Search results for: stochastic approximation
928 Portfolio Optimization under a Hybrid Stochastic Volatility and Constant Elasticity of Variance Model
Authors: Jai Heui Kim, Sotheara Veng
Abstract:
This paper studies the portfolio optimization problem for a pension fund under a hybrid model of stochastic volatility and constant elasticity of variance (CEV) using asymptotic analysis method. When the volatility component is fast mean-reverting, it is able to derive asymptotic approximations for the value function and the optimal strategy for general utility functions. Explicit solutions are given for the exponential and hyperbolic absolute risk aversion (HARA) utility functions. The study also shows that using the leading order optimal strategy results in the value function, not only up to the leading order, but also up to first order correction term. A practical strategy that does not depend on the unobservable volatility level is suggested. The result is an extension of the Merton's solution when stochastic volatility and elasticity of variance are considered simultaneously.Keywords: asymptotic analysis, constant elasticity of variance, portfolio optimization, stochastic optimal control, stochastic volatility
Procedia PDF Downloads 299927 Approximation of Analytic Functions of Several Variables by Linear K-Positive Operators in the Closed Domain
Authors: Tulin Coskun
Abstract:
We investigate the approximation of analytic functions of several variables in polydisc by the sequences of linear k-positive operators in Gadjiev sence. The approximation of analytic functions of complex variable by linear k-positive operators was tackled, and k-positive operators and formulated theorems of Korovkin's type for these operators in the space of analytic functions on the unit disc were introduced in the past. Recently, very general results on convergence of the sequences of linear k-positive operators on a simply connected bounded domain within the space of analytic functions were proved. In this presentation, we extend some of these results to the approximation of analytic functions of several complex variables by sequences of linear k-positive operators.Keywords: analytic functions, approximation of analytic functions, Linear k-positive operators, Korovkin type theorems
Procedia PDF Downloads 338926 Refined Procedures for Second Order Asymptotic Theory
Authors: Gubhinder Kundhi, Paul Rilstone
Abstract:
Refined procedures for higher-order asymptotic theory for non-linear models are developed. These include a new method for deriving stochastic expansions of arbitrary order, new methods for evaluating the moments of polynomials of sample averages, a new method for deriving the approximate moments of the stochastic expansions; an application of these techniques to gather improved inferences with the weak instruments problem is considered. It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. In our application, finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap.Keywords: edgeworth expansions, higher order asymptotics, saddlepoint expansions, weak instruments
Procedia PDF Downloads 277925 Use the Null Space to Create Starting Point for Stochastic Programming
Authors: Ghussoun Al-Jeiroudi
Abstract:
Stochastic programming is one of the powerful technique which is used to solve real-life problems. Hence, the data of real-life problems is subject to significant uncertainty. Uncertainty is well studied and modeled by stochastic programming. Each day, problems become bigger and bigger and the need for a tool, which does deal with large scale problems, increase. Interior point method is a perfect tool to solve such problems. Interior point method is widely employed to solve the programs, which arise from stochastic programming. It is an iterative technique, so it is required a starting point. Well design starting point plays an important role in improving the convergence speed. In this paper, we propose a starting point for interior point method for multistage stochastic programming. Usually, the optimal solution of stage k+1 is used as starting point for the stage k. This point has the advantage of being close to the solution of the current program. However, it has a disadvantage; it is not in the feasible region of the current program. So, we suggest to take this point and modifying it. That is by adding to it a vector in the null space of the matrix of the unchanged constraints because the solution will change only in the null space of this matrix.Keywords: interior point methods, stochastic programming, null space, starting points
Procedia PDF Downloads 418924 Degree of Approximation of Functions by Product Means
Authors: Hare Krishna Nigam
Abstract:
In this paper, for the first time, (E,q)(C,2) product summability method is introduced and two quite new results on degree of approximation of the function f belonging to Lip (alpha,r)class and W(L(r), xi(t)) class by (E,q)(C,2) product means of Fourier series, has been obtained.Keywords: Degree of approximation, (E, q)(C, 2) means, Fourier series, Lebesgue integral, Lip (alpha, r)class, W(L(r), xi(t))class of functions
