Search results for: architectural training
1260 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm
Procedia PDF Downloads 3041259 Emotional Intelligence as Predictor of Academic Success among Third Year College Students of PIT
Authors: Sonia Arradaza-Pajaron
Abstract:
College students are expected to engage in an on-the-job training or internship for completion of a course requirement prior to graduation. In this scenario, they are exposed to the real world of work outside their training institution. To find out their readiness both emotionally and academically, this study has been conducted. A descriptive-correlational research design was employed and random sampling technique method was utilized among 265 randomly selected third year college students of PIT, SY 2014-15. A questionnaire on Emotional Intelligence (bearing the four components namely; emotional literacy, emotional quotient competence, values and beliefs and emotional quotient outcomes) was fielded to the respondents and GWA was extracted from the school automate. Data collected were statistically treated using percentage, weighted mean and Pearson-r for correlation. Results revealed that respondents’ emotional intelligence level is moderately high while their academic performance is good. A high significant relationship was found between the EI component; Emotional Literacy and their academic performance while only significant relationship was found between Emotional Quotient Outcomes and their academic performance. Therefore, if EI influences academic performance significantly when correlated, a possibility that their OJT performance can also be affected either positively or negatively. Thus, EI can be considered predictor of their academic and academic-related performance. Based on the result, it is then recommended that the institution would try to look deeply into the consideration of embedding emotional intelligence as part of the (especially on Emotional Literacy and Emotional Quotient Outcomes of the students) college curriculum. It can be done if the school shall have an effective Emotional Intelligence framework or program manned by qualified and competent teachers, guidance counselors in different colleges in its implementation.Keywords: academic performance, emotional intelligence, college students, academic success
Procedia PDF Downloads 3741258 Modern Technology-Based Methods in Neurorehabilitation for Social Competence Deficit in Children with Acquired Brain Injury
Authors: M. Saard, A. Kolk, K. Sepp, L. Pertens, L. Reinart, C. Kööp
Abstract:
Introduction: Social competence is often impaired in children with acquired brain injury (ABI), but evidence-based rehabilitation for social skills has remained undeveloped. Modern technology-based methods create effective and safe learning environments for pediatric social skills remediation. The aim of the study was to implement our structured model of neuro rehab for socio-cognitive deficit using multitouch-multiuser tabletop (MMT) computer-based platforms and virtual reality (VR) technology. Methods: 40 children aged 8-13 years (yrs) have participated in the pilot study: 30 with ABI -epilepsy, traumatic brain injury and/or tic disorder- and 10 healthy age-matched controls. From the patients, 12 have completed the training (M = 11.10 yrs, SD = 1.543) and 20 are still in training or in the waiting-list group (M = 10.69 yrs, SD = 1.704). All children performed the first individual and paired assessments. For patients, second evaluations were performed after the intervention period. Two interactive applications were implemented into rehabilitation design: Snowflake software on MMT tabletop and NoProblem on DiamondTouch Table (DTT), which allowed paired training (2 children at once). Also, in individual training sessions, HTC Vive VR device was used with VR metaphors of difficult social situations to treat social anxiety and train social skills. Results: At baseline (B) evaluations, patients had higher deficits in executive functions on the BRIEF parents’ questionnaire (M = 117, SD = 23.594) compared to healthy controls (M = 22, SD = 18.385). The most impaired components of social competence were emotion recognition, Theory of Mind skills (ToM), cooperation, verbal/non-verbal communication, and pragmatics (Friendship Observation Scale scores only 25-50% out of 100% for patients). In Sentence Completion Task and Spence Anxiety Scale, the patients reported a lack of friends, behavioral problems, bullying in school, and social anxiety. Outcome evaluations: Snowflake on MMT improved executive and cooperation skills and DTT developed communication skills, metacognitive skills, and coping. VR, video modelling and role-plays improved social attention, emotional attitude, gestural behaviors, and decreased social anxiety. NEPSY-II showed improvement in Affect Recognition [B = 7, SD = 5.01 vs outcome (O) = 10, SD = 5.85], Verbal ToM (B = 8, SD = 3.06 vs O = 10, SD = 4.08), Contextual ToM (B = 8, SD = 3.15 vs O = 11, SD = 2.87). ToM Stories test showed an improved understanding of Intentional Lying (B = 7, SD = 2.20 vs O = 10, SD = 0.50), and Sarcasm (B=6, SD = 2.20 vs O = 7, SD = 2.50). Conclusion: Neurorehabilitation based on the Structured Model of Neurorehab for Socio-Cognitive Deficit in children with ABI were effective in social skills remediation. The model helps to understand theoretical connections between components of social competence and modern interactive computerized platforms. We encourage therapists to implement these next-generation devices into the rehabilitation process as MMT and VR interfaces are motivating for children, thus ensuring good compliance. Improving children’s social skills is important for their and their families’ quality of life and social capital.Keywords: acquired brain injury, children, social skills deficit, technology-based neurorehabilitation
