Search results for: automatic identification token
3773 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: artificial intelligence and office, NLP, deep learning, text classification
Procedia PDF Downloads 2023772 Disability, Stigma and In-Group Identification: An Exploration across Different Disability Subgroups
Authors: Sharmila Rathee
Abstract:
Individuals with disability/ies often face negative attitudes, discrimination, exclusion, and inequality of treatment due to stigmatization and stigmatized treatment. While a significant number of studies in field of stigma suggest that group-identification has positive consequences for stigmatized individuals, ironically very miniscule empirical work in sight has attempted to investigate in-group identification as a coping measure against stigma, humiliation and related experiences among disability group. In view of death of empirical research on in-group identification among disability group, through present work, an attempt has been made to examine the experiences of stigma, humiliation, and in-group identification among disability group. Results of the study suggest that use of in-group identification as a coping strategy is not uniform across members of disability group and degree of in-group identification differs across different sub-groups of disability groups. Further, in-group identification among members of disability group depends on variables like degree and impact of disability, factors like onset of disability, nature, and visibility of disability, educational experiences and resources available to deal with disabling conditions.Keywords: disability, stigma, in-group identification, social identity
Procedia PDF Downloads 3263771 Development of an Automatic Sequential Extraction Device for Pu and Am Isotopes in Radioactive Waste Samples
Authors: Myung Ho Lee, Hee Seung Lim, Young Jae Maeng, Chang Hoon Lee
Abstract:
This study presents an automatic sequential extraction device for Pu and Am isotopes in radioactive waste samples from the nuclear power plant with anion exchange resin and TRU resin. After radionuclides were leached from the radioactive waste samples with concentrated HCl and HNO₃, the sample was allowed to evaporate to dryness after filtering the leaching solution with 0.45 micron filter. The Pu isotopes were separated in HNO₃ medium with anion exchange resin. For leaching solution passed through the anion exchange column, the Am isotopes were sequentially separated with TRU resin. Automatic sequential extraction device built-in software information of separation for Pu and Am isotopes was developed. The purified Pu and Am isotopes were measured by alpha spectrometer, respectively, after the micro-precipitation of neodymium. The data of Pu and Am isotopes in radioactive waste with an automatic sequential extraction device developed in this study were validated with the ICP-MS system.Keywords: automatic sequential extraction device, Pu isotopes, Am isotopes, alpha spectrometer, radioactive waste samples, ICP-MS system
Procedia PDF Downloads 773770 Systems Approach on Thermal Analysis of an Automatic Transmission
Authors: Sinsze Koo, Benjin Luo, Matthew Henry
Abstract:
In order to increase the performance of an automatic transmission, the automatic transmission fluid is required to be warm up to an optimal operating temperature. In a conventional vehicle, cold starts result in friction loss occurring in the gear box and engine. The stop and go nature of city driving dramatically affect the warm-up of engine oil and automatic transmission fluid and delay the time frame needed to reach an optimal operating temperature. This temperature phenomenon impacts both engine and transmission performance but also increases fuel consumption and CO2 emission. The aim of this study is to develop know-how of the thermal behavior in order to identify thermal impacts and functional principles in automatic transmissions. Thermal behavior was studied using models and simulations, developed using GT-Suit, on a one-dimensional thermal and flow transport. A power train of a conventional vehicle was modeled in order to emphasis the thermal phenomena occurring in the various components and how they impact the automatic transmission performance. The simulation demonstrates the thermal model of a transmission fluid cooling system and its component parts in warm-up after a cold start. The result of these analyses will support the future designs of transmission systems and components in an attempt to obtain better fuel efficiency and transmission performance. Therefore, these thermal analyses could possibly identify ways that improve existing thermal management techniques with prioritization on fuel efficiency.Keywords: thermal management, automatic transmission, hybrid, and systematic approach
Procedia PDF Downloads 3793769 Forensic Challenges in Source Device Identification for Digital Videos
Authors: Mustapha Aminu Bagiwa, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris, Suleman Khan
Abstract:
Video source device identification has become a problem of concern in numerous domains especially in multimedia security and digital investigation. This is because videos are now used as evidence in legal proceedings. Source device identification aim at identifying the source of digital devices using the content they produced. However, due to affordable processing tools and the influx in digital content generating devices, source device identification is still a major problem within the digital forensic community. In this paper, we discuss source device identification for digital videos by identifying techniques that were proposed in the literature for model or specific device identification. This is aimed at identifying salient open challenges for future research.Keywords: video forgery, source camcorder, device identification, forgery detection
Procedia PDF Downloads 6323768 Automatic Battery Charging for Rotor Wings Type Unmanned Aerial Vehicle
Authors: Jeyeon Kim
Abstract:
This paper describes the development of the automatic battery charging device for the rotor wings type unmanned aerial vehicle (UAV) and the positioning method that can be accurately landed on the charging device when landing. The developed automatic battery charging device is considered by simple maintenance, durability, cost and error of the positioning when landing. In order to for the UAV accurately land on the charging device, two kinds of markers (a color marker and a light marker) installed on the charging device is detected by the camera mounted on the UAV. And then, the UAV is controlled so that the detected marker becomes the center of the image and is landed on the device. We conduct the performance evaluation of the proposal positioning method by the outdoor experiments at day and night, and show the effectiveness of the system.Keywords: unmanned aerial vehicle, automatic battery charging, positioning
Procedia PDF Downloads 3643767 Automatic Extraction of Water Bodies Using Whole-R Method
Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao
Abstract:
Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.Keywords: feature extraction, remote sensing, image retrieval, chromaticity, water index, spectral library, integrated method
Procedia PDF Downloads 3863766 Automatic Differentiation of Ultrasonic Images of Cystic and Solid Breast Lesions
Authors: Dmitry V. Pasynkov, Ivan A. Egoshin, Alexey A. Kolchev, Ivan V. Kliouchkin
Abstract:
In most cases, typical cysts are easily recognized at ultrasonography. The specificity of this method for typical cysts reaches 98%, and it is usually considered as gold standard for typical cyst diagnosis. However, it is necessary to have all the following features to conclude the typical cyst: clear margin, the absence of internal echoes and dorsal acoustic enhancement. At the same time, not every breast cyst is typical. It is especially characteristic for protein-contained cysts that may have significant internal echoes. On the other hand, some solid lesions (predominantly malignant) may have cystic appearance and may be falsely accepted as cysts. Therefore we tried to develop the automatic method of cystic and solid breast lesions differentiation. Materials and methods. The input data were the ultrasonography digital images with the 256-gradations of gray color (Medison SA8000SE, Siemens X150, Esaote MyLab C). Identification of the lesion on these images was performed in two steps. On the first one, the region of interest (or contour of lesion) was searched and selected. Selection of such region is carried out using the sigmoid filter where the threshold is calculated according to the empirical distribution function of the image brightness and, if necessary, it was corrected according to the average brightness of the image points which have the highest gradient of brightness. At the second step, the identification of the selected region to one of lesion groups by its statistical characteristics of brightness distribution was made. The following characteristics were used: entropy, coefficients of the linear and polynomial regression, quantiles of different orders, an average gradient of brightness, etc. For determination of decisive criterion of belonging to one of lesion groups (cystic or solid) the training set of these characteristics of brightness distribution separately for benign and malignant lesions were received. To test our approach we used a set of 217 ultrasonic images of 107 cystic (including 53 atypical, difficult for bare eye differentiation) and 110 solid lesions. All lesions were cytologically and/or histologically confirmed. Visual identification was performed by trained specialist in breast ultrasonography. Results. Our system correctly distinguished all (107, 100%) typical cysts, 107 of 110 (97.3%) solid lesions and 50 of 53 (94.3%) atypical cysts. On the contrary, with the bare eye it was possible to identify correctly all (107, 100%) typical cysts, 96 of 110 (87.3%) solid lesions and 32 of 53 (60.4%) atypical cysts. Conclusion. Automatic approach significantly surpasses the visual assessment performed by trained specialist. The difference is especially large for atypical cysts and hypoechoic solid lesions with the clear margin. This data may have a clinical significance.Keywords: breast cyst, breast solid lesion, differentiation, ultrasonography
Procedia PDF Downloads 2723765 Identification of Dynamic Friction Model for High-Precision Motion Control
Authors: Martin Goubej, Tomas Popule, Alois Krejci
Abstract:
This paper deals with experimental identification of mechanical systems with nonlinear friction characteristics. Dynamic LuGre friction model is adopted and a systematic approach to parameter identification of both linear and nonlinear subsystems is given. The identification procedure consists of three subsequent experiments which deal with the individual parts of plant dynamics. The proposed method is experimentally verified on an industrial-grade robotic manipulator. Model fidelity is compared with the results achieved with a static friction model.Keywords: mechanical friction, LuGre model, friction identification, motion control
Procedia PDF Downloads 4143764 Automatic Vehicle Detection Using Circular Synthetic Aperture Radar Image
Authors: Leping Chen, Daoxiang An, Xiaotao Huang
Abstract:
Automatic vehicle detection using synthetic aperture radar (SAR) image has been widely researched, as well as using optical remote sensing images. However, most researches treat the detection as an independent problem, failing to make full use of SAR data information. In circular SAR (CSAR), the two long borders of vehicle will shrink if the imaging surface is set higher than the reference one. Based on above variance, an automatic vehicle detection using CSAR image is proposed to enhance detection ability under complex environment, such as vehicles’ closely packing, which confuses the detector. The detection method uses the multiple images generated by different height plane to obtain an energy-concentrated image for detecting and then uses the maximally stable extremal regions method (MSER) to detect vehicles. A result of vehicles’ detection is given to verify the effectiveness and correctness of proposed method.Keywords: circular SAR, vehicle detection, automatic, imaging
Procedia PDF Downloads 3683763 Analysis of The Effect about Different Automatic Sprinkler System Extinguishing The Scooter Fire in Underground Parking Space
Authors: Yu-Hsiu Li, Chun-Hsun Chen
Abstract:
Analysis of automatic sprinkler system protects the scooter in underground parking space, the current of general buildings is mainly equipped with foam fire-extinguishing equipment in Taiwan, the automatic sprinkling system has economic and environmental benefits, even high stability, China and the United States allow the parking space to set the automatic sprinkler system under certain conditions. The literature about scooter full-scale fire indicates that the average fire growth coefficient is 0.19 KW/sec2, it represents the scooter fire is classified as ultra-fast time square fire growth model, automatic sprinkler system can suppress the flame height and prevent extending burning. According to the computer simulation (FDS) literature, no matter computer simulation or full-scale experiments, the active order and trend about sprinkler heads are the same. This study uses the computer simulation program (FDS), the simulation scenario designed includes using a different system (enclosed wet type and open type), and different configurations. The simulation result demonstrates that the open type requires less time to extinguish the fire than the enclosed wet type if the horizontal distance between the sprinkler and the scooter ignition source is short, the sprinkler can act quickly, the heat release rate of fire can be suppressed in advance.Keywords: automatic sprinkler system, underground parking Spac, FDS, scooter fire extinguishing
Procedia PDF Downloads 1433762 Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model
Authors: A. Brouri, F. Giri, A. Mkhida, A. Elkarkri, M. L. Chhibat
Abstract:
Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. Presently, the linear subsystem is allowed to be parametric or not, continuous- or discrete-time. The input and output nonlinearities are polynomial and may be noninvertible. A two-stage identification method is developed such the parameters of all nonlinear elements are estimated first using the Kozen-Landau polynomial decomposition algorithm. The obtained estimates are then based upon in the identification of the linear subsystem, making use of suitable pre-ad post-compensators.Keywords: nonlinear system identification, Hammerstein-Wiener systems, frequency identification, polynomial decomposition
Procedia PDF Downloads 5123761 Effect of Manual Compacting and Semi-Automatic Compacting on Behavior of Stabilized Earth Concrete
Authors: Sihem Chaibeddra, Fattoum Kharchi, Fahim Kahlouche, Youcef Benna
Abstract:
In the recent years, a considerable level of interest has been developed on the use of earth in construction, led by its rediscovery as an environmentally building material. The Stabilized Earth Concrete (SEC) is a good alternative to the cement concrete, thanks to its thermal and moisture regulating features. Many parameters affect the behavior of stabilized earth concrete. This article presents research results related to the influence of the compacting nature on some SEC properties namely: The mechanical behavior, capillary absorption, shrinkage and sustainability to water erosion, and this, basing on two types of compacting: Manual and semi-automatic.Keywords: behavior, compacting, manual, SEC, semi-automatic
Procedia PDF Downloads 3613760 Automatic Reporting System for Transcriptome Indel Identification and Annotation Based on Snapshot of Next-Generation Sequencing Reads Alignment
Authors: Shuo Mu, Guangzhi Jiang, Jinsa Chen
Abstract:
The analysis of Indel for RNA sequencing of clinical samples is easily affected by sequencing experiment errors and software selection. In order to improve the efficiency and accuracy of analysis, we developed an automatic reporting system for Indel recognition and annotation based on image snapshot of transcriptome reads alignment. This system includes sequence local-assembly and realignment, target point snapshot, and image-based recognition processes. We integrated high-confidence Indel dataset from several known databases as a training set to improve the accuracy of image processing and added a bioinformatical processing module to annotate and filter Indel artifacts. Subsequently, the system will automatically generate data, including data quality levels and images results report. Sanger sequencing verification of the reference Indel mutation of cell line NA12878 showed that the process can achieve 83% sensitivity and 96% specificity. Analysis of the collected clinical samples showed that the interpretation accuracy of the process was equivalent to that of manual inspection, and the processing efficiency showed a significant improvement. This work shows the feasibility of accurate Indel analysis of clinical next-generation sequencing (NGS) transcriptome. This result may be useful for RNA study for clinical samples with microsatellite instability in immunotherapy in the future.Keywords: automatic reporting, indel, next-generation sequencing, NGS, transcriptome
Procedia PDF Downloads 1933759 Numerical Board Game for Low-Income Preschoolers
Authors: Gozde Inal Kiziltepe, Ozgun Uyanik
Abstract:
There is growing evidence that socioeconomic (SES)-related differences in mathematical knowledge primarily start in early childhood period. Preschoolers from low-income families are likely to perform substantially worse in mathematical knowledge than their counterparts from middle and higher income families. The differences are seen on a wide range of recognizing written numerals, counting, adding and subtracting, and comparing numerical magnitudes. Early differences in numerical knowledge have a permanent effect childrens’ mathematical knowledge in other grades. In this respect, analyzing the effect of number board game on the number knowledge of 48-60 month-old children from disadvantaged low-income families constitutes the main objective of the study. Participants were the 71 preschoolers from a childcare center which served low-income urban families. Children were randomly assigned to the number board condition or to the color board condition. The number board condition included 35 children and the color board game condition included 36 children. Both board games were 50 cm long and 30 cm high; had ‘The Great Race’ written across the top; and included 11 horizontally arranged, different colored squares of equal sizes with the leftmost square labeled ‘Start’. The numerical board had the numbers 1–10 in the rightmost 10 squares; the color board had different colors in those squares. A rabbit or a bear token were presented to children for selecting, and on each trial spun a spinner to determine whether the token would move one or two spaces. The number condition spinner had a ‘1’ half and a ‘2’ half; the color condition spinner had colors that matched the colors of the squares on the board. Children met one-on-one with an experimenter for four 15- to 20-min sessions within a 2-week period. In the first and fourth sessions, children were administered identical pretest and posttest measures of numerical knowledge. All children were presented three numerical tasks and one subtest presented in the following order: counting, numerical magnitude comparison, numerical identification and Count Objects – Circle Number Probe subtest of Early Numeracy Assessment. In addition, same numerical tasks and subtest were given as a follow-up test four weeks after the post-test administration. Findings obtained from the study; showed that there was a meaningful difference between scores of children who played a color board game in favor of children who played number board game.Keywords: low income, numerical board game, numerical knowledge, preschool education
Procedia PDF Downloads 3543758 Drug-Drug Interaction Prediction in Diabetes Mellitus
Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects
Procedia PDF Downloads 1023757 A Cross-Gender Statistical Analysis of Tuvinian Intonation Features in Comparison With Uzbek and Azerbaijani
Authors: Daria Beziakina, Elena Bulgakova
Abstract:
The paper deals with cross-gender and cross-linguistic comparison of pitch characteristics for Tuvinian with two other Turkic languages - Uzbek and Azerbaijani, based on the results of statistical analysis of pitch parameter values and intonation patterns used by male and female speakers. The main goal of our work is to obtain the ranges of pitch parameter values typical for Tuvinian speakers for the purpose of automatic language identification. We also propose a cross-gender analysis of declarative intonation in the poorly studied Tuvinian language. The ranges of pitch parameter values were obtained by means of specially developed software that deals with the distribution of pitch values and allows us to obtain statistical language-specific pitch intervals.Keywords: speech analysis, statistical analysis, speaker recognition, identification of person
Procedia PDF Downloads 3483756 Intelligent Software Architecture and Automatic Re-Architecting Based on Machine Learning
Authors: Gebremeskel Hagos Gebremedhin, Feng Chong, Heyan Huang
Abstract:
Software system is the combination of architecture and organized components to accomplish a specific function or set of functions. A good software architecture facilitates application system development, promotes achievement of functional requirements, and supports system reconfiguration. We describe three studies demonstrating the utility of our architecture in the subdomain of mobile office robots and identify software engineering principles embodied in the architecture. The main aim of this paper is to analyze prove architecture design and automatic re-architecting using machine learning. Intelligence software architecture and automatic re-architecting process is reorganizing in to more suitable one of the software organizational structure system using the user access dataset for creating relationship among the components of the system. The 3-step approach of data mining was used to analyze effective recovery, transformation and implantation with the use of clustering algorithm. Therefore, automatic re-architecting without changing the source code is possible to solve the software complexity problem and system software reuse.Keywords: intelligence, software architecture, re-architecting, software reuse, High level design
Procedia PDF Downloads 1203755 Practical Approach to Development Automated System of Record Research Results Architectural Cultural Heritage Objects Island-Town Sviyazhsk
Authors: Timur R. Azizov, Eugenia F. Shaykhutdinova, Ayrat G. Sitdikov
Abstract:
In this article, we consider problems of automatic research result analysis and current monitoring of cultural legacy objects in island-city Sviyazhsk. We make basic concept of creating Automatic system, including developing the knowledge library with all conditions of three historical objects. In addition, we made described process of developing Automatic system of research result analysis of cultural legacy objects in island-city Sviyazhsk.Keywords: automated system, record, results of research, unity3D, ASP .NET
Procedia PDF Downloads 2453754 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)
Procedia PDF Downloads 3103753 Review of the Software Used for 3D Volumetric Reconstruction of the Liver
Authors: P. Strakos, M. Jaros, T. Karasek, T. Kozubek, P. Vavra, T. Jonszta
Abstract:
In medical imaging, segmentation of different areas of human body like bones, organs, tissues, etc. is an important issue. Image segmentation allows isolating the object of interest for further processing that can lead for example to 3D model reconstruction of whole organs. Difficulty of this procedure varies from trivial for bones to quite difficult for organs like liver. The liver is being considered as one of the most difficult human body organ to segment. It is mainly for its complexity, shape versatility and proximity of other organs and tissues. Due to this facts usually substantial user effort has to be applied to obtain satisfactory results of the image segmentation. Process of image segmentation then deteriorates from automatic or semi-automatic to fairly manual one. In this paper, overview of selected available software applications that can handle semi-automatic image segmentation with further 3D volume reconstruction of human liver is presented. The applications are being evaluated based on the segmentation results of several consecutive DICOM images covering the abdominal area of the human body.Keywords: image segmentation, semi-automatic, software, 3D volumetric reconstruction
Procedia PDF Downloads 2913752 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification
Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah
Abstract:
The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.Keywords: aircraft aerodynamic model, total least squares estimation, piloting the aircraft, robust control, Microsoft Flight Simulator, MQ-1 predator
Procedia PDF Downloads 2873751 Pragmatic Development of Chinese Sentence Final Particles via Computer-Mediated Communication
Authors: Qiong Li
Abstract:
This study investigated in which condition computer-mediated communication (CMC) could promote pragmatic development. The focal feature included four Chinese sentence final particles (SFPs), a, ya, ba, and ne. They occur frequently in Chinese, and function as mitigators to soften the tone of speech. However, L2 acquisition of SFPs is difficult, suggesting the necessity of additional exposure to or explicit instruction on Chinese SFPs. This study follows this line and aims to explore two research questions: (1) Is CMC combined with data-driven instruction more effective than CMC alone in promoting L2 Chinese learners’ SFP use? (2) How does L2 Chinese learners’ SFP use change over time, as compared to the production of native Chinese speakers? The study involved 19 intermediate-level learners of Chinese enrolled at a private American university. They were randomly assigned to two groups: (1) the control group (N = 10), which was exposed to SFPs through CMC alone, (2) the treatment group (N = 9), which was exposed to SFPs via CMC and data-driven instruction. Learners interacted with native speakers on given topics through text-based CMC over Skype. Both groups went through six 30-minute CMC sessions on a weekly basis, with a one-week interval after the first two CMC sessions and a two-week interval after the second two CMC sessions (nine weeks in total). The treatment group additionally received a data-driven instruction after the first two sessions. Data analysis focused on three indices: token frequency, type frequency, and acceptability of SFP use. Token frequency was operationalized as the raw occurrence of SFPs per clause. Type frequency was the range of SFPs. Acceptability was rated by two native speakers using a rating rubric. The results showed that the treatment group made noticeable progress over time on the three indices. The production of SFPs approximated the native-like level. In contrast, the control group only slightly improved on token frequency. Only certain SFPs (a and ya) reached the native-like use. Potential explanations for the group differences were discussed in two aspects: the property of Chinese SFPs and the role of CMC and data-driven instruction. Though CMC provided the learners with opportunities to notice and observe SFP use, as a feature with low saliency, SFPs were not easily noticed in input. Data-driven instruction in the treatment group directed the learners’ attention to these particles, which facilitated the development.Keywords: computer-mediated communication, data-driven instruction, pragmatic development, second language Chinese, sentence final particles
Procedia PDF Downloads 4183750 Automatic Teller Machine System Security by Using Mobile SMS Code
Authors: Husnain Mushtaq, Mary Anjum, Muhammad Aleem
Abstract:
The main objective of this paper is used to develop a high security in Automatic Teller Machine (ATM). In these system bankers will collect the mobile numbers from the customers and then provide a code on their mobile number. In most country existing ATM machine use the magnetic card reader. The customer is identifying by inserting an ATM card with magnetic card that hold unique information such as card number and some security limitations. By entering a personal identification number, first the customer is authenticated then will access bank account in order to make cash withdraw or other services provided by the bank. Cases of card fraud are another problem once the user’s bank card is missing and the password is stolen, or simply steal a customer’s card & PIN the criminal will draw all cash in very short time, which will being great financial losses in customer, this type of fraud has increase worldwide. So to resolve this problem we are going to provide the solution using “Mobile SMS code” and ATM “PIN code” in order to improve the verify the security of customers using ATM system and confidence in the banking area.Keywords: PIN, inquiry, biometric, magnetic strip, iris recognition, face recognition
Procedia PDF Downloads 3663749 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian
Authors: Sanja Seljan, Ivan Dunđer
Abstract:
The paper presents combined automatic speech recognition (ASR) for English and machine translation (MT) for English and Croatian in the domain of business correspondence. The first part presents results of training the ASR commercial system on two English data sets, enriched by error analysis. The second part presents results of machine translation performed by online tool Google Translate for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.Keywords: automatic machine translation, integrated language technologies, quality evaluation, speech recognition
Procedia PDF Downloads 4843748 A Modest Proposal for Deep-Sixing Propositions in the Philosophy of Language
Authors: Patrick Duffley
Abstract:
Hanks (2021) identifies three Frege-inspired commitments concerning propositions that are widely shared across the philosophy of language: (1) propositions are the primary, inherent bearers of representational properties and truth-conditions; (2) propositions are neutral representations possessing a ‘content’ that is devoid of ‘force; (3) propositions can be entertained or expressed without being asserted. Hanks then argues that the postulate of neutral content must be abandoned, and the primary bearers of truth-evaluable representation must be identified as the token acts of assertoric predication that people perform when they are thinking or speaking about the world. Propositions are ‘types of acts of predication, which derive their representational features from their tokens.’ Their role is that of ‘classificatory devices that we use for the purposes of identifying and individuating mental states and speech acts,’ so that ‘to say that Russell believes that Mont Blanc is over 4000 meters high is to classify Russell’s mental state under a certain type, and thereby distinguish that mental state from others that Russell might possess.’ It is argued in this paper that there is no need to classify an utterance of 'Russell believes that Mont Blanc is over 4000 meters high' as a token of some higher-order utterance-type in order to identify what Russell believes; the meanings of the words themselves and the syntactico-semantic relations between them are sufficient. In our view what Hanks has accomplished in effect is to build a convincing argument for dispensing with propositions completely in the philosophy of language. By divesting propositions of the role of being the primary bearers of representational properties and truth-conditions and fittingly transferring this role to the token acts of predication that people perform when they are thinking or speaking about the world, he has situated truth in its proper place and obviated any need for abstractions like propositions to explain how language can express things that are true. This leaves propositions with the extremely modest role of classifying mental states and speech acts for the purposes of identifying and individuating them. It is demonstrated here however that there is no need whatsoever to posit such abstract entities to explain how people identify and individuate such states/acts. We therefore make the modest proposal that the term ‘proposition’ be stricken from the vocabulary of philosophers of language.Keywords: propositions, truth-conditions, predication, Frege, truth-bearers
Procedia PDF Downloads 733747 Structural Damage Detection Using Sensors Optimally Located
Authors: Carlos Alberto Riveros, Edwin Fabián García, Javier Enrique Rivero
Abstract:
The measured data obtained from sensors in continuous monitoring of civil structures are mainly used for modal identification and damage detection. Therefore when modal identification analysis is carried out the quality in the identification of the modes will highly influence the damage detection results. It is also widely recognized that the usefulness of the measured data used for modal identification and damage detection is significantly influenced by the number and locations of sensors. The objective of this study is the numerical implementation of two widely known optimum sensor placement methods in beam-like structuresKeywords: optimum sensor placement, structural damage detection, modal identification, beam-like structures.
Procedia PDF Downloads 4323746 Secure Automatic Key SMS Encryption Scheme Using Hybrid Cryptosystem: An Approach for One Time Password Security Enhancement
Authors: Pratama R. Yunia, Firmansyah, I., Ariani, Ulfa R. Maharani, Fikri M. Al
Abstract:
Nowadays, notwithstanding that the role of SMS as a means of communication has been largely replaced by online applications such as WhatsApp, Telegram, and others, the fact that SMS is still used for certain and important communication needs is indisputable. Among them is for sending one time password (OTP) as an authentication media for various online applications ranging from chatting, shopping to online banking applications. However, the usage of SMS does not pretty much guarantee the security of transmitted messages. As a matter of fact, the transmitted messages between BTS is still in the form of plaintext, making it extremely vulnerable to eavesdropping, especially if the message is confidential, for instance, the OTP. One solution to overcome this problem is to use an SMS application which provides security services for each transmitted message. Responding to this problem, in this study, an automatic key SMS encryption scheme was designed as a means to secure SMS communication. The proposed scheme allows SMS sending, which is automatically encrypted with keys that are constantly changing (automatic key update), automatic key exchange, and automatic key generation. In terms of the security method, the proposed scheme applies cryptographic techniques with a hybrid cryptosystem mechanism. Proofing the proposed scheme, a client to client SMS encryption application was developed using Java platform with AES-256 as encryption algorithm, RSA-768 as public and private key generator and SHA-256 for message hashing function. The result of this study is a secure automatic key SMS encryption scheme using hybrid cryptosystem which can guarantee the security of every transmitted message, so as to become a reliable solution in sending confidential messages through SMS although it still has weaknesses in terms of processing time.Keywords: encryption scheme, hybrid cryptosystem, one time password, SMS security
Procedia PDF Downloads 1303745 Self-Tuning Robot Control Based on Subspace Identification
Authors: Mathias Marquardt, Peter Dünow, Sandra Baßler
Abstract:
The paper describes the use of subspace based identification methods for auto tuning of a state space control system. The plant is an unstable but self balancing transport robot. Because of the unstable character of the process it has to be identified from closed loop input-output data. Based on the identified model a state space controller combined with an observer is calculated. The subspace identification algorithm and the controller design procedure is combined to a auto tuning method. The capability of the approach was verified in a simulation experiments under different process conditions.Keywords: auto tuning, balanced robot, closed loop identification, subspace identification
Procedia PDF Downloads 3823744 Toward Automatic Chest CT Image Segmentation
Authors: Angely Sim Jia Wun, Sasa Arsovski
Abstract:
Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.Keywords: lung segmentation, binary masks, U-Net, medical software tools
Procedia PDF Downloads 98