Procedia PDF Downloads 517923 Approximation to the Hardy Operator on Topological Measure Spaces
Authors: Kairat T. Mynbaev, Elena N. Lomakina
Abstract:
We consider a Hardy-type operator generated by a family of open subsets of a Hausdorff topological space. The family is indexed with non-negative real numbers and is totally ordered. For this operator, we obtain two-sided bounds of its norm, a compactness criterion, and bounds for its approximation numbers. Previously, bounds for its approximation numbers have been established only in the one-dimensional case, while we do not impose any restrictions on the dimension of the Hausdorff space. The bounds for the norm and conditions for compactness earlier have been found using different methods by G. Sinnamon and K. Mynbaev. Our approach is different in that we use domain partitions for all problems under consideration.Keywords: approximation numbers, boundedness and compactness, multidimensional Hardy operator, Hausdorff topological space
Procedia PDF Downloads 104922 Degree of Approximation by the (T.E^1) Means of Conjugate Fourier Series in the Hölder Metric
Authors: Kejal Khatri, Vishnu Narayan Mishra
Abstract:
We compute the degree of approximation of functions\tilde{f}\in H_w, a new Banach space using (T.E^1) summability means of conjugate Fourier series. In this paper, we extend the results of Singh and Mahajan which in turn generalizes the result of Lal and Yadav. Some corollaries have also been deduced from our main theorem and particular cases.Keywords: conjugate Fourier series, degree of approximation, Hölder metric, matrix summability, product summability
Procedia PDF Downloads 419921 Stochastic Programming and C-Somga: Animal Ration Formulation
Authors: Pratiksha Saxena, Dipti Singh, Neha Khanna
Abstract:
A self-organizing migrating genetic algorithm(C-SOMGA) is developed for animal diet formulation. This paper presents animal diet formulation using stochastic and genetic algorithm. Tri-objective models for cost minimization and shelf life maximization are developed. These objectives are achieved by combination of stochastic programming and C-SOMGA. Stochastic programming is used to introduce nutrient variability for animal diet. Self-organizing migrating genetic algorithm provides exact and quick solution and presents an innovative approach towards successful application of soft computing technique in the area of animal diet formulation.Keywords: animal feed ration, feed formulation, linear programming, stochastic programming, self-migrating genetic algorithm, C-SOMGA technique, shelf life maximization, cost minimization, nutrient maximization
Procedia PDF Downloads 442920 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach
Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi
Abstract:
Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty
Procedia PDF Downloads 231919 Method to Find a ε-Optimal Control of Stochastic Differential Equation Driven by a Brownian Motion
Authors: Francys Souza, Alberto Ohashi, Dorival Leao
Abstract:
We present a general solution for finding the ε-optimal controls for non-Markovian stochastic systems as stochastic differential equations driven by Brownian motion, which is a problem recognized as a difficult solution. The contribution appears in the development of mathematical tools to deal with modeling and control of non-Markovian systems, whose applicability in different areas is well known. The methodology used consists to discretize the problem through a random discretization. In this way, we transform an infinite dimensional problem in a finite dimensional, thereafter we use measurable selection arguments, to find a control on an explicit form for the discretized problem. Then, we prove the control found for the discretized problem is a ε-optimal control for the original problem. Our theory provides a concrete description of a rather general class, among the principals, we can highlight financial problems such as portfolio control, hedging, super-hedging, pairs-trading and others. Therefore, our main contribution is the development of a tool to explicitly the ε-optimal control for non-Markovian stochastic systems. The pathwise analysis was made through a random discretization jointly with measurable selection arguments, has provided us with a structure to transform an infinite dimensional problem into a finite dimensional. The theory is applied to stochastic control problems based on path-dependent stochastic differential equations, where both drift and diffusion components are controlled. We are able to explicitly show optimal control with our method.Keywords: dynamic programming equation, optimal control, stochastic control, stochastic differential equation
Procedia PDF Downloads 188918 Optimal Production and Maintenance Policy for a Partially Observable Production System with Stochastic Demand