Procedia PDF Downloads 1201257 Neighborhood of Dwelling with Historical Architectural Elements – Case Study: Khorasgan' Stream of Isfahan
Authors: M.J. Seddighi, A. Moradchelleh, M. Keyvan
Abstract:
The ultimate goal in building a city is to provide pleasant, comfortable and nurturing environment as a context of public life. City environment establishes strong connection with people and their surrounding habitant, acting as relevance in social interactions between citizens itself. Urban environment and appropriate municipal facilities are the only way for proper communication between city and citizens and also citizens themselves. There is a need for complement elements between buildings and constructions to settling city life through which the move, comfort, reactions and anxiety will adjust and reflect the spirit to the city. In the surging development of society, urban’ spaces are encountered evolution, sometimes causing the symbols to fade and waste, and as a result, leading to destroy belongs among humans and their physical liquidate. Houses and living spaces exhibit materialistic reflection of life style. In other words, way of life makes the symbolic essence of living spaces. In addition, it is of sociocultural factor of lifestyle, consisting the concepts and culture, morality, worldview, and national character. Culture is responsible for some crucial meaningful needs which can be wide because they depend on various causes such as perception and interpretation of believes, philosophy of life, interaction with neighbors and protection against climate and enemies. The bilateral relationship between human and nature is the main factor that needs to be properly addressed. It is because of the fact that the approach which is taken against landscape and nature has a pertinent influence on creation and shaping the structure of a house. The first response of human in tackling the environment is to build a “shelter” and place as dwelling. This has been a crucial factor in all time periods. In the proposed study, dwelling in Khorasgan’ Stream, as an area located in one of the important historical city of Iran, has been studied. Khorasgan’ Stream is the basic constituent elements of the present architectural form of Isfahan. The influence of Islamic spiritual culture and neighborhood with the historical elements on the dwelling of the selected location, subsequently on other regions of the town are presented.Keywords: historical architectural elements, dwelling' neighborhood, Khorasgan’ Stream of Isfahan, architecture
Procedia PDF Downloads 4121256 Effect of Relaxation Techniques on Immunological Properties of Breast Milk
Authors: Ahmed Ali Torad
Abstract:
Background: Breast feeding maintains the maternal fetal immunological link, favours the transmission of immune-competence from the mother to her infant and is considered an important contributory factor to the neo natal immune defense system. Purpose: This study was conducted to investigate the effect of relaxation techniques on immunological properties of breast milk. Subjects and Methods: Thirty breast feeding mothers with a single, mature infant without any complications participated in the study. Subjects will be recruited from outpatient clinic of obstetric department of El Kasr El-Aini university hospital in Cairo. Mothers were randomly divided into two equal groups using coin toss method: Group (A) (relaxation training group) (experimental group): It will be composed of 15 women who received relaxation training program in addition to breast feeding and nutritional advices and Group (B) (control group): It will be composed of 15 women who received breast feeding and nutritional advices only. Results: The results showed that mean mother’s age was 28.4 ± 3.68 and 28.07 ± 4.09 for group A and B respectively, there were statistically significant differences between pre and post values regarding cortisol level, IgA level, leucocyte count and infant’s weight and height and there is only statistically significant differences between both groups regarding post values of all immunological variables (cortisol – IgA – leucocyte count). Conclusion: We could conclude that there is a statistically significant effect of relaxation techniques on immunological properties of breast milk.Keywords: relaxation, breast, milk, immunology, lactation
Procedia PDF Downloads 1181255 Iris Cancer Detection System Using Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera
Procedia PDF Downloads 5031254 Proposed Design Principles for Low-Income Housing in South Africa
Authors: Gerald Steyn
Abstract:
Despite the huge number of identical, tiny, boxy, freestanding houses built by the South African government after the advent of democracy in 1994, squatter camps continue to mushroom, and there is no evidence that the backlog is being reduced. Not only is the wasteful low-density detached-unit approach of the past being perpetuated, but the social, spatial, and economic marginalization is worse than before 1994. The situation is precarious since squatters are vulnerable to fires and flooding. At the same time, the occupants of the housing schemes are trapped far from employment opportunities or any public amenities. Despite these insecurities, the architectural, urban design, and city planning professions are puzzlingly quiet. Design projects address these issues only at the universities, albeit inevitably with somewhat Utopian notions. Geoffrey Payne, the renowned urban housing and urban development consultant and researcher focusing on issues in the Global South, once proclaimed that “we do not have a housing problem – we have a settlement problem.” This dictum was used as the guiding philosophy to conceptualize urban design and