Search results for: flux linkage
858 Combining Work and Study: A Solution for Stronger University-Industry Linkage
Authors: Payam Najafi, Behnam Ebrahimi, Hamid Montazerolghaem, Safoura Akbari-Alavijeh, Rasoul Tarkesh Esfahani
Abstract:
The combination of work and study has been recently gained lots of attention due to the crucial demand of industries to skillfully trained youth. Nevertheless, the distance between university and industry makes this combination challenging. According to the OECD (2012), in most countries, there is a limited link between students’ field of study and their area of work while studying. On the other hand, high unemployment rates among the specialized workforce, which is common in developing countries, highlights the need to strengthen this relationship. Innovative Center of Isfahan Chamber of Commerce has defined a project called 'POUYESH', which helps students to find related work opportunities to their field of study as well as supporting industries to supply their needed workforce. The present research is sought to explore the effect of the running project as a model of combining work and study on the university-industry linkage.Keywords: work and study, university-industry linkage, POUYESH project, field of study
Procedia PDF Downloads 184857 Optimization of Heat Insulation Structure and Heat Flux Calculation Method of Slug Calorimeter
Authors: Zhu Xinxin, Wang Hui, Yang Kai
Abstract:
Heat flux is one of the most important test parameters in the ground thermal protection test. Slug calorimeter is selected as the main sensor measuring heat flux in arc wind tunnel test due to the convenience and low cost. However, because of excessive lateral heat transfer and the disadvantage of the calculation method, the heat flux measurement error of the slug calorimeter is large. In order to enhance measurement accuracy, the heat insulation structure and heat flux calculation method of slug calorimeter were improved. The heat transfer model of the slug calorimeter was built according to the energy conservation principle. Based on the heat transfer model, the insulating sleeve of the hollow structure was designed, which helped to greatly decrease lateral heat transfer. And the slug with insulating sleeve of hollow structure was encapsulated using a package shell. The improved insulation structure reduced heat loss and ensured that the heat transfer characteristics were almost the same when calibrated and tested. The heat flux calibration test was carried out in arc lamp system for heat flux sensor calibration, and the results show that test accuracy and precision of slug calorimeter are improved greatly. In the meantime, the simulation model of the slug calorimeter was built. The heat flux values in different temperature rise time periods were calculated by the simulation model. The results show that extracting the data of the temperature rise rate as soon as possible can result in a smaller heat flux calculation error. Then the different thermal contact resistance affecting calculation error was analyzed by the simulation model. The contact resistance between the slug and the insulating sleeve was identified as the main influencing factor. The direct comparison calibration correction method was proposed based on only heat flux calibration. The numerical calculation correction method was proposed based on the heat flux calibration and simulation model of slug calorimeter after the simulation model was solved by solving the contact resistance between the slug and the insulating sleeve. The simulation and test results show that two methods can greatly reduce the heat flux measurement error. Finally, the improved slug calorimeter was tested in the arc wind tunnel. And test results show that the repeatability accuracy of improved slug calorimeter is less than 3%. The deviation of measurement value from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement value between slug calorimeter and Gordon Gage is less than 4% in the same fluid field.Keywords: correction method, heat flux calculation, heat insulation structure, heat transfer model, slug calorimeter
Procedia PDF Downloads 118856 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator
Authors: K. Kouzi
Abstract:
In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.Keywords: direct torque control, dual stator induction motor, Fuzzy Logic estimation, stator resistance adaptation
Procedia PDF Downloads 325855 Effects of the Gap on the Cooling Performance of Microchannels Heat Sink
Authors: Mohammed W. Sulaiman, Chi-Chuan Wang
Abstract:
Due to the improved performance of electronic systems, the demand for electronic cooling devices with high heat dissipation has increased. This research evaluates plain microchannel cold plates with a gap above the microchannels. The present study examines the effect of the gap above straight fin microchannels in the cold plate using the dielectric Novec 7000 as a working fluid. The experiments compared two transparency cover with the same geometry and dimension for the test section. One has a gap above the microchannels (GAM) 1/3 of fin height, and another one with no gap above the microchannels (NGAM); the mass flux ranges from 25 to 260 kg/m2s, while the heat flux spans from 50 to 150 W/cm2. The results show quite an improvement in performance with this space gap above the microchannels. The test results showed that the design of the GAM shows a superior heat transfer coefficient (HTC), up 90% than that of NCBM. The GAM design has a much lower pressure drop by about 7~24% compared to the NGAM design at different mass flux and heat flux at the fully liquid inlet. The proposed space gap of 0.33% of fin height above the microchannels enables the surface temperature to decrease by around 3~7 °C compared to no gap above the microchannels, especially at high heat fluxes.Keywords: microchannels, pressure drop, enhanced performance, electronic cooling, gap
Procedia PDF Downloads 77854 An Integrated HCV Testing Model as a Method to Improve Identification and Linkage to Care in a Network of Community Health Centers in Philadelphia, PA
Authors: Catelyn Coyle, Helena Kwakwa
Abstract:
Objective: As novel and better tolerated therapies become available, effective HCV testing and care models become increasingly necessary to not only identify individuals with active infection but also link them to HCV providers for medical evaluation and treatment. Our aim is to describe an effective HCV testing and linkage to care model piloted in a network of five community health centers located in Philadelphia, PA. Methods: In October 2012, National Nursing Centers Consortium piloted a routine opt-out HCV testing model in a network of community health centers, one of which treats HCV, HIV, and co-infected patients. Key aspects of the model were medical assistant initiated testing, the use of laboratory-based reflex test technology, and electronic medical record modifications to prompt, track, report and facilitate payment of test costs. Universal testing on all adult patients was implemented at health centers serving patients at high-risk for HCV. The other sites integrated high-risk based testing, where patients meeting one or more of the CDC testing recommendation risk factors or had a history of homelessness were eligible for HCV testing. Mid-course adjustments included the integration of dual HIV testing, development of a linkage to care coordinator position to facilitate the transition of HIV and/or HCV-positive patients from primary to specialist care, and the transition to universal HCV testing across all testing sites. Results: From October 2012 to June 2015, the health centers performed 7,730 HCV tests and identified 886 (11.5%) patients with a positive HCV-antibody test. Of those with positive HCV-antibody tests, 838 (94.6%) had an HCV-RNA confirmatory test and 590 (70.4%) progressed to current HCV infection (overall prevalence=7.6%); 524 (88.8%) received their RNA-positive test result; 429 (72.7%) were referred to an HCV care specialist and 271 (45.9%) were seen by the HCV care specialist. The best linkage to care results were seen at the test and treat the site, where of the 333 patients were current HCV infection, 175 (52.6%) were seen by an HCV care specialist. Of the patients with active HCV infection, 349 (59.2%) were unaware of their HCV-positive status at the time of diagnosis. Since the integration of dual HCV/HIV testing in September 2013, 9,506 HIV tests were performed, 85 (0.9%) patients had positive HIV tests, 81 (95.3%) received their confirmed HIV test result and 77 (90.6%) were linked to HIV care. Dual HCV/HIV testing increased the number of HCV tests performed by 362 between the 9 months preceding dual testing and first 9 months after dual testing integration, representing a 23.7% increment. Conclusion: Our HCV testing model shows that integrated routine testing and linkage to care is feasible and improved detection and linkage to care in a primary care setting. We found that prevalence of current HCV infection was higher than that seen in locally in Philadelphia and nationwide. Intensive linkage services can increase the number of patients who successfully navigate the HCV treatment cascade. The linkage to care coordinator position is an important position that acts as a trusted intermediary for patients being linked to care.Keywords: HCV, routine testing, linkage to care, community health centers
Procedia PDF Downloads 357853 New Kinetic Effects in Spatial Distribution of Electron Flux and Excitation Rates in Glow Discharge Plasmas in Middle and High Pressures
Authors: Kirill D. Kapustin, Mikhail B. Krasilnikov, Anatoly A. Kudryavtsev
Abstract:
Physical formation mechanisms of differential electron fluxes is high pressure positive column gas discharge are discussed. It is shown that the spatial differential fluxes of the electrons are directed both inward and outward depending on the energy relaxation law. In some cases the direction of energy differential flux at intermediate energies (5-10eV) in whole volume, except region near the wall, appeared to be down directed, so electron in this region dissipate more energy than gain from axial electric field. Paradoxical behaviour of electron flux in spatial-energy space is presented.Keywords: plasma kinetics, electron distribution function, excitation and radiation rates, local and nonlocal EDF