Authors: Leila Jafari, Viliam Makis
Abstract:
In this paper, the joint optimization of the economic manufacturing quantity (EMQ), safety stock level, and condition-based maintenance (CBM) is presented for a partially observable, deteriorating system subject to random failure. The demand is stochastic and it is described by a Poisson process. The stochastic model is developed and the optimization problem is formulated in the semi-Markov decision process framework. A modification of the policy iteration algorithm is developed to find the optimal policy. A numerical example is presented to compare the optimal policy with the policy considering zero safety stock.Keywords: condition-based maintenance, economic manufacturing quantity, safety stock, stochastic demand
Procedia PDF Downloads 464917 A Study on Stochastic Integral Associated with Catastrophes
Authors: M. Reni Sagayaraj, S. Anand Gnana Selvam, R. Reynald Susainathan
Abstract:
We analyze stochastic integrals associated with a mutation process. To be specific, we describe the cell population process and derive the differential equations for the joint generating functions for the number of mutants and their integrals in generating functions and their applications. We obtain first-order moments of the processes of the two-way mutation process in first-order moment structure of X (t) and Y (t) and the second-order moments of a one-way mutation process. In this paper, we obtain the limiting behaviour of the integrals in limiting distributions of X (t) and Y (t).Keywords: stochastic integrals, single–server queue model, catastrophes, busy period
Procedia PDF Downloads 642916 Analysis of Two Methods to Estimation Stochastic Demand in the Vehicle Routing Problem
Authors: Fatemeh Torfi
Abstract:
Estimation of stochastic demand in physical distribution in general and efficient transport routs management in particular is emerging as a crucial factor in urban planning domain. It is particularly important in some municipalities such as Tehran where a sound demand management calls for a realistic analysis of the routing system. The methodology involved critically investigating a fuzzy least-squares linear regression approach (FLLRs) to estimate the stochastic demands in the vehicle routing problem (VRP) bearing in mind the customer's preferences order. A FLLR method is proposed in solving the VRP with stochastic demands. Approximate-distance fuzzy least-squares (ADFL) estimator ADFL estimator is applied to original data taken from a case study. The SSR values of the ADFL estimator and real demand are obtained and then compared to SSR values of the nominal demand and real demand. Empirical results showed that the proposed methods can be viable in solving problems under circumstances of having vague and imprecise performance ratings. The results further proved that application of the ADFL was realistic and efficient estimator to face the stochastic demand challenges in vehicle routing system management and solve relevant problems.Keywords: fuzzy least-squares, stochastic, location, routing problems
Procedia PDF Downloads 434915 CE Method for Development of Japan's Stochastic Earthquake Catalogue
Authors: Babak Kamrani, Nozar Kishi
Abstract:
Stochastic catalog represents the events module of the earthquake loss estimation models. It includes series of events with different magnitudes and corresponding frequencies/probabilities. For the development of the stochastic catalog, random or uniform sampling methods are used to sample the events from the seismicity model. For covering all the Magnitude Frequency Distribution (MFD), a huge number of events should be generated for the above-mentioned methods. Characteristic Event (CE) method chooses the events based on the interest of the insurance industry. We divide the MFD of each source into bins. We have chosen the bins based on the probability of the interest by the insurance industry. First, we have collected the information for the available seismic sources. Sources are divided into Fault sources, subduction, and events without specific fault source. We have developed the MFD for each of the individual and areal source based on the seismicity of the sources. Afterward, we have calculated the CE magnitudes based on the desired probability. To develop the stochastic catalog, we have introduced uncertainty to the location of the events too.Keywords: stochastic catalogue, earthquake loss, uncertainty, characteristic event
Procedia PDF Downloads 298914 Evaluating Forecasts Through Stochastic Loss Order
Authors: Wilmer Osvaldo Martinez, Manuel Dario Hernandez, Juan Manuel Julio
Abstract:
We propose to assess the performance of k forecast procedures by exploring the distributions of forecast errors and error losses. We argue that non systematic forecast errors minimize when their distributions are symmetric and unimodal, and that forecast accuracy should be assessed through stochastic loss order rather than expected loss order, which is the way it is customarily performed in previous work. Moreover, since forecast performance evaluation can be understood as a one way analysis of variance, we propose to explore loss distributions under two circumstances; when a strict (but unknown) joint stochastic order exists among the losses of all forecast alternatives, and when such order happens among subsets of alternative procedures. In spite of the fact that loss stochastic order is stronger than loss moment order, our proposals are at least as powerful as competing tests, and are robust to the correlation, autocorrelation and heteroskedasticity settings they consider. In addition, since our proposals do not require samples of the same size, their scope is also wider, and provided that they test the whole loss distribution instead of just loss moments, they can also be used to study forecast distributions as well. We illustrate the usefulness of our proposals by evaluating a set of real world forecasts.Keywords: forecast evaluation, stochastic order, multiple comparison, non parametric test
Procedia PDF Downloads 89913 Stability of Hybrid Stochastic Systems
Authors: Manlika Ratchagit
Abstract:
This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.Keywords: robust mean square stability, discrete-time stochastic systems, hybrid systems, interval time-varying delays, Lyapunov functional, linear matrix inequalities
Procedia PDF Downloads 485912 New Results on Stability of Hybrid Stochastic Systems
Authors: Manlika Rajchakit
Abstract:
This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.Keywords: robust mean square stability, discrete-time stochastic systems, hybrid systems, interval time-varying delays, lyapunov functional, linear matrix inequalities
Procedia PDF Downloads 429911 Efficiency Measurement of Turkish via the Stochastic Frontier Model
Authors: Yeliz Mert Kantar, İsmail Yeni̇lmez, Ibrahim Arik
Abstract:
In this study, the efficiency measurement of the top fifty Turkish Universities has been conducted. The top fifty Turkish Universities are listed by The Scientific and Technological Research Council of Turkey (TÜBITAK) according to the Entrepreneur and Innovative University Index every year. The index is calculated based on four components since 2018. Four components are scientific and technological research competency, intellectual property pool, cooperation and interaction, and economic and social contribution. The four components consist of twenty-three sub-components. The 2021 list announced in January 2022 is discussed in this study. Efficiency analysis have been carried out using the Stochastic Frontier Model. Statistical significance of the sub-components that make up the index with certain weights has been examined in terms of the efficiency measurement calculated through the Stochastic Frontier Model. The relationship between the efficiency ranking estimated based on the Stochastic Frontier Model and the Entrepreneur and Innovative University Index ranking is discussed in detail.Keywords: efficiency, entrepreneur and innovative universities, turkish universities, stochastic frontier model, tübi̇tak
Procedia PDF Downloads 89910 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics
Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim
Abstract:
A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic
Procedia PDF Downloads 129909 Geometric and Algebraic Properties of the Eigenvalues of Monotone Matrices
Authors: Brando Vagenende, Marie-Anne Guerry
Abstract:
For stochastic matrices of any order, the geometric description of the convex set of eigenvalues is completely known. The purpose of this study is to investigate the subset of the monotone matrices. This type of matrix appears in contexts such as intergenerational occupational mobility, equal-input modeling, and credit ratings-based systems. Monotone matrices are stochastic matrices in which each row stochastically dominates the previous row. The monotonicity property of a stochastic matrix can be expressed by a nonnegative lower-order matrix with the same eigenvalues as the original monotone matrix (except for the eigenvalue 1). Specifically, the aim of this research is to focus on the properties of eigenvalues of monotone matrices. For those matrices up to order 3, there already exists a complete description of the convex set of eigenvalues. For monotone matrices of order at least 4, this study gives, through simulations, more insight into the geometric description of their eigenvalues. Furthermore, this research treats in a geometric and algebraic way the properties of eigenvalues of monotone matrices of order at least 4.Keywords: eigenvalues of matrices, finite Markov chains, monotone matrices, nonnegative matrices, stochastic matrices
Procedia PDF Downloads 80908 On Modeling Data Sets by Means of a Modified Saddlepoint Approximation
Authors: Serge B. Provost, Yishan Zhang
Abstract:
A moment-based adjustment to the saddlepoint approximation is introduced in the context of density estimation. First applied to univariate distributions, this methodology is extended to the bivariate case. It then entails estimating the density function associated with each marginal distribution by means of the saddlepoint approximation and applying a bivariate adjustment to the product of the resulting density estimates. The connection to the distribution of empirical copulas will be pointed out. As well, a novel approach is proposed for estimating the support of distribution. As these results solely rely on sample moments and empirical cumulant-generating functions, they are particularly well suited for modeling massive data sets. Several illustrative applications will be presented.Keywords: empirical cumulant-generating function, endpoints identification, saddlepoint approximation, sample moments, density estimation
Procedia PDF Downloads 162907 Degree of Approximation of Functions Conjugate to Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means
Authors: Smita Sonker
Abstract:
Various investigators have determined the degree of approximation of conjugate signals (functions) of functions belonging to different classes Lipα, Lip(α,p), Lip(ξ(t),p), W(Lr,ξ(t), (β ≥ 0)) by matrix summability means, lower triangular matrix operator, product means (i.e. (C,1)(E,1), (C,1)(E,q), (E,q)(C,1) (N,p,q)(E,1), and (E,q)(N,pn) of their conjugate trigonometric Fourier series. In this paper, we shall determine the degree of approximation of 2π-periodic function conjugate functions of f belonging to the function classes Lipα and W(Lr; ξ(t); (β ≥ 0)) by (C1.T) -means of their conjugate trigonometric Fourier series. On the other hand, we shall review above-mentioned work in the light of Lenski.Keywords: signals, trigonometric fourier approximation, class W(L^r, \xi(t), conjugate fourier series
Procedia PDF Downloads 397906 Orthogonal Basis Extreme Learning Algorithm and Function Approximation
Abstract:
A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.Keywords: neural network, orthogonal basis extreme learning, function approximation
Procedia PDF Downloads 534905 Evaluating the Effects of a Positive Bitcoin Shock on the U.S Economy: A TVP-FAVAR Model with Stochastic Volatility
Authors: Olfa Kaabia, Ilyes Abid, Khaled Guesmi
Abstract:
This pioneer paper studies whether and how Bitcoin shocks are transmitted to the U.S economy. We employ a new methodology: TVP FAVAR model with stochastic volatility. We use a large dataset of 111 major U.S variables from 1959:m1 to 2016:m12. The results show that Bitcoin shocks significantly impact the U.S. economy. This significant impact is pronounced in a volatile and increasing U.S economy. The Bitcoin has a positive relationship on the U.S real activity, and a negative one on U.S prices and interest rates. Effects on the Monetary Policy exist via the inter-est rates and the Money, Credit and Finance transmission channels.Keywords: bitcoin, US economy, FAVAR models, stochastic volatility
Procedia PDF Downloads 247904 Stability of Solutions of Semidiscrete Stochastic Systems
Authors: Ramazan Kadiev, Arkadi Ponossov
Abstract:
Semidiscrete systems contain both continuous and discrete components. This means that the dynamics is mostly continuous, but at certain instants, it is exposed to abrupt influences. Such systems naturally appear in applications, for example, in biological and ecological models as well as in the control theory. Therefore, the study of semidiscrete systems has recently attracted the attention of many specialists. Stochastic effects are an important part of any realistic approach to modeling. For example, stochasticity arises in the population dynamics, demographic and ecological due to a change in time of factors external to the system affecting the survival of the population. In control theory, random coefficients can simulate inaccuracies in measurements. It will be shown in the presentation how to incorporate such effects into semidiscrete systems. Stability analysis is an essential part of modeling real-world problems. In the presentation, it will be explained how sufficient conditions for the moment stability of solutions in terms of the coefficients for linear semidiscrete stochastic equations can be derived using non-Lyapunov technique.Keywords: abrupt changes, exponential stability, regularization, stochastic noises
Procedia PDF Downloads 187903 Structural and Electronic Properties of the Rock-salt BaxSr1−xS Alloys
Authors: B. Bahloul, K. Babesse, A. Dkhira, Y. Bahloul, L. Amirouche
Abstract:
Structural and electronic properties of the rock-salt BaxSr1−xS are calculated using the first-principles calculations based on the density functional theory (DFT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA). The calculated lattice parameters at equilibrium volume for x=0 and x=1 are in good agreement with the literature data. The BaxSr1−xS alloys are found to be an indirect band gap semiconductor. Moreoever, for the composition (x) ranging between [0-1], we think that our results are well discussed and well predicted.Keywords: semiconductor, Ab initio calculations, rocksalt, band structure, BaxSr1−xS