architectural principles that foreground the needs of low-income households and allow them to be fully integrated into the larger conurbation. Information was derived from intensive research over two decades, involving frequent visits to informal settlements, historic Black townships, and rural villages. Observations, measured site surveys, and interviews resulted in several scholarly articles from which a set of desirable urban and architectural criteria could be extracted. To formulate culturally appropriate design principles, existing vernacular and informal patterns were analyzed, reconciled with contemporary designs that align with the requirements for the envisaged settlement attributes, and reimagined as residential design principles. Five interrelated design principles are proposed, ranging in scale from (1) Integrating informal settlements into the city, (2) linear neighborhoods, (3) market streets as wards, (4) linear neighborhoods, and (5) typologies and densities for clustered and aggregated patios and courtyards. Each design principle is described, first in terms of its context and associated issues of concern, followed by a discussion of the patterns available to inform a possible solution, and finally, an explanation and graphic illustration of the proposed design. The approach is predominantly bottom-up since each of the five principles is unfolded from existing informal and vernacular practices studied in situ. They are, however, articulated and represented in terms of contemporary design language. Contrary to an idealized vision of housing for South Africa’s low-income urban households, this study proposes actual principles for critical assessment by peers in the tradition of architectural research in design.Keywords: culturally appropriate design principles, informal settlements, South Africa’s housing backlog, squatter camps
Procedia PDF Downloads 491253 Visual Analysis of Picturesque Urban Landscape Case of Sultanahmet, Istanbul
Authors: Saidu Dalhat Dansadau, Aykut Karaman
Abstract:
The integration of photography into architecture was a pivotal point in the journey of architectural representation; photography proved itself useful for the betterment of architecture early on, as well as established itself as a necessary tool in the realm of architecture. The main study this paper was extracted from looked into the inquiry of knowing exactly what are the key picturesque locations/structures in Sultanahmet, Fatih-Istanbul, and how can their spatial distribution and cultural significance be characterized and mapped for urban design and development as well as the secondary objective, of which this paper focuses on, is to “Investigate the role of perception in urban environments and how photography serves as a tool for capturing and conveying the perception of Sultanahmet's picturesque structures/locations”. The study achieved these objectives by utilizing methodologies such as geo-tagged photography, sequential photography, social media metadata extraction, GIS mapping, spatial analysis, and visual analysis, focusing on the historically rich and culturally significant study area of Sultanahmet, Fatih-Istanbul. By looking at potential structures/locations and then dissecting their special distribution and cultural significance, the main study was able to achieve the main objective as well as unveil a more nuanced understanding of the dynamics between photography, architecture, and urban design with respect to perception using sequential photography.Keywords: perception, architectural photography, picturesque, urban design, Sultanahmet, Istanbul
Procedia PDF Downloads 451252 The Effect of a 12 Week Rhythmic Movement Intervention on Selected Biomotor Abilities on Academy Rugby Players
Authors: Jocelyn Solomons, Kraak
Abstract:
Rhythmic movement, also referred to as “dance”, involves the execution of different motor skills as well as the integration and sequencing of actions between limbs, timing and spatial precision. The aim of this study was therefore to investigate and compare the effect of a 16-week rhythmic movement intervention on flexibility, dynamic balance, agility, power and local muscular endurance of academy rugby players in the Western Cape, according to positional groups. Players (N ¼ 54) (age 18.66 0.81 years; height 1.76 0.69 cm; weight 76.77 10.69 kg), were randomly divided into a treatment-control [TCA] (n ¼ 28) and a control-treatment [CTB] (n ¼ 26) group. In this crossover experimental design, the interaction effect of the treatment order and the treatment time between the TCA and CTB group, was determined. Results indicated a statistically significant improvement (p < 0.05) in agility2 (p ¼ 0.06), power2 (p ¼ 0.05), local muscular endurance1 (p ¼ 0.01) & 3 (p ¼ 0.01) and dynamic balance (p < 0.01). Likewise, forwards and backs also showed statistically significant improvements (p < 0.05) per positional groups. Therefore, a rhythmic movement intervention has the potential to improve rugby-specific bio-motor skills and furthermore, improve positional specific skills should it be designed with positional groups in mind. Future studies should investigate, not only the effect of rhythmic movement on improving specific rugby bio-motor skills, but the potential of its application as an alternative training method during off- season (or detraining phases) or as a recovery method.Keywords: agility, dance, dynamic balance, flexibility, local muscular endurance, power, training
Procedia PDF Downloads 621251 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources
Authors: Mustafa Alhamdi
Abstract:
Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification
Procedia PDF Downloads 1501250 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging
Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.Keywords: breast, machine learning, MRI, radiomics
Procedia PDF Downloads 2671249 Competence on Learning Delivery Modes and Performance of Physical Education Teachers in Senior High Schools in Davao
Authors: Juvanie C. Lapesigue
Abstract:
Worldwide school closures result from a significant public health crisis that has affected the nation and the entire world. It has affected students, educators, educational organizations globally, and many other aspects of society. Academic institutions worldwide teach students using diverse approaches of various learning delivery modes. This paper investigates the competence and performance of physical education teachers using various learning delivery modes, including Distance learning, Blended Learning, and Homeschooling during online distance education. To identify the Gap between their age generation using various learning delivery that affects teachers' preparation for distance learning and evaluates how these modalities impact teachers’ competence and performance in the case of a pandemic. The respondents were the Senior High School teachers of the Department of Education who taught in Davao City before and during the pandemic. Purposive sampling was utilized on 61 Senior High School Teachers in Davao City Philippines. The result indicated that teaching performance based on pedagogy and assessment has significantly affected teaching performance in teaching physical education, particularly those Non-PE teachers teaching physical education subjects. It should be supplied with enhancement training workshops to help them be more successful in preparation in terms of teaching pedagogy and assessment in the following norm. Hence, a proposed unique training design for non-P.E. Teachers has been created to improve the teachers’ performance in terms of pedagogy and assessment in teaching P.E subjects in various learning delivery modes in the next normal.Keywords: distance learning, learning delivery modes, P.E teachers, senior high school, teaching competence, teaching performance
Procedia PDF Downloads 941248 A Prediction of Electrical Cost for High-Rise Building Construction
Authors: Picha Sriprachan
Abstract:
The increase in electricity prices affects the cost of high-rise building construction. The objectives of this research are to study the electrical cost, trend of electrical cost and to forecast electrical cost of high-rise building construction. The methods of this research are: 1) to study electrical payment formats, cost data collection methods, and the factors affecting electrical cost of high-rise building construction, 2) to study the quantity and trend of cumulative percentage of the electrical cost, and 3) to forecast the electrical cost for different types of high-rise buildings. The results of this research show that the average proportion between electrical cost and the value of the construction project is 0.87 percent. The proportion of electrical cost for residential, office and commercial, and hotel buildings are closely proportional. If construction project value increases, the proportion of electrical cost and the value of the construction project will decrease. However, there is a relationship between the amount of electrical cost and the value of the construction project. During the structural construction phase, the amount of electrical cost will increase and during structural and architectural construction phase, electrical cost will be maximum. The cumulative percentage of the electrical cost is related to the cumulative percentage of the high-rise building construction cost in the same direction. The amount of service space of the building, number of floors and the duration of the construction affect the electrical cost of construction. The electrical cost of construction forecasted by using linear regression equation is close to the electrical cost forecasted by using the proportion of electrical cost and value of the project.Keywords: high-rise building construction, electrical cost, construction phase, architectural phase
Procedia PDF Downloads 3901247 Count of Trees in East Africa with Deep Learning
Authors: Nubwimana Rachel, Mugabowindekwe Maurice
Abstract:
Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization
Procedia PDF Downloads 721246 Diagrid Structural System
Authors: K. Raghu, Sree Harsha
Abstract:
The interrelationship between the technology and architecture of tall buildings is investigated from the emergence of tall buildings in late 19th century to the present. In the late 19th century early designs of tall buildings recognized the effectiveness of diagonal bracing members in resisting lateral forces. Most of the structural systems deployed for early tall buildings were steel frames with diagonal bracings of various configurations such as X, K, and eccentric. Though the historical research a filtering concept is developed original and remedial technology- through which one can clearly understand inter-relationship between the technical evolution and architectural esthetic and further stylistic transition buildings. Diagonalized grid structures – “diagrids” - have emerged as one of the most innovative and adaptable approaches to structuring buildings in this millennium. Variations of the diagrid system have evolved to the point of making its use non-exclusive to the tall building. Diagrid construction is also to be found in a range of innovative mid-rise steel projects. Contemporary design practice of tall buildings is reviewed and design guidelines are provided for new design trends. Investigated in depths are the behavioral characteristics and design methodology for diagrids structures, which emerge as a new direction in the design of tall buildings with their powerful structural rationale and symbolic architectural expression. Moreover, new technologies for tall building structures and facades are developed for performance enhancement through design integration, and their architectural potentials are explored. By considering the above data the analysis and design of 40-100 storey diagrids steel buildings is carried out using E-TABS software with diagrids of various angle to be found for entire building which will be helpful to reduce the steel requirement for the structure. The present project will have to undertake wind analysis, seismic analysis for lateral loads acting on the structure due to wind loads, earthquake loads, gravity loads. All structural members are designed as per IS 800-2007 considering all load combination. Comparison of results in terms of time period, top storey displacement and inter-storey drift to be carried out. The secondary effect like temperature variations are not considered in the design assuming small variation.Keywords: diagrid, bracings, structural, building
Procedia PDF Downloads 3871245 Collaborative Platform for Learning Basic Programming (Algorinfo)
Authors: Edgar Mauricio Ruiz Osuna, Claudia Yaneth Herrera Bolivar, Sandra Liliana Gomez Vasquez
Abstract:
The increasing needs of professionals with skills in software development in industry are incremental, therefore, the relevance of an educational process in line with the strengthening of these competencies, are part of the responsibilities of universities with careers related to the area of Informatics and Systems. In this sense, it is important to consider that in the National Science, Technology and Innovation Plan for the development of the Electronics, Information Technologies and Communications (2013) sectors, it is established as a weakness in the SWOT Analysis of the Software sector and Services, Deficiencies in training and professional training. Accordingly, UNIMINUTO's Computer Technology Program has addressed the analysis of students' performance in software development, identifying various problems such as dropout in programming subjects, academic averages, as well as deficiencies in strategies and competencies developed in the area of programming. As a result of this analysis, it was determined to design a collaborative learning platform in basic programming using heat maps as a tool to support didactic feedback. The pilot phase allows to evaluate in a programming course the ALGORINFO platform as a didactic resource, through an interactive and collaborative environment where students can develop basic programming practices and in turn, are fed back through the analysis of time patterns and difficulties frequent in certain segments or program cycles, by means of heat maps. The result allows the teacher to have tools to reinforce and advise critical points generated on the map, so that students and graduates improve their skills as software developers.Keywords: collaborative platform, learning, feedback, programming, heat maps
Procedia PDF Downloads 1621244 Investigating Teaching and Learning to Meet the Needs of Deaf Children in Physical Education
Authors: Matthew Fleet, Savannah Elliott
Abstract:
Background: This study investigates the use of teaching and learning to meet the needs of deaf children in the UK PE curriculum. Research has illustrated that deaf students in mainstream schools do not receive sufficient support from teachers in lessons. This research examines the impact of different types of hearing loss and its implications within Physical Education (PE) in secondary schools. Purpose: The purpose of this study is to highlight challenges PE teachers face and make recommendations for more inclusive learning environments for deaf students. The aims and objectives of this research are: to critically analyse the current situation for deaf students accessing the PE curriculum, by identifying barriers deaf students face; to identify the challenges for PE teachers in providing appropriate support for deaf students; to provide recommendations for deaf awareness training, to enhance PE teachers’ understanding and knowledge. Method: Semi-structured interviews collected data from both PE teachers and deaf students, to examine: the support available and coping mechanisms deaf students use when they do not receive support; strategies PE teachers use to provide support for deaf students; areas for improvement and potential strategies PE teachers can apply to their practice. Results & Conclusion: The findings from the study concluded that PE teachers were inconsistent in providing appropriate support for deaf students in PE lessons. Evidence illustrated that PE teachers had limited exposure to deaf awareness training. This impacted on their ability to support deaf students effectively. Communication was a frequent barrier for deaf students, affecting their ability to retain and learn information. Also, the use of assistive technology was found to be compromised in practical PE lessons.Keywords: physical education, deaf, inclusion, education
Procedia PDF Downloads 1551243 Motion Capture Based Wizard of Oz Technique for Humanoid Robot
Authors: Rafal Stegierski, Krzysztof Dmitruk
Abstract:
The paper focuses on robotic tele-presence system build around humanoid robot operated with controller-less Wizard of Oz technique. Proposed solution gives possibility to quick start acting as a operator with short, if any, initial training.Keywords: robotics, motion capture, Wizard of Oz, humanoid robots, human robot interaction
Procedia PDF Downloads 4811242 Visualizing the Future of New York’s Southern Tier: Engaging Students to Help Create Sustainable Communities
Authors: William C. Dean
Abstract:
In the pedagogical sequence of the four- and five-year architectural programs at Alfred State, the fourth-year Urban Design Studio constitutes the first course where students directly explore design issues in the urban context. It is the first large-scale, community-based service learning project for most of the participating students. The students learn key lessons that include the benefits of working both individually and in groups of different sizes toward a common goal, accepting - and responding creatively too - criticism from stakeholders at different points in the project, and recognizing the role that local politics and activism can play in planning for community development. Above all, students are exposed to the importance of good planning in relation to preservation and community revitalization. The purpose of this paper is to discuss the use of community-based service-learning projects in undergraduate architectural education to promote student civic engagement as a means of helping communities visualize potential solutions for revitalizing their neighborhoods and business districts. A series of case studies will be presented in terms of challenges that were encountered, opportunities for student engagement and leadership, and the feasibility of sustainable community development resulting from those projects. The reader will be encouraged to consider how they can recognize needs within their own communities that could benefit from the assistance of architecture students and faculty.Keywords: urban design, service-learning, civic engagement, community revitalization
Procedia PDF Downloads 951241 Audit on Compliance with Ottawa Ankle Rules in Ankle Radiograph Requests
Authors: Daud Muhammad
Abstract:
Introduction: Ankle radiographs are frequently requested in Emergency Departments (ED) for patients presenting with traumatic ankle pain. The Ottawa Ankle Rules (OAR) serve as a clinical guideline to determine the necessity of these radiographs, aiming to reduce unnecessary imaging. This audit was conducted to evaluate the adequacy of clinical information provided in radiograph requests in relation to the OAR. Methods: A retrospective analysis was performed on 50 consecutive ankle radiograph requests under ED clinicians' names for patients aged above 5 years, specifically excluding follow-up radiographs for known fractures. The study assessed whether the provided clinical information met the criteria outlined by the OAR. Results: The audit revealed that none of the 50 radiograph requests contained sufficient information to satisfy the Ottawa Ankle Rules. Furthermore, 10 out of the 50 radiographs (20%) identified fractures. Discussion: The findings indicate a significant lack of adherence to the OAR, suggesting potential overuse of radiography and unnecessary patient exposure to radiation. This non-compliance may also contribute to increased healthcare costs and resource utilization, as well as possible delays in diagnosis and treatment. Recommendations: To address these issues, the following recommendations are proposed: (1) Education and Training: Enhance awareness and training among ED clinicians regarding the OAR. (2) Standardised Request Forms: Implement changes to imaging request forms to mandate relevant information according to the OAR. (3) Scan Vetting: Promote awareness among radiographers to discuss the appropriateness of scan requests with clinicians. (4) Regular re-audits should be conducted to monitor improvements in compliance.Keywords: Ottawa ankle rules, ankle radiographs, emergency department, traumatic pain
Procedia PDF Downloads 451240 A “Best Practice” Model for Physical Education in the BRICS Countries
Authors: Vasti Oelofse, Niekie van der Merwe, Dorita du Toit
Abstract:
This study addresses the need for a unified best practice model for Physical Education across BRICS nations, as current research primarily offers individual country recommendations. Drawing on relevant literature within the framework of Bronfenbrenner’s Ecological Systems Theory, as well as data from open-ended questionnaires completed by Physical Education experts from the BRICS countries, , the study develops a best practice model based on identified challenges and effective practices in Physical Education. A model is proposed that incorporates flexible and resource-efficient strategies tailored to address PE challenges specific to these countries, enhancing outcomes for learners, empowering teachers, and fostering systemic collaboration among BRICS members. The proposed model comprises six key areas: “Curriculum and policy requirements”, “General approach”, “Theoretical basis”, “Strategies for presenting content”, “Teacher training”, and “Evaluation”. The “Strategies for presenting program content” area addresses both well-resourced and poorly resourced schools, adapting curriculum, teaching strategies, materials, and learner activities for varied socio-economic contexts. The model emphasizes a holistic approach to learner development, engaging environments, and continuous teacher training. A collaborative approach among BRICS countries, focusing on shared best practices and continuous improvement, is vital for the model's successful implementation, enhancing Physical Education programs and outcomes across these nations.Keywords: BRICS countries, physical education, best practice model, ecological systems theory
Procedia PDF Downloads 121239 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 1061238 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7
Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit
Abstract:
In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety
Procedia PDF Downloads 681237 Nalanda ‘School of Joy’: Teaching Learning Strategies and Support System, for Implementing Child-Friendly Education in Bangladesh
Authors: Sufia Ferdousi
Abstract:
Child-friendly education (CFE) is very important for the children, especially the early year’s students, because it fosters the holistic development of a child. Teacher plays a key role in creating child-friendly education. This study intends to learn about child-friendly education in Bangladesh. The purpose of the study is to explore how CFE is being practiced in Bangladesh. The study attempted to fulfill the purpose through case study investigation. One school, named Nalanda, was selected for the study as it claims to run the school through CFE approach. The objective of the study was to identify, how this school is different from the other schools in Bangladesh, to explore overall teaching learning system like, curriculum, teaching strategies, assessments and to investigate the support system for Child Friendly Education provided to the teachers through training or mentoring. The nature of the case study was qualitative method to get maximum information from the students, parents, teachers and school authorities. The findings were based on 3 classroom observations, interviews with 1 teacher, 1 head teacher and 1 trainer, FGD with 10 students and 6 parents, were used to collect the data. It has been found that Nalanda is different than the other schools in Bangladesh in terms of, parents’ motivation about school curriculum, and sufficiency of teachers’ knowledge on joyful learning/child-friendly learning. The students took part in the extracurricular activities alongside the national curriculum. Teachers showed particular strength in the teaching learning strategies, using materials and assessment. And Nalanda gives strong support for teacher’s training. In conclusion, The Nalanda School in Dhaka was found appropriate for the requirements of Child-friendly education.Keywords: child friendly education, overall teaching learning system, the requirements of child-friendly education, the alternative education approach
Procedia PDF Downloads 2471236 Need for E-Learning: An Effective Method in Educating the Persons with Hearing Impairment Using Sign Language
Authors: S. Vijayakumar, S. B. Rathna Kumar, Navnath D Jagadale
Abstract:
Learning and teaching are the challenges ahead in the education of the students with hearing impairment using sign language (SHISL). Either the students or teachers face difficulties in the process of learning/teaching. Communication is one of the main barriers while teaching SHISL. Further, the courses of study or the subjects are limited to SHISL at least in countries like India. Students with hearing impairment mainly opt for sign language as a communication mode. Subjects like physics, chemistry, advanced mathematics etc. are not available in the curriculum for the SHISL since their content and ideas are complex. In India, exemption for language papers is being given for the students with hearing impairment. It may give opportunity to them to secure secondary/ higher secondary qualifications. It is a known fact that students with hearing impairment are facing difficulty in their future carrier. They secure neither a higher study nor a good employment opportunity. Vocational training in various trades will land them in few jobs with few bucks in pocket. However, not all of them are blessed with higher positions in government or private sectors in competitive fields or where the technical knowledge is required. E learning with sign language instructions can be used for teaching languages and science subjects. Computer Based Instruction (CBI), Computer Based Training (CBT), and Computer Assisted Instruction (CAI) are now part-and-parcel of Modern Education. It will also include signed video clip corresponding to the topic. Learning language subjects will improve the understanding of concepts in different subjects. Learning other science subjects like their hearing counterparts will enable the SHISL to go higher in studies and increase their height to pluck a fruit of the tree of employment.Keywords: students with hearing impairment using sign language, hearing impairment, language subjects, science subjects, e-learning
Procedia PDF Downloads 4051235 Academic Education and Internship towards Architecture Professional Practice
Authors: Sawsan Saridar masri, Hisham Arnaouty
Abstract:
Architecture both defines and is defined by social, cultural, political and financial constraints: this is where the discipline and the profession of architecture meet. This mutual sway evolves wherever interferences in the built environment are thought-out and can be strengthened or weakened by the many ways in which the practice of architecture can be undertaken. The more familiar we are about the concerns and factors that control what can be made, the greater the opportunities to propose and make appropriate architectures. Apparently, the criteria in any qualification policy should permit flexibility of approach and will – for reasons including cultural choice, political issues, and son on – vary significantly from country to country. However the weighting of the various criteria have to ensure adequate standards both in educational system as in the professional training. This paper develops, deepens and questions about the regulatory entry routes to the professional practice of architecture in the Arab world. It is also intended to provide an informed basis about strategies for conventional and unconventional models of practice in preparation for the next stages of architect’s work experience and professional experience. With the objective of promoting the implementation of adequate built environment in the practice of architecture, a comprehensive analysis of various pathways of access to the profession are selected as case studies, encompassing examples from across the world. The review of such case studies allows the creation of a comprehensive picture in relation to the conditions for qualification of practitioners of the built environment at the level of the Middle Eastern countries and the Arab World. Such investigation considers the following aspects: professional title and domain of practice, accreditation of courses, internship and professional training, professional examination and continuing professional development.Keywords: architecture, internship, mobility, professional practice
Procedia PDF Downloads 5461234 Development of a Telemedical Network Supporting an Automated Flow Cytometric Analysis for the Clinical Follow-up of Leukaemia
Authors: Claude Takenga, Rolf-Dietrich Berndt, Erling Si, Markus Diem, Guohui Qiao, Melanie Gau, Michael Brandstoetter, Martin Kampel, Michael Dworzak
Abstract:
In patients with acute lymphoblastic leukaemia (ALL), treatment response is increasingly evaluated with minimal residual disease (MRD) analyses. Flow Cytometry (FCM) is a fast and sensitive method to detect MRD. However, the interpretation of these multi-parametric data requires intensive operator training and experience. This paper presents a pipeline-software, as a ready-to-use FCM-based MRD-assessment tool for the daily clinical practice for patients with ALL. The new tool increases accuracy in assessment of FCM-MRD in samples which are difficult to analyse by conventional operator-based gating since computer-aided analysis potentially has a superior resolution due to utilization of the whole multi-parametric FCM-data space at once instead of step-wise, two-dimensional plot-based visualization. The system developed as a telemedical network reduces the work-load and lab-costs, staff-time needed for training, continuous quality control, operator-based data interpretation. It allows dissemination of automated FCM-MRD analysis to medical centres which have no established expertise for the benefit of an even larger community of diseased children worldwide. We established a telemedical network system for analysis and clinical follow-up and treatment monitoring of Leukaemia. The system is scalable and adapted to link several centres and laboratories worldwide.Keywords: data security, flow cytometry, leukaemia, telematics platform, telemedicine
Procedia PDF Downloads 9841233 Use of Polymeric Materials in the Architectural Preservation
Authors: F. Z. Benabid, F. Zouai, A. Douibi, D. Benachour
Abstract:
These Fluorinated polymers and polyacrylics have known a wide use in the field of historical monuments. PVDF provides a great easiness to processing, a good UV resistance and good chemical inertia. Although the quality of physical characteristics of the PMMA and its low price with a respect to PVDF, its deterioration against UV radiations limits its use as protector agent for the stones. On the other hand, PVDF/PMMA blend is a compromise of a great development in the field of architectural restoration, since it is the best method in term of quality and price to make new polymeric materials having enhanced properties. Films of different compositions based on the two polymers within an adequate solvent (DMF) were obtained to perform an exposition to artificial ageing and to the salted fog, a spectroscopic analysis (FTIR and UV) and optical analysis (refractive index). Based on its great interest in the field of building, a variety of standard tests has been elaborated for the first time at the central laboratory of ENAP (Souk-Ahras) in order to evaluate our blend performance. The obtained results have allowed observing the behavior of the different compositions of the blend under various tests. The addition of PVDF to PMMA enhances the properties of this last to know the exhibition to the natural and artificial ageing and to the saline fog. On the other hand, PMMA enhances the optical properties of the blend. Finally, 70/30 composition of the blend is in concordance with results of previous works and it is the adequate proportion for an eventual application.Keywords: blend, PVDF, PMMA, preservation, historic monuments
Procedia PDF Downloads 3091232 Efficacy of Biofeedback-Assisted Pelvic Floor Muscle Training on Postoperative Stress Urinary Incontinence
Authors: Asmaa M. El-Bandrawy, Afaf M. Botla, Ghada E. El-Refaye, Hassan O. Ghareeb
Abstract:
Background: Urinary incontinence is a common problem among adults. Its incidence increases with age and it is more frequent in women. Pelvic floor muscle training (PFMT) is the first-line therapy in the treatment of pelvic floor dysfunction (PFD) either alone or combined with biofeedback-assisted PFMT. The aim of the work: The purpose of this study is to evaluate the efficacy of biofeedback-assisted PFMT in postoperative stress urinary incontinence. Settings and Design: A single blind controlled trial design was. Methods and Material: This study was carried out in 30 volunteer patients diagnosed as severe degree of stress urinary incontinence and they were admitted to surgical treatment. They were divided randomly into two equal groups: (Group A) consisted of 15 patients who had been treated with post-operative biofeedback-assisted PFMT and home exercise program (Group B) consisted of 15 patients who had been treated with home exercise program only. Assessment of all patients in both groups (A) and (B) was carried out before and after the treatment program by measuring intra-vaginal pressure in addition to the visual analog scale. Results: At the end of the treatment program, there was a highly statistically significant difference between group (A) and group (B) in the intra-vaginal pressure and the visual analog scale favoring the group (A). Conclusion: biofeedback-assisted PFMT is an effective method for the symptomatic relief of post-operative female stress urinary incontinence.Keywords: stress urinary incontinence, pelvic floor muscles, pelvic floor exercises, biofeedback
Procedia PDF Downloads 3081231 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 41