Search results for: electricity consumption
4133 Centralized Peak Consumption Smoothing Revisited for Habitat Energy Scheduling
Authors: M. Benbouzid, Q. Bresson, A. Duclos, K. Longo, Q. Morel
Abstract:
Currently, electricity suppliers must predict the consumption of their customers in order to deduce the power they need to produce. It is, then, important in a first step to optimize household consumption to obtain more constant curves by limiting peaks in energy consumption. Here centralized real time scheduling is proposed to manage the equipment's starting in parallel. The aim is not to exceed a certain limit while optimizing the power consumption across a habitat. The Raspberry Pi is used as a box; this scheduler interacts with the various sensors in 6LoWPAN. At the scale of a single dwelling, household consumption decreases, particularly at times corresponding to the peaks. However, it would be wiser to consider the use of a residential complex so that the result would be more significant. So, the ceiling would no longer be fixed. The scheduling would be done on two scales, firstly, per dwelling, and secondly, at the level of a residential complex.Keywords: smart grid, energy box, scheduling, Gang Model, energy consumption, energy management system, wireless sensor network
Procedia PDF Downloads 3134132 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities
Authors: Kung-Jen Tu, Danny Vernatha
Abstract:
To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.Keywords: database, electricity sub-meters, energy anomaly detection, sensor
Procedia PDF Downloads 3074131 Analysis of Electricity Demand at Household Level Using Leap Model in Balochistan, Pakistan
Authors: Sheikh Saeed Ahmad
Abstract:
Electricity is vital for any state’s development that needs policy for planning the power network extension. This study is about simulation modeling for electricity in Balochistan province. Baseline data of electricity consumption was used of year 2004 and projected with the help of LEAP model up to subsequent 30 years. Three scenarios were created to run software. One scenario was baseline and other two were alternative or green scenarios i.e. solar and wind energy scenarios. Present study revealed that Balochistan has much greater potential for solar and wind energy for electricity production. By adopting these alternative energy forms, Balochistan can save energy in future nearly 23 and 48% by incorporating solar and wind power respectively. Thus, the study suggests to government planners, an aspect of integrating renewable sources in power system for ensuring sustainable development and growth.Keywords: demand and supply, LEAP, solar energy, wind energy, households
Procedia PDF Downloads 4254130 Scheduling Residential Daily Energy Consumption Using Bi-criteria Optimization Methods
Authors: Li-hsing Shih, Tzu-hsun Yen
Abstract:
Because of the long-term commitment to net zero carbon emission, utility companies include more renewable energy supply, which generates electricity with time and weather restrictions. This leads to time-of-use electricity pricing to reflect the actual cost of energy supply. From an end-user point of view, better residential energy management is needed to incorporate the time-of-use prices and assist end users in scheduling their daily use of electricity. This study uses bi-criteria optimization methods to schedule daily energy consumption by minimizing the electricity cost and maximizing the comfort of end users. Different from most previous research, this study schedules users’ activities rather than household appliances to have better measures of users’ comfort/satisfaction. The relation between each activity and the use of different appliances could be defined by users. The comfort level is at the highest when the time and duration of an activity completely meet the user’s expectation, and the comfort level decreases when the time and duration do not meet expectations. A questionnaire survey was conducted to collect data for establishing regression models that describe users’ comfort levels when the execution time and duration of activities are different from user expectations. Six regression models representing the comfort levels for six types of activities were established using the responses to the questionnaire survey. A computer program is developed to evaluate electricity cost and the comfort level for each feasible schedule and then find the non-dominated schedules. The Epsilon constraint method is used to find the optimal schedule out of the non-dominated schedules. A hypothetical case is presented to demonstrate the effectiveness of the proposed approach and the computer program. Using the program, users can obtain the optimal schedule of daily energy consumption by inputting the intended time and duration of activities and the given time-of-use electricity prices.Keywords: bi-criteria optimization, energy consumption, time-of-use price, scheduling
Procedia PDF Downloads 594129 The Importance of Generating Electricity through Wind Farms in the Brazilian Electricity Matrix, from 2013 to 2020
Authors: Alex Sidarta Guglielmoni
Abstract:
Since the 1970s, sustainable development has become increasingly present on the international agenda. The present work has as general objective to analyze, discuss and bring answers to the following question, what is the importance of the generation of electric energy through the wind power plants in the Brazilian electricity matrix between 2013 and 2019? To answer this question, we analyzed the generation of renewable energy from wind farms and the consumption of electricity in Brazil during the period of January 2013 until December 2020. The specific objectives of this research are: to analyze the public data, to identify the total wind generation, to identify the total wind capacity generation, to identify the percentage participation of the generation and generation capacity of wind energy in the Brazilian electricity matrix. In order to develop this research, it was necessary a bibliographic search, collection of secondary data, tabulation of generation data, and electricity capacity by a comparative analysis between wind power and the Brazilian electricity matrix. As a result, it was possible to observe how important Brazil is for global sustainable development and how much this country can grow with this, in view of its capacity and potential for generating wind power since this percentage has grown in past few years.Keywords: wind power, Brazilian market, electricity matrix, generation capacity
Procedia PDF Downloads 1264128 Construction of Microbial Fuel Cells from Local Benthic Zones
Authors: Maria Luiza D. Ramiento, Maria Lissette D. Lucas
Abstract:
Electricity is said to serve as the backbone of modern technology. Considering this, electricity consumption has dynamically grown due to the continuous demand. An alternative producer of energy concerning electricity must therefore be given focus. Microbial fuel cell wholly characterizes a new method of renewable energy recovery: the direct conversion of organic matter to electricity using bacteria. Electricity is produced as fuel or new food is given to the bacteria. The study concentrated in determining the feasibility of electricity production from local benthic zones. Microbial fuel cells were constructed to harvest the possible electricity and to test the presence of electricity producing microorganisms. Soil samples were gathered from Calumpang River, Palawan Mangrove Forest, Rosario River and Batangas Port. Eleven modules were constructed for the different trials of the soil samples. These modules were made of cathode and anode chambers connected by a salt bridge. For 85 days, the harvested voltage was measured daily. No parameter is added for the first 24 days. For the next 61 days, acetic acid was included in the first and second trials of the modules. Each of the trials of the soil samples gave a positive result in electricity production.There were electricity producing microbes in local benthic zones. It is observed that the higher the organic content of the soil sample, the higher the electricity harvested from it. It is recommended to identify the specific species of the electricity-producing microorganism present in the local benthic zone. Complement experiments are encouraged like determining the kind of soil particles to test its effect on the amount electricity that can be harvested. To pursue the development of microbial fuel cells by building a closed circuit in it is also suggested.Keywords: microbial fuel cell, benthic zone, electricity, reduction-oxidation reaction, bacteria
Procedia PDF Downloads 4004127 Fuel Economy of Electrical Energy in the City Bus during Japanese Test Procedure
Authors: Piotr Kacejko, Lukasz Grabowski, Zdzislaw Kaminski
Abstract:
This paper discusses a model of fuel consumption and on-board electricity generation. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the on-board electricity generation during the Japanese JE05 Emission Test Cycle. The simulations were performed for several values of vehicle mass and electrical load applied to on-board devices. The research results show that driving dynamics has an impact on a consumption of fuel to drive alternators.Keywords: city bus, heavy duty vehicle, Japanese JE05 test cycle, power generation
Procedia PDF Downloads 2104126 The Cost of Solar-Centric Renewable Portfolio
Authors: Timothy J. Considine, Edward J. M. Manderson
Abstract:
This paper develops an econometric forecasting system of energy demand coupled with engineering-economic models of energy supply. The framework is used to quantify the impact of state-level renewable portfolio standards (RPSs) achieved predominately with solar generation on electricity rates, electricity consumption, and environmental quality. We perform the analysis using Arizona’s RPS as a case study. We forecast energy demand in Arizona out to 2035, and find by this time the state will require an additional 35 million MWh of electricity generation. If Arizona implements its RPS when supplying this electricity demand, we find there will be a substantial increase in electricity rates (relative to a business-as-usual scenario of reliance on gas-fired generation). Extending the current regime of tax credits can greatly reduce this increase, at the taxpayers’ expense. We find that by 2025 Arizona’s RPS will implicitly abate carbon dioxide emissions at a cost between $101 and $135 per metric ton, and by 2035 abatement costs are between $64 and $112 per metric ton (depending on the future evolution of nature gas prices).Keywords: electricity demand, renewable portfolio standard, solar, carbon dioxide
Procedia PDF Downloads 4854125 Quantifying Spatiotemporal Patterns of Past and Future Urbanization Trends in El Paso, Texas and Their Impact on Electricity Consumption
Authors: Joanne Moyer
Abstract:
El Paso, Texas is a southwest border city that has experienced continuous growth within the last 15-years. Understanding the urban growth trends and patterns using data from the National Land Cover Database (NLCD) and landscape metrics, provides a quantitative description of growth. Past urban growth provided a basis to predict 2031 future land-use for El Paso using the CA-Markov model. As a consequence of growth, an increase in demand of resources follows. Using panel data analysis, an understanding of the relation between landscape metrics and electricity consumption is further analyzed. The studies’ findings indicate that past growth focused within three districts within the City of El Paso. The landscape metrics suggest as the city has grown, fragmentation has decreased. Alternatively, the landscape metrics for the projected 2031 land-use indicates possible fragmentation within one of these districts. Panel data suggests electricity consumption and mean patch area landscape metric are positively correlated. The study provides local decision makers to make informed decisions for policies and urban planning to ensure a future sustainable community.Keywords: landscape metrics, CA-Markov, El Paso, Texas, panel data
Procedia PDF Downloads 1434124 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram
Authors: Chonmapat Torasa
Abstract:
This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-wattfluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.Keywords: solar cell, solar-cell power generating system, computer, systems engineering
Procedia PDF Downloads 3254123 Exploring Factors Affecting Electricity Production in Malaysia
Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet
Abstract:
Ability to supply reliable and secure electricity has been one of the crucial components of economic development for any country. Forecasting of electricity production is therefore very important for accurate investment planning of generation power plants. In this study, we aim to examine and analyze the factors that affect electricity generation. Multiple regression models were used to find the relationship between various variables and electricity production. The models will simultaneously determine the effects of the variables on electricity generation. Many variables influencing electricity generation, i.e. natural gas (NG), coal (CO), fuel oil (FO), renewable energy (RE), gross domestic product (GDP) and fuel prices (FP), were examined for Malaysia. The results demonstrate that NG, CO, and FO were the main factors influencing electricity generation growth. This study then identified a number of policy implications resulting from the empirical results.Keywords: energy policy, energy security, electricity production, Malaysia, the regression model
Procedia PDF Downloads 1634122 Granger Causal Nexus between Financial Development and Energy Consumption: Evidence from Cross Country Panel Data
Authors: Rudra P. Pradhan
Abstract:
This paper examines the Granger causal nexus between financial development and energy consumption in the group of 35 Financial Action Task Force (FATF) Countries over the period 1988-2012. The study uses two financial development indicators such as private sector credit and stock market capitalization and seven energy consumption indicators such as coal, oil, gas, electricity, hydro-electrical, nuclear and biomass. Using panel cointegration tests, the study finds that financial development and energy consumption are cointegrated, indicating the presence of a long-run relationship between the two. Using a panel vector error correction model (VECM), the study detects both bidirectional and unidirectional causality between financial development and energy consumption. The variation of this causality is due to the use of different proxies for both financial development and energy consumption. The policy implication of this study is that economic policies should recognize the differences in the financial development-energy consumption nexus in order to maintain sustainable development in the selected 35 FATF countries.Keywords: energy consumption, financial development, FATF countries, Panel VECM
Procedia PDF Downloads 2654121 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Iran: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: Crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Iran using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in VECM suggests that all energy consumption variables in this study have significant impacts on GDP in the long term. The consumption of petroleum products and the direct combustion of crude oil and natural gas decrease GDP, while the coal and electricity use enhanced the GDP between 1980-2010 in Iran. In the short term, only electricity use enhances the GDP as well as its long-run effects. All variables of this study, except the CO2 emissions, show significant effects on the GDP in the country for the long term. The long-run equilibrium in VECM suggests that the consumption of petroleum products and the direct combustion of crude oil and natural gas use have positive impacts on the GDP while the consumptions of electricity and coal have adverse impacts on the GDP in the long term. In the short run, electricity use enhances the GDP over period of 1980-2010 in Iran. Overall, the results partly support arguments that there are relationships between energy use and economic output, but the associations can be differed by the sources of energy in the case of Iran over period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.Keywords: CO2 emissions, energy consumption, GDP, Iran, time series analysis
Procedia PDF Downloads 5924120 Analysing the Renewable Energy Integration Paradigm in the Post-COVID-19 Era: An Examination of the Upcoming Energy Law of China
Authors: Lan Wu
Abstract:
The declared transformation towards a ‘new electricity system dominated by renewable energy’ by China requires a cleaner electricity consumption mix with high shares of renewable energy sourced-electricity (RES-E). Unfortunately, integration of RES-E into Chinese electricity markets remains a problem pending more robust legal support, evidenced by the curtailment of wind and solar power as a consequence of integration constraints. The upcoming energy law of the PRC (energy law) is expected to provide such long-awaiting support and coordinate the existing diverse sector-specific laws to deal with the weak implementation that dampening the delivery of their desired regulatory effects. However, in the shadow of the COVID-19 crisis, it remains uncertain how this new energy law brings synergies to RES-E integration, mindful of the significant impacts of the pandemic. Through the theoretical lens of the interplay between China’s electricity reform and legislative development, the present paper investigates whether there is a paradigm shift in energy law regarding renewable energy integration compared with the existing sector-specific energy laws. It examines the 2020 draft for comments on the energy law and analyses its relationship with sector-specific energy laws focusing on RES-E integration. The comparison is drawn upon five key aspects of the RES-E integration issue, including the status of renewables, marketisation, incentive schemes, consumption mechanisms, access to power grids, and dispatching. The analysis shows that it is reasonable to expect a more open and well-organized electricity market enabling absorption of high shares of RES-E. The present paper concludes that a period of prosperous development of RES-E in the post-COVID-19 era can be anticipated with the legal support by the upcoming energy law. It contributes to understanding the signals China is sending regarding the transition towards a cleaner energy future.Keywords: energy law, energy transition, electricity market reform, renewable energy integration
Procedia PDF Downloads 1954119 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Egypt: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), CO2 emissions and gross domestic product (GDP) for Egypt using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests some negative impacts of the CO2 emissions and the coal and natural gas use on the GDP. Conversely, a positive long-run causality from the electricity consumption to the GDP is found to be significant in Egypt during the period. In the short-run, some positive unidirectional causalities exist, running from the coal consumption to the GDP, and the CO2 emissions and the natural gas use. Further, the GDP and the electricity use are positively influenced by the consumption of petroleum products and the direct combustion of crude oil. Overall, the results support arguments that there are relationships among environmental quality, energy use, and economic output in both the short term and long term; however, the effects may differ due to the sources of energy, such as in the case of Egypt for the period of 1980-2010.Keywords: CO2 emissions, Egypt, energy consumption, GDP, time series analysis
Procedia PDF Downloads 6154118 Heuristics for Optimizing Power Consumption in the Smart Grid
Authors: Zaid Jamal Saeed Almahmoud
Abstract:
Our increasing reliance on electricity, with inefficient consumption trends, has resulted in several economical and environmental threats. These threats include wasting billions of dollars, draining limited resources, and elevating the impact of climate change. As a solution, the smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing the peak power consumption under a fixed delay requirement is a significant problem in the smart grid. In addition, matching demand to supply is a key requirement for the success of the future electricity. In this work, we consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-Hard, we propose two versions of a heuristic algorithm for solving this problem. Our theoretical analysis and experimental results show that our proposed heuristics outperform existing methods by providing a better approximation to the optimal solution. In addition, we consider dynamic pricing methods to minimize the peak load and match demand to supply in the smart grid. Our contribution is the proposal of generic, as well as customized pricing heuristics to minimize the peak demand and match demand with supply. In addition, we propose optimal pricing algorithms that can be used when the maximum deadline period of the power jobs is relatively small. Finally, we provide theoretical analysis and conduct several experiments to evaluate the performance of the proposed algorithms.Keywords: heuristics, optimization, smart grid, peak demand, power supply
Procedia PDF Downloads 884117 Effects of Using Alternative Energy Sources and Technologies to Reduce Energy Consumption and Expenditure of a Single Detached House
Authors: Gul Nihal Gugul, Merih Aydinalp-Koksal
Abstract:
In this study, hourly energy consumption model of a single detached house in Ankara, Turkey is developed using ESP-r building energy simulation software. Natural gas is used for space heating, cooking, and domestic water heating in this two story 4500 square feet four-bedroom home. Hourly electricity consumption of the home is monitored by an automated meter reading system, and daily natural gas consumption is recorded by the owners during 2013. Climate data of the region and building envelope data are used to develop the model. The heating energy consumption of the house that is estimated by the ESP-r model is then compared with the actual heating demand to determine the performance of the model. Scenarios are applied to the model to determine the amount of reduction in the total energy consumption of the house. The scenarios are using photovoltaic panels to generate electricity, ground source heat pumps for space heating and solar panels for domestic hot water generation. Alternative scenarios such as improving wall and roof insulations and window glazing are also applied. These scenarios are evaluated based on annual energy, associated CO2 emissions, and fuel expenditure savings. The pay-back periods for each scenario are also calculated to determine best alternative energy source or technology option for this home to reduce annual energy use and CO2 emission.Keywords: ESP-r, building energy simulation, residential energy saving, CO2 reduction
Procedia PDF Downloads 1994116 Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland
Authors: Ahmed Aisa, Tariq Iqbal
Abstract:
This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit.Keywords: water heating, thermal storage, capital cost solar, consumption
Procedia PDF Downloads 4294115 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Turkey: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests no effects of the CO2 emissions and energy use on the GDP in Turkey. There exists a short-run bidirectional relationship between the electricity and natural gas consumption, and also there is a negative unidirectional causality running from the GDP to electricity use. Overall, the results partly support arguments that there are relationships between energy use and economic output; however, the effects may differ due to the source of energy such as in the case of Turkey for the period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.Keywords: CO2 emissions, energy consumption, GDP, Turkey, time series analysis
Procedia PDF Downloads 5044114 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: deep learning, artificial neural networks, energy price forecasting, turkey
Procedia PDF Downloads 2924113 Analysis of Energy Consumption Based on Household Appliances in Jodhpur, India
Authors: A. Kumar, V. Devadas
Abstract:
Energy is the basic element for any country’s economic development. India is one of the most populated countries, and is dependent on fossil fuel and nuclear-based energy generation. The energy sector faces huge challenges and is dependent on the import of energy from neighboring countries to fulfill the gap in demand and supply. India has huge setbacks for efficient energy generation, distribution, and consumption, therefore they consume more quantity of energy to produce the same amount of Gross Domestic Product (GDP) compared to the developed countries. Technology and technique use, availability, and affordability in the various sectors are varying according to their economic status. In this paper, an attempt is made to quantify the domestic electrical energy consumption in Jodhpur, India. Survey research methods have been employed and stratified sampling technique-based households were chosen for conducting the investigation. Pre-tested survey schedules are used to investigate the grassroots level study. The collected data are analyzed by employing statistical techniques. Thereafter, a multiple regression model is developed to understand the functions of total electricity consumption in the domestic sector corresponding to other independent variables including electrical appliances, age of the building, household size, education, etc. The study resulted in identifying the governing variable in energy consumption at the household level and their relationship with the efficiency of household-based electrical and energy appliances. The analysis is concluded with the recommendation for optimizing the gap in peak electrical demand and supply in the domestic sector.Keywords: appliance, consumption, electricity, households
Procedia PDF Downloads 1164112 Assess and Improve Building Energy Efficiency– a Case Study on the Office of Research and Graduate Studies at Qatar University
Authors: Mohamed Youssef
Abstract:
The proliferation of energy consumption in the built environment has made energy efficiency and savings strategies a priority objective for energy policies in most countries. Qatar is a clear example, where it has initiated several programs and institutions to mitigate the overuse of electricity consumption and control the energy load of the building by following global standards and spreading awareness campaigns. A Case study on the Office of Research and Graduate Studies at Qatar University has been investigated in this paper. The paper studied the rating load of existing buildings before and after retrofitting by using Carrier’s Hourly Analysis Program (HAP). The performance of the building has increased especially after using the LED light system instead of fluorescent light with a low payback period. GINAN paint and green roof have shown a considerable contribution to the reduction of electrical load in the building. In comparison, the double HR window had the least effect on the reduction of electricity consumption.Keywords: energy conservation in Qatar, HAP, LED light, GINAN paint, green roof, double HR window
Procedia PDF Downloads 1724111 Feasibility Study of Air Conditioners Operated by Solar Energy in Saudi Arabia
Authors: Eman Simbawa, Budur Alasmri, Hanan Munahir, Hanin Munahir
Abstract:
Solar energy has become currently the subject of attention around the world and is undergoing many researches and studies. Using solar energy, which is a renewable energy, is aligned with the Saudi Vision 2030. People are more aware of it and are starting to use it more for environmental and economical reasons. A questionnaire was conducted in this paper to measure the awareness of people in Saudi Arabia regarding solar energy and their attitude towards it. Then, two kinds of air conditioners (one powered by electricity only and one powered by solar panels and electricity) are compared in terms of their cost over a period of 20 years. This will help the users to decide which kind of device to use depending on its cost. The result shows that as the electricity tariffs in Saudi Arabia increases, depending on the sector, the solar air conditioner is cheaper. In fact, if the tariff in the future increases to reach 50 Halalah/kWh, the solar air conditioner is more economical. This will influence users to buy more solar powered devices, and it will decrease the consumption of electricity. Therefore, the dependence on oil will decrease.Keywords: Airconditioner, solar energy, photovoltaic cells, present value
Procedia PDF Downloads 1604110 Energy Management System
Authors: S. Periyadharshini, K. Ramkumar, S. Jayalalitha, M. GuruPrasath, R. Manikandan
Abstract:
This paper presents a formulation and solution for industrial load management and product grade problem. The formulation is created using linear programming technique thereby optimizing the electricity cost by scheduling the loads satisfying the process, storage, time zone and production constraints which will create an impact of reducing maximum demand and thereby reducing the electricity cost. Product grade problem is formulated using integer linear programming technique of optimization using lingo software and the results show that overall increase in profit margin. In this paper, time of use tariff is utilized and this technique will provide significant reductions in peak electricity consumption.Keywords: cement industries, integer programming, optimal formulation, objective function, constraints
Procedia PDF Downloads 5934109 Necessary Steps for Optimizing Electricity Generation Programs from Ahvaz Electricity Plants, Iran
Authors: Sara Zadehomidi
Abstract:
Iran, a geographically arid and semi-arid country, experiences varying levels of rainfall across its territory. Five major and important rivers, namely Karun, Dez, Karkheh, Jarrahi, and Hendijan, are valuable assets of the Khuzestan province. To address various needs, including those of farmers (especially during hot seasons with no rainfall), drinking water requirements, industrial and environmental, and most importantly, electricity production, dams have been constructed on several of these rivers, with some dams still under construction. The outflow of water from dam reservoirs must be managed in a way that not only preserves the reservoir's potential effectively but also ensures the maximum revenue from electricity generation. Furthermore, it should meet the other mentioned requirements. In this study, scientific methods such as optimization using Lingo software were employed to achieve these objectives. The results, when executed and adhering to the proposed electricity production program with Lingo software, indicate a 35.7% increase in electricity sales revenue over a one-year examination period. Considering that several electricity plants are currently under construction, the importance and necessity of utilizing computer systems for expediting and optimizing the electricity generation program planning from electricity plants will become evident in the future.Keywords: Ahvaz, electricity generation programs, Iran, optimizing
Procedia PDF Downloads 644108 The Relationship between Energy Consumption and Economic Growth in Turkey: A Time Series Analysis
Authors: Burcu Guvenek, Volkan Alptekin
Abstract:
Turkey is a country in the process of development and its economy has undergone structural reforms in order to realize a sustainable development and energy has vital role as a basic input for this aim. Turkey has been in the process of economic growth and development and, because of this, has an increasing energy need. This paper investigates relationship between economic growth and electricity consumption using annual data for Turkey between 1970-2008 by using bounds test. As economic growth and energy consumption variables used in empirical analysis was different order of integration I(0) and I(1), we employed bounds test approach. We have not found co-integration relationship between the variables.Keywords: bounds test, economic growth, energy consumption, Turkey