Procedia PDF Downloads 395902 An Optimized RDP Algorithm for Curve Approximation
Authors: Jean-Pierre Lomaliza, Kwang-Seok Moon, Hanhoon Park
Abstract:
It is well-known that Ramer Douglas Peucker (RDP) algorithm greatly depends on the method of choosing starting points. Therefore, this paper focuses on finding such starting points that will optimize the results of RDP algorithm. Specifically, this paper proposes a curve approximation algorithm that finds flat points, called essential points, of an input curve, divides the curve into corner-like sub-curves using the essential points, and applies the RDP algorithm to the sub-curves. The number of essential points play a role on optimizing the approximation results by balancing the degree of shape information loss and the amount of data reduction. Through experiments with curves of various types and complexities of shape, we compared the performance of the proposed algorithm with three other methods, i.e., the RDP algorithm itself and its variants. As a result, the proposed algorithm outperformed the others in term of maintaining the original shapes of the input curve, which is important in various applications like pattern recognition.Keywords: curve approximation, essential point, RDP algorithm
Procedia PDF Downloads 535901 Polynomially Adjusted Bivariate Density Estimates Based on the Saddlepoint Approximation
Authors: S. B. Provost, Susan Sheng
Abstract:
An alternative bivariate density estimation methodology is introduced in this presentation. The proposed approach involves estimating the density function associated with the marginal distribution of each of the two variables by means of the saddlepoint approximation technique and applying a bivariate polynomial adjustment to the product of these density estimates. Since the saddlepoint approximation is utilized in the context of density estimation, such estimates are determined from empirical cumulant-generating functions. In the univariate case, the saddlepoint density estimate is itself adjusted by a polynomial. Given a set of observations, the coefficients of the polynomial adjustments are obtained from the sample moments. Several illustrative applications of the proposed methodology shall be presented. Since this approach relies essentially on a determinate number of sample moments, it is particularly well suited for modeling massive data sets.Keywords: density estimation, empirical cumulant-generating function, moments, saddlepoint approximation
Procedia PDF Downloads 280900 Performance and Availability Analysis of 2N Redundancy Models
Authors: Yutae Lee
Abstract:
In this paper, we consider the performance and availability of a redundancy model. The redundancy model is a form of resilience that ensures service availability in the event of component failure. This paper considers a 2N redundancy model. In the model there are at most one active service unit and at most one standby service unit. The active one is providing the service while the standby is prepared to take over the active role when the active fails. We design our analysis model using Stochastic Reward Nets, and then evaluate the performance and availability of 2N redundancy model using Stochastic Petri Net Package (SPNP).Keywords: availability, performance, stochastic reward net, 2N redundancy
Procedia PDF Downloads 420899 A Multi-Criteria Model for Scheduling of Stochastic Single Machine Problem with Outsourcing and Solving It through Application of Chance Constrained
Authors: Homa Ghave, Parmis Shahmaleki
Abstract:
This paper presents a new multi-criteria stochastic mathematical model for a single machine scheduling with outsourcing allowed. There are multiple jobs processing in batch. For each batch, all of job or a quantity of it can be outsourced. The jobs have stochastic processing time and lead time and deterministic due dates arrive randomly. Because of the stochastic inherent of processing time and lead time, we use the chance constrained programming for modeling the problem. First, the problem is formulated in form of stochastic programming and then prepared in a form of deterministic mixed integer linear programming. The objectives are considered in the model to minimize the maximum tardiness and outsourcing cost simultaneously. Several procedures have been developed to deal with the multi-criteria problem. In this paper, we utilize the concept of satisfaction functions to increases the manager’s preference. The proposed approach is tested on instances where the random variables are normally distributed.Keywords: single machine scheduling, multi-criteria mathematical model, outsourcing strategy, uncertain lead times and processing times, chance constrained programming, satisfaction function
Procedia PDF Downloads 264