillofacial facial infections at Muhimbili National Hospital are mostly caused by streptococcus spp and Prevotella spp. Strict anaerobes accounted for 36% of all isolates. The profile of isolates should assist in selecting empiric therapy for infections of the oral and maxillofacial region. Inclusion of antimicrobial agents against anaerobic bacteria is highly recommended.

Keywords: bacteria, oral and maxillofacial infections, antibiotic susceptibility, Tanzania

Procedia PDF Downloads 331
2077 Improving Urban Mobility: Analyzing Impacts of Connected and Automated Vehicles on Traffic and Emissions

Authors: Saad Roustom, Hajo Ribberink

Abstract:

In most cities in the world, traffic has increased strongly over the last decades, causing high levels of congestion and deteriorating inner-city air quality. This study analyzes the impact of connected and automated vehicles (CAVs) on traffic performance and greenhouse gas (GHG) emissions under different CAV penetration rates in mixed fleet environments of CAVs and driver-operated vehicles (DOVs) and under three different traffic demand levels. Utilizing meso-scale traffic simulations of the City of Ottawa, Canada, the research evaluates the traffic performance of three distinct CAV driving behaviors—Cautious, Normal, and Aggressive—at penetration rates of 25%, 50%, 75%, and 100%, across three different traffic demand levels. The study employs advanced correlation models to estimate GHG emissions. The results reveal that Aggressive and Normal CAVs generally reduce traffic congestion and GHG emissions, with their benefits being more pronounced at higher penetration rates (50% to 100%) and elevated traffic demand levels. On the other hand, Cautious CAVs exhibit an increase in both traffic congestion and GHG emissions. However, results also show deteriorated traffic flow conditions when introducing 25% penetration rates of any type of CAVs. Aggressive CAVs outperform all other driving at improving traffic flow conditions and reducing GHG emissions. The findings of this study highlight the crucial role CAVs can play in enhancing urban traffic performance and mitigating the adverse impact of transportation on the environment. This research advocates for the adoption of effective CAV-related policies by regulatory bodies to optimize traffic flow and reduce GHG emissions. By providing insights into the impact of CAVs, this study aims to inform strategic decision-making and stimulate the development of sustainable urban mobility solutions.

Keywords: connected and automated vehicles, congestion, GHG emissions, mixed fleet environment, traffic performance, traffic simulations

Procedia PDF Downloads 89
2076 Vicarious Cues in Portraying Emotion: Musicians' Self-Appraisal

Authors: W. Linthicum-Blackhorse, P. Martens

Abstract:

This present study seeks to discover attitudinal commonalities and differences within a musician population relative to the communication of emotion via music. We hypothesized that instrument type, as well as age and gender, would bear significantly on musicians’ opinions. A survey was administered to 178 participants; 152 were current music majors (mean age 20.3 years, 62 female) and 26 were adult participants in a community choir (mean age 54.0 years, 12 female). The adult participants were all vocalists, while student participants represented the full range of orchestral instruments. The students were grouped by degree program, (performance, music education, or other) and instrument type (voice, brass, woodwinds, strings, percussion). The survey asked 'How important are each of the following areas to you for portraying emotion in music?' Participants were asked to rate each of 15 items on a scale of 1 (not at all important) to 10 (very important). Participants were also instructed to leave blank any item that they did not understand. The 15 items were: dynamic contrast, overall volume, phrasing, facial expression, staging (placement), pitch accuracy, tempo changes, bodily movement, your mood, your attitude, vibrato, rubato, stage/room lighting, clothing type, and clothing color. Contrary to our hypothesis, there was no overall effect of gender or age, and neither did any single response item show a significant difference due to these subject parameters. Among the student participants, however, one-way ANOVA revealed a significant effect of degree program on the rated importance of four items: dynamic contrast, tempo changes, vibrato, and rubato. Significant effects of instrument type were found in the responses to eight items: facial expression, staging, body movement, vibrato, rubato, lighting, clothing type, and clothing color. Post hoc comparisons (Tukey) show that some variation follows from obvious differences between instrument types (e.g. string players are more concerned with vibrato than everyone but woodwind players; vocalists are significantly more concerned with facial expression than everyone but string players), but other differences could point to communal mindsets toward vicarious cues within instrument type. These mindsets could be global (e.g. brass players deeming body movement significantly less important than string players, being less often featured as soloists and appearing less often at the front of the stage) or local (e.g. string players being significantly more concerned than all other groups about both clothing color and type, perhaps due to the strongly-expressed opinions of specific teachers). Future work will attempt to identify the source of these self-appraisals, whether enculturated via explicit pedagogy, or whether absorbed from individuals' observations and performance experience.

Keywords: performance, vicarious cues, communication, emotion

Procedia PDF Downloads 110
2075 Automated Building Internal Layout Design Incorporating Post-Earthquake Evacuation Considerations

Authors: Sajjad Hassanpour, Vicente A. González, Yang Zou, Jiamou Liu

Abstract:

Earthquakes pose a significant threat to both structural and non-structural elements in buildings, putting human lives at risk. Effective post-earthquake evacuation is critical for ensuring the safety of building occupants. However, current design practices often neglect the integration of post-earthquake evacuation considerations into the early-stage architectural design process. To address this gap, this paper presents a novel automated internal architectural layout generation tool that optimizes post-earthquake evacuation performance. The tool takes an initial plain floor plan as input, along with specific requirements from the user/architect, such as minimum room dimensions, corridor width, and exit lengths. Based on these inputs, firstly, the tool randomly generates different architectural layouts. Secondly, the human post-earthquake evacuation behaviour will be thoroughly assessed for each generated layout using the advanced Agent-Based Building Earthquake Evacuation Simulation (AB2E2S) model. The AB2E2S prototype is a post-earthquake evacuation simulation tool that incorporates variables related to earthquake intensity, architectural layout, and human factors. It leverages a hierarchical agent-based simulation approach, incorporating reinforcement learning to mimic human behaviour during evacuation. The model evaluates different layout options and provides feedback on evacuation flow, time, and possible casualties due to earthquake non-structural damage. By integrating the AB2E2S model into the automated layout generation tool, architects and designers can obtain optimized architectural layouts that prioritize post-earthquake evacuation performance. Through the use of the tool, architects and designers can explore various design alternatives, considering different minimum room requirements, corridor widths, and exit lengths. This approach ensures that evacuation considerations are embedded in the early stages of the design process. In conclusion, this research presents an innovative automated internal architectural layout generation tool that integrates post-earthquake evacuation simulation. By incorporating evacuation considerations into the early-stage design process, architects and designers can optimize building layouts for improved post-earthquake evacuation performance. This tool empowers professionals to create resilient designs that prioritize the safety of building occupants in the face of seismic events.

Keywords: agent-based simulation, automation in design, architectural layout, post-earthquake evacuation behavior

Procedia PDF Downloads 104