Procedia PDF Downloads 3634107 Financial Portfolio Optimization in Turkish Electricity Market via Value at Risk
Authors: F. Gökgöz, M. E. Atmaca
Abstract:
Electricity has an indispensable role in human daily life, technological development and economy. It is a special product or service that should be instantaneously generated and consumed. Sources of the world are limited so that effective and efficient use of them is very important not only for human life and environment but also for technological and economic development. Competitive electricity market is one of the important way that provides suitable platform for effective and efficient use of electricity. Besides benefits, it brings along some risks that should be carefully managed by a market player like Electricity Generation Company. Risk management is an essential part in market players’ decision making. In this paper, risk management through diversification is applied with the help of Value at Risk methods for case studies. Performance of optimal electricity sale solutions are measured and the portfolio performance has been evaluated via Sharpe-Ratio, and compared with conventional approach. Biennial historical electricity price data of Turkish Day Ahead Market are used to demonstrate the approach.Keywords: electricity market, portfolio optimization, risk management, value at risk
Procedia PDF Downloads 3134106 Day Ahead and Intraday Electricity Demand Forecasting in Himachal Region using Machine Learning
Authors: Milan Joshi, Harsh Agrawal, Pallaw Mishra, Sanand Sule
Abstract:
Predicting electricity usage is a crucial aspect of organizing and controlling sustainable energy systems. The task of forecasting electricity load is intricate and requires a lot of effort due to the combined impact of social, economic, technical, environmental, and cultural factors on power consumption in communities. As a result, it is important to create strong models that can handle the significant non-linear and complex nature of the task. The objective of this study is to create and compare three machine learning techniques for predicting electricity load for both the day ahead and intraday, taking into account various factors such as meteorological data and social events including holidays and festivals. The proposed methods include a LightGBM, FBProphet, combination of FBProphet and LightGBM for day ahead and Motifs( Stumpy) based on Mueens algorithm for similarity search for intraday. We utilize these techniques to predict electricity usage during normal days and social events in the Himachal Region. We then assess their performance by measuring the MSE, RMSE, and MAPE values. The outcomes demonstrate that the combination of FBProphet and LightGBM method is the most accurate for day ahead and Motifs for intraday forecasting of electricity usage, surpassing other models in terms of MAPE, RMSE, and MSE. Moreover, the FBProphet - LightGBM approach proves to be highly effective in forecasting electricity load during social events, exhibiting precise day ahead predictions. In summary, our proposed electricity forecasting techniques display excellent performance in predicting electricity usage during normal days and special events in the Himachal Region.Keywords: feature engineering, FBProphet, LightGBM, MASS, Motifs, MAPE
Procedia PDF Downloads 724105 Nexus between Energy, Environment and Economic Growth: Sectoral Analysis from Pakistan
Authors: Muhammad Afzal, Muhammad Sajjad
Abstract:
Climate change has become a global environmental challenge and it has affected the world’s economy. Its impact is widespread across all major sectors of the economy i.e. agriculture, industry, and services sectors. This study attempts to measure the long run as well as the short-run dynamic between energy; environment and economic growth by using Autoregressive Distributed Lag (ARDL) bound testing approach at aggregate as well as sectoral level. We measured the causal relationship between electricity consumption, fuel consumption, CO₂ emission, and real Gross Domestic Product (GDP) for the period of 1980 to 2016 for Pakistan. Our co-integration results reveal that all the variables are co-integrated at aggregate as well as at sectoral level. Electricity consumption shows two-way casual relation at for industry, services and aggregate level. The inverted U-Curve hypothesis tested the relationship between greenhouse gas emissions and per capita GDP and results supported the Environment Kuznet Curve (EKC) hypothesis. This study cannot ignore the importance of energy for economic growth but prefers to focus on renewable and green energy to pave on the trajectory of development.Keywords: climate change, economic growth, energy, environment
Procedia PDF Downloads 1644104 Analysis of Co2 Emission from Thailand's Thermal Power Sector by Divisia Decomposition Approach
Authors: Isara Muangthai, Lin Sue Jane
Abstract:
Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation.Keywords: co2 emission, decomposition analysis, electricity generation, energy consumption
Procedia PDF Downloads 482