Procedia PDF Downloads 400852 Investigation Bubble Growth and Nucleation Rates during the Pool Boiling Heat Transfer of Distilled Water Using Population Balance Model
Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian
Abstract:
In this research, the changes in bubbles diameter and number that may occur due to the change in heat flux of pure water during pool boiling process. For this purpose, test equipment was designed and developed to collect test data. The bubbles were graded using Caliper Screen software. To calculate the growth and nucleation rates of bubbles under different fluxes, population balance model was employed. The results show that the increase in heat flux from q=20 kw/m2 to q=102 kw/m2 raised the growth and nucleation rates of bubbles.Keywords: heat flux, bubble growth, bubble nucleation, population balance model
Procedia PDF Downloads 476851 Observational Study Reveals Inverse Relationship: Rising PM₂.₅ Concentrations Linked to Decreasing Muon Flux
Authors: Yashas Mattur, Jensen Coonradt
Abstract:
Muon flux, the rate of muons reaching Earth from the atmosphere, is impacted by various factors such as air pressure, temperature, and humidity. However, the influence of concentrations of PM₂.₅ (particulate matter with diameters 2.5 mm or smaller) on muon detection rates remains unexplored. During the summer of 2023, smoke from Canadian wildfires (containing significant amounts of particulate matter) blew over regions in the Northern US, introducing huge fluctuations in PM₂.₅ concentrations, thus inspiring our experiment to investigate the correlation of PM₂.₅ concentrations and muon rates. To investigate this correlation, muon collision rates were measured and analyzed alongside PM₂.₅ concentration data over the periods of both light and heavy smoke. Other confounding variables, including temperature, humidity, and atmospheric pressure, were also considered. The results reveal a statistically significant inverse correlation between muon flux and PM₂.₅ concentrations, indicating that particulate matter has an impact on the rate of muons reaching the earth’s surface.Keywords: Muon Flux, atmospheric effects on muons, PM₂.₅, airborne particulate matter
Procedia PDF Downloads 74850 Financial Markets Integration between Morocco and France: Implications on International Portfolio Diversification
Authors: Abdelmounaim Lahrech, Hajar Bousfiha
Abstract:
This paper examines equity market integration between Morocco and France and its consequent implications on international portfolio diversification. In the absence of stock market linkages, Morocco can act as a diversification destination to European investors, allowing higher returns at a comparable level of risk in developed markets. In contrast, this attractiveness is limited if both financial markets show significant linkage. The research empirically measures financial market’s integration in by capturing the conditional correlation between the two markets using the Generalized Autoregressive Conditionally Heteroscedastic (GARCH) model. Then, the research uses the Dynamic Conditional Correlation (DCC) model of Engle (2002) to track the correlations. The research findings show that there is no important increase over the years in the correlation between the Moroccan and the French equity markets, even though France is considered Morocco’s first trading partner. Failing to prove evidence of the stock index linkage between the two countries, the volatility series of each market were assumed to change over time separately. Yet, the study reveals that despite the important historical and economic linkages between Morocco and France, there is no evidence that equity markets follow. The small correlations and their stationarity over time show that over the 10 years studied, correlations were fluctuating around a stable mean with no significant change at their level. Different explanations can be attributed to the absence of market linkage between the two equity markets.Keywords: equity market linkage, DCC GARCH, international portfolio diversification, Morocco, France
Procedia PDF Downloads 442849 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization
Authors: Ramakrishna Rao Mamidi
Abstract:
It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.Keywords: direct search, flux plot, fourier analysis, permanent magnets
Procedia PDF Downloads 216848 Reduction of Planar Transformer AC Resistance Using a Planar Litz Wire Structure
Authors: Hamed Belloumi, Aymen Ammouri, Ferid Kourda
Abstract:
A new trend in power converters is to design planar transformer that aim for low profile. However, at high frequency, the planar transformer ac losses become significant due to the proximity and skin effects. In this paper, the design and implementation of a novel planar litz conductor is presented in order to equalize the flux linkage and improving the current distribution. The developed PCB litz wire structure minimizes the losses in a similar way to the conventional multi stranded litz wires. In order to further illustrate the eddy current effect in different arrangements, a finite-element analysis (FEA) tool is used to analyze current distribution inside the conductors. Finally, the proposed planar transformer has been integrated in an electronic stage to test at high signal levels.Keywords: planar transformer, finite-element analysis (FEA), winding losses, planar litz wire
Procedia PDF Downloads 512847 Constant Dimension Codes via Generalized Coset Construction
Authors: Kanchan Singh, Sheo Kumar Singh
Abstract:
The fundamental problem of subspace coding is to explore the maximum possible cardinality Aq(n, d, k) of a set of k-dimensional subspaces of an n-dimensional vector space over Fq such that the subspace distance satisfies ds(W1, W2) ≥ d for any two distinct subspaces W1, W2 in this set. In this paper, we construct a new class of constant dimension codes (CDCs) by generalizing the coset construction and combining it with CDCs derived from parallel linkage construction and coset construction with an aim to improve the new lower bounds of Aq(n, d, k). We found a remarkable improvement in some of the lower bounds of Aq(n, d, k).Keywords: constant dimension codes, rank metric codes, coset construction, parallel linkage construction
Procedia PDF Downloads 20846 The Effect of Artificial Intelligence on Electric Machines and Welding
Authors: Mina Malak Zakaria Henin
Abstract:
The finite detail evaluation of magnetic fields in electromagnetic devices shows that the machine cores revel in extraordinary flux patterns consisting of alternating and rotating fields. The rotating fields are generated in different configurations variety, among circular and elliptical, with distinctive ratios between the fundamental and minor axes of the flux locus. Experimental measurements on electrical metal uncovered one-of-a-kind flux patterns that divulge distinctive magnetic losses in the samples below the test. Therefore, electric machines require unique interest throughout the core loss calculation technique to bear in mind the flux styles. In this look, a circular rotational unmarried sheet tester is employed to measure the middle losses in the electric-powered metallic pattern of M36G29. The sample becomes exposed to alternating fields, circular areas, and elliptical fields with axis ratios of zero.2, zero. Four, 0.6 and 0.8. The measured statistics changed into applied on 6-4 switched reluctance motors at 3 distinctive frequencies of interest to the industry 60 Hz, 400 Hz, and 1 kHz. The effects reveal an excessive margin of error, which can arise at some point in the loss calculations if the flux pattern difficulty is overlooked. The mistake in exceptional components of the gadget associated with considering the flux styles may be around 50%, 10%, and a couple of at 60Hz, 400Hz, and 1 kHz, respectively. The future paintings will focus on the optimization of gadget geometrical shape, which has a primary effect on the flux sample on the way to decrease the magnetic losses in system cores.Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems) synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway tractionalternating core losses, finite element analysis, rotational core losses
Procedia PDF Downloads 28845 Renewable Energy Interfaced Shunt Active Filter Using a Virtual Flux Direct Power Control
Authors: M. R. Bengourina, M. Rahli, L. Hassaine, S. Saadi
Abstract:
In this study, we present a control method entitled virtual flux direct power control of a grid connected photovoltaic system associated with an active power filter. The virtual flux direct control of power (VF-DPC) is employed for the calculation of reference current generation. In this technique, the switches states of inverter are selected from a table of switching based on the immediate errors between the active and reactive powers and their reference values. The objectives of this paper are the reduction of Total Harmonic Distortion (THD) of source current, compensating reactive power and injecting the maximum active power available from the PV array into the load and/or grid. MATLAB/SIMULINK simulations are provided to demonstrate the performance of the proposed approach.Keywords: shunt active power filter, VF-DPC, photovoltaic, MPPT
Procedia PDF Downloads 323844 Reduction of High-Frequency Planar Transformer Conduction Losses Using a Planar Litz Wire Structure
Authors: Hamed Belloumi, Amira Zouaoui, Ferid kourda
Abstract:
A new trend in power converters is to design planar transformer that aim for low profile. However, at high frequency, the planar transformer ac losses become significant due to the proximity and skin effects. In this paper, the design and implementation of a novel planar Litz conductor is presented in order to equalize the flux linkage and improving the current distribution. The developed PCB litz wire structure minimizes the losses in a similar way to the conventional multi stranded Litz wires. In order to further illustrate the eddy current effect in different arrangements, a Finite-Element Analysis (FEA) tool is used to analyze current distribution inside the conductors. Finally, the proposed planar transformer has been integrated in an electronic stage to test at high signal levels.Keywords: planar transformer, finite-element analysis, winding losses, planar Litz wire
Procedia PDF Downloads 400843 Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive
Authors: Marcel Lehr, Andreas Binder
Abstract:
This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior.Keywords: doubly-salient-permanent-magnet-machine, flux-reversal-permanent-magnet-machine, flux-switching-permanent-magnet-machine, industrial drive
Procedia PDF Downloads 371842 Experimental Study of Heat Transfer in Pulsation Mist Flow in Rectanglar Duct Partially Filled with a Porous Medium
Authors: Hosein Shokoohmand, Mohamad Esmaeil Jomeh
Abstract:
The present thesis studies the effect of different factors such as frequency of oscillatory flow, change in constant wall heat flux and two-phase current state, on heat transfer in a pipe in presence of porous medium. In this experimental study is conducted for Reynolds numbers in a range of Re=850 to Re=10000 and oscillatory frequencies of 5, 20, 10, 30 and 40 Hz with constant heat flux of 585 w/m2 and 819 w/m2. The results indicate that increase in oscillation frequency in higher frequencies for heat flux of 585 w/m2 leads to an increase in heat transfer; however, in the rest of tests it results in a heat transfer decrease. Increasing Reynolds number in a pulsation mist flow causes an increase in average Nusselt number values. The effect of oscillation frequencies in a pulsation mist flow for different Reynolds numbers has revealed different results, in a way that for some Reynolds numbers an increase of frequency has led to a heat transfer decrease.Keywords: Reynolds numbers, frequency of oscillatory flow, constant heat flux, mist flow
Procedia PDF Downloads 496841 Novel Stator Structure Switching Flux Permanent Magnet Motor
Authors: Mengjie Shen, Jianhua Wu, Chun Gan, Lifeng Zhang, Qingguo Sun
Abstract:
Switching flux permanent magnet (SFPM) motor has doubly salient structure which lead to high torque ripple, and also has cogging torque as a permanent magnet motor. Torque ripple and cogging torque have impact on the motor performance. A novel stator structure SFPM motor is presented in this paper. A triangular shape silicon steel sheet is put in the stator slot to reduce the torque ripple, which will not deteriorate the cogging torque. The simulation of proposed motor is analyzed using 2-D finite element method (FEM) based on Ansoft and Simplorer software, and the result show a good performance of the proposed SFPM motor.Keywords: switching flux permanent magnet (SFPM) motor, torque ripple, Ansoft, FEM
Procedia PDF Downloads 570840 Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer
Authors: Zita Šereš, Ljubica Dokić, Nikola Maravić, Dragana Šoronja Simović, Cecilia Hodur, Ivana Nikolić, Biljana Pajin
Abstract:
New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from the sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1 – 3 bars and in range of flow rate of 50 – 150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50-70 L/m2h. The obtained turbidity decrease was in the range of 50-99% and the total amount of suspended solids was removed.Keywords: ceramic membrane, microfiltration, permeate flux, sugar industry, wastewater
Procedia PDF Downloads 523839 Study of the Effect of Inclusion of TiO2 in Active Flux on Submerged Arc Welding of Low Carbon Mild Steel Plate and Parametric Optimization of the Process by Using DEA Based Bat Algorithm
Authors: Sheetal Kumar Parwar, J. Deb Barma, A. Majumder
Abstract:
Submerged arc welding is a very complex process. It is a very efficient and high performance welding process. In this present study an attempt have been done to reduce the welding distortion by increased amount of oxide flux through TiO2 in submerged arc welding process. Care has been taken to avoid the excessiveness of the adding agent for attainment of significant results. Data Envelopment Analysis (DEA) based BAT algorithm is used for the parametric optimization purpose in which DEA Data Envelopment Analysis is used to convert multi response parameters into a single response parameter. The present study also helps to know the effectiveness of the addition of TiO2 in active flux during submerged arc welding process.Keywords: BAT algorithm, design of experiment, optimization, submerged arc welding
Procedia PDF Downloads 639838 Sensorless Controller of Induction Motor Using Backstepping Approach and Fuzzy MRAS
Authors: Ahmed Abbou
Abstract:
This paper present a sensorless controller designed by the backstepping approach for the speed control of induction motor. In this strategy of control, we also combined the method Fuzzy MRAS to estimate the rotor speed and the observer type Luenburger to observe Rotor flux. The control model involves a division by the flux variable that may lead to unbounded solutions. Such a risk is avoided by basing the controller design on Lyapunov function that accounts for the model singularity. On the other hand, this mixed method gives better results in Sensorless operation and especially at low speed. The response time at 5% of the flux is 20ms while the error between the speed with sensor and the estimated speed remains in the range of ±0.8 rad/s for the rated functioning and ±1.5 rad/s for low speed.Keywords: backstepping approach, fuzzy logic, induction motor, luenburger observer, sensorless MRAS
Procedia PDF Downloads 373837 Numerical Modeling of Film Cooling of the Surface at Non-Uniform Heat Flux Distributions on the Wall
Authors: M. V. Bartashevich
Abstract:
The problem of heat transfer at thin laminar liquid film is solved numerically. A thin film of liquid flows down an inclined surface under conditions of variable heat flux on the wall. The use of thin films of liquid allows to create the effective technologies for cooling surfaces. However, it is important to investigate the most suitable cooling regimes from a safety point of view, in order, for example, to avoid overheating caused by the ruptures of the liquid film, and also to study the most effective cooling regimes depending on the character of the distribution of the heat flux on the wall, as well as the character of the blowing of the film surface, i.e., the external shear stress on its surface. In the statement of the problem on the film surface, the heat transfer coefficient between the liquid and gas is set, as well as a variable external shear stress - the intensity of blowing. It is shown that the combination of these factors - the degree of uniformity of the distribution of heat flux on the wall and the intensity of blowing, affects the efficiency of heat transfer. In this case, with an increase in the intensity of blowing, the cooling efficiency increases, reaching a maximum, and then decreases. It is also shown that the more uniform the heating of the wall, the more efficient the heat sink. A separate study was made for the flow regime along the horizontal surface when the liquid film moves solely due to external stress influence. For this mode, the analytical solution is used for the temperature at the entrance region for further numerical calculations downstream. Also the influence of the degree of uniformity of the heat flux distribution on the wall and the intensity of blowing of the film surface on the heat transfer efficiency was also studied. This work was carried out at the Kutateladze Institute of Thermophysics SB RAS (Russia) and supported by FASO Russia.Keywords: Heat Flux, Heat Transfer Enhancement, External Blowing, Thin Liquid Film
Procedia PDF Downloads 149836 Two Dimensional Finite Element Model to Study Calcium Dynamics in Fibroblast Cell with Excess Buffer Approximation Involving ER Flux and SERCA Pump
Authors: Mansha Kotwani
Abstract:
The specific spatio-temporal calcium concentration patterns are required by the fibroblasts to maintain its structure and functions. Thus, calcium concentration is regulated in cell at different levels in various activities of the cell. The variations in cytosolic calcium concentration largely depend on the buffers present in cytosol and influx of calcium into cytosol from ER through IP3Rs or Raynodine receptors followed by reuptake of calcium into ER through sarcoplasmic/endoplasmic reticulum ATPs (SERCA) pump. In order to understand the mechanisms of wound repair, tissue remodeling and growth performed by fibroblasts, it is of crucial importance to understand the mechanisms of calcium concentration regulation in fibroblasts. In this paper, a model has been developed to study calcium distribution in NRK fibroblast in the presence of buffers and ER flux with SERCA pump. The model has been developed for two dimensional unsteady state case. Appropriate initial and boundary conditions have been framed along with physiology of the cell. Finite element technique has been employed to obtain the solution. The numerical results have been used to study the effect of buffers, ER flux and source amplitude on calcium distribution in fibroblast cell.Keywords: buffers, IP3R, ER flux, SERCA pump, source amplitude
Procedia PDF Downloads 243835 Flow Boiling Heat Transfer at Low Mass and Heat Fluxes: Heat Transfer Coefficient, Flow Pattern Analysis and Correlation Assessment
Authors: Ernest Gyan Bediako, Petra Dancova, Tomas Vit
Abstract:
Flow boiling heat transfer remains an important area of research due to its relevance in thermal management systems and other applications. Despite the enormous work done in the field of flow boiling heat transfer over the years to understand how flow parameters such as mass flux, heat flux, saturation conditions and tube geometries influence the characteristics of flow boiling heat transfer, there are still many contradictions and lack of agreement on the actual mechanisms controlling heat transfer and how flow parameters impact the heat transfer. This work thus seeks to experimentally investigate the heat transfer characteristics and flow patterns at low mass fluxes, low heat fluxes and low saturation pressure conditions which are of less attention in literature but prevalent in refrigeration, air-conditioning and heat pump applications. In this study, flow boiling experiment was conducted for R134a working fluid in a 5 mm internal diameter stainless steel horizontal smooth tube with mass flux ranging from 80- 100 kg/m2 s, heat fluxes ranging from 3.55kW/m2 - 25.23 kW/m2 and saturation pressure of 460 kPa. Vapor quality ranged from 0 to 1. A well-known flow pattern map created by Wojtan et al. was used to predict the flow patterns noticed during the study. The experimental results were correlated with well-known flow boiling heat transfer correlations in literature. The findings show that, heat transfer coefficient was influenced by both mass flux and heat fluxes. However, for an increasing heat flux, nucleate boiling was observed to be the dominant mechanism controlling the heat transfer especially at low vapor quality region. For an increasing mass flux, convective boiling was the dominant mechanism controlling the heat transfer especially in the high vapor quality region. Also, the study observed an unusual high heat transfer coefficient at low vapor qualities which could be due to periodic wetting of the walls of the tube due to slug flow pattern and stratified wavy flow patterns. The flow patterns predicted by Wojtan et al. flow pattern map were mixture of slug and stratified wavy, purely stratified wavy and dry out. Statistical assessment of the experimental data with various well-known correlations from literature showed that, none of the correlations reported in literature could predicted the experimental data with enough accuracy.Keywords: flow boiling, heat transfer coefficient, mass flux, heat flux.
Procedia PDF Downloads 116834 Effects of Cattaneo-Christov Heat Flux on 3D Magnetohydrodynamic Viscoelastic Fluid Flow with Variable Thermal Conductivity
Authors: Muhammad Ramzan
Abstract:
A mathematical model has been envisaged to discuss three-dimensional Viscoelastic fluid flow with an effect of Cattaneo-Christov heat flux in attendance of magnetohydrodynamic (MHD). Variable thermal conductivity with the impact of homogeneous-heterogeneous reactions and convective boundary condition is also taken into account. Homotopy analysis method is engaged to obtain series solutions. Graphical illustrations depicting behaviour of sundry parameters on skin friction coefficient and all involved distributions are also given. It is observed that velocity components are decreasing functions of Viscoelastic fluid parameter. Furthermore, strength of homogeneous and heterogeneous reactions have opposite effects on concentration distribution. A comparison with a published paper has also been established and an excellent agreement is obtained; hence reliable results are being presented.Keywords: Cattaneo Christov heat flux, homogenous-heterogeneous reactions, magnetic field, variable thermal conductivity
Procedia PDF Downloads 197833 Investigation of Permeate Flux through DCMD Module by Inserting S-Ribs Carbon-Fiber Promoters with Ascending and Descending Hydraulic Diameters
Authors: Chii-Dong Ho, Jian-Har Chen
Abstract:
The decline in permeate flux across membrane modules is attributed to the increase in temperature polarization resistance in flat-plate Direct Contact Membrane Distillation (DCMD) modules for pure water productivity. Researchers have discovered that this effect can be diminished by embedding turbulence promoters, which augment turbulence intensity at the cost of increased power consumption, thereby improving vapor permeate flux. The device performance of DCMD modules for permeate flux was further enhanced by shrinking the hydraulic diameters of inserted S-ribs carbon-fiber promoters as well as considering the energy consumption increment. The mass-balance formulation, based on the resistance-in-series model by energy conservation in one-dimensional governing equations, was developed theoretically and conducted experimentally on a flat-plate polytetrafluoroethylene/polypropylene (PTFE/PP) membrane module to predict permeate flux and temperature distributions. The ratio of permeate flux enhancement to energy consumption increment, as referred to an assessment on economic viewpoint and technical feasibilities, was calculated to determine the suitable design parameters for DCMD operations with the insertion of S-ribs carbon-fiber turbulence promoters. An economic analysis was also performed, weighing both permeate flux improvement and energy consumption increment on modules with promoter-filled channels by different array configurations and various hydraulic diameters of turbulence promoters. Results showed that the ratio of permeate flux improvement to energy consumption increment in descending hydraulic-diameter modules is higher than in uniform hydraulic-diameter modules. The fabrication details of the DCMD module filaments implementing the S-ribs carbon-fiber filaments and the schematic configuration of the flat-plate DCMD experimental setup with presenting acrylic plates as external walls were demonstrated in the present study. The S-ribs carbon fibers perform as turbulence promoters incorporated into the artificial hot saline feed stream, which was prepared by adding inorganic salts (NaCl) to distilled water. Theoretical predictions and experimental results exhibited a great accomplishment to considerably achieve permeate flux enhancement, such as the new design of the DCMD module with inserting S-ribs carbon-fiber promoters. Additionally, the Nusselt number for the water vapor transferring membrane module with inserted S-ribs carbon-fiber promoters was generalized into a simplified expression to predict the heat transfer coefficient and permeate flux as well.Keywords: permeate flux, Nusselt number, DCMD module, temperature polarization, hydraulic diameters
Procedia PDF Downloads 8832 Effect of Fluidized Granular Activated Carbon for the Mitigation of Membrane Fouling in Wastewater Treatment
Authors: Jingwei Wang, Anthony G. Fane, Jia Wei Chew
Abstract:
The use of fluidized Granular Activated Carbon (GAC) as a means of mitigation membrane fouling in membrane bioreactors (MBRs) has received much attention in recent years, especially in anaerobic fluidized bed membrane bioreactors (AFMBRs). It has been affirmed that the unsteady-state tangential shear conferred by GAC fluidization on membrane surface suppressed the extent of membrane fouling with energy consumption much lower than that of bubbling (i.e., air sparging). In a previous work, the hydrodynamics of the fluidized GAC particles were correlated with membrane fouling mitigation effectiveness. Results verified that the momentum transfer from particle to membrane held a key in fouling mitigation. The goal of the current work is to understand the effect of fluidized GAC on membrane critical flux. Membrane critical flux values were measured by a vertical Direct Observation Through the Membrane (DOTM) setup. The polystyrene particles (known as latex particles) with the particle size of 5 µm were used as model foulant thus to give the number of the foulant on the membrane surface. Our results shed light on the positive effect of fluidized GAC enhancing the critical membrane flux by an order-of-magnitude as compared to that of liquid shear alone. Membrane fouling mitigation was benefitted by the increasing of power input.Keywords: membrane fouling mitigation, liquid-solid fluidization, critical flux, energy input
Procedia PDF Downloads 407831 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models
Authors: P. Srinivas, P. V. N. Prasad
Abstract:
Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands. The DTC of SRM is analysed by two methods. In one of the methods, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.Keywords: direct toque control, simplified torque equation, finite element analysis, torque ripple
Procedia PDF Downloads 479830 Development of a Compact Permanent Magnet Axial Flux Motor Using Soft Magnetic Composite
Authors: Nasiru Aliyu, Glyn Atkinson, Nick Stannard
Abstract:
With increasing demand for electric motors used in nearly all sectors of our day to day activities, which range from the motor that rotates the washing machine and dishwasher to the tens of thousands of motors used in domestic appliance. The number of applications for soft magnetic composites (SMC) material is growing significantly. This paper presents the development of a compact single sided concentrated winding axial flux PM motor using soft magnetic composite as core for reducing core losses and cost. The effects of changing the flux carrying component to pressed SMC parts are investigated based on a comprehensive understanding of the properties of the material. A 3-D finite-element analysis is performed for accurate parameter calculation. To validate the simulation, a new static test measurement was fully conducted on a prototype motor and agree with the theoretical calculations and old measured static test.Keywords: SMC, compact development, axial field motor, 3DFA
Procedia PDF Downloads 331829 Spillovers between Oil and the Gulf Cooperation Council Stock Markets: Fresh Evidence from a Regime-Switching Approach
Authors: Ahmed BenSaïda
Abstract:
This study examines the relationship between crude oil and the Gulf Cooperation Council (GCC) region stock markets by employing a regime-switching approach. The methodology provides new insights into how the interrelationship between oil and GCC stock markets may fluctuate in different economic or market regimes, which is crucial for understanding the transmission of oil shocks and tailoring policy responses. Our findings indicate that the spillovers between the underlying assets are asymmetric. Specifically, during the turmoil periods, the connectedness is intense among these assets, whereas during tranquil periods, the linkage is moderate. Furthermore, an increase in oil prices can positively contribute to the profits of firms that are heavily dependent on oil, leading to an increase in the linkage between these countries and crude oil. The findings have important implications for investors and decision-makers in the GCC region.Keywords: GCC indices, oil, regime-switching, spillovers
Procedia PDF Downloads 19