Search results for: speech signal processing
5088 Fold and Thrust Belts Seismic Imaging and Interpretation
Authors: Sunjay
Abstract:
Plate tectonics is of very great significance as it represents the spatial relationships of volcanic rock suites at plate margins, the distribution in space and time of the conditions of different metamorphic facies, the scheme of deformation in mountain belts, or orogens, and the association of different types of economic deposit. Orogenic belts are characterized by extensive thrust faulting, movements along large strike-slip fault zones, and extensional deformation that occur deep within continental interiors. Within oceanic areas there also are regions of crustal extension and accretion in the backarc basins that are located on the landward sides of many destructive plate margins.Collisional orogens develop where a continent or island arc collides with a continental margin as a result of subduction. collisional and noncollisional orogens can be explained by differences in the strength and rheology of the continental lithosphere and by processes that influence these properties during orogenesis.Seismic Imaging Difficulties-In triangle zones, several factors reduce the effectiveness of seismic methods. The topography in the central part of the triangle zone is usually rugged and is associated with near-surface velocity inversions which degrade the quality of the seismic image. These characteristics lead to low signal-to-noise ratio, inadequate penetration of energy through overburden, poor geophone coupling with the surface and wave scattering. Depth Seismic Imaging Techniques-Seismic processing relates to the process of altering the seismic data to suppress noise, enhancing the desired signal (higher signal-to-noise ratio) and migrating seismic events to their appropriate location in space and depth. Processing steps generally include analysis of velocities, static corrections, moveout corrections, stacking and migration. Exploration seismology Bow-tie effect -Shadow Zones-areas with no reflections (dead areas). These are called shadow zones and are common in the vicinity of faults and other discontinuous areas in the subsurface. Shadow zones result when energy from a reflector is focused on receivers that produce other traces. As a result, reflectors are not shown in their true positions. Subsurface Discontinuities-Diffractions occur at discontinuities in the subsurface such as faults and velocity discontinuities (as at “bright spot” terminations). Bow-tie effect caused by the two deep-seated synclines. Seismic imaging of thrust faults and structural damage-deepwater thrust belts, Imaging deformation in submarine thrust belts using seismic attributes,Imaging thrust and fault zones using 3D seismic image processing techniques, Balanced structural cross sections seismic interpretation pitfalls checking, The seismic pitfalls can originate due to any or all of the limitations of data acquisition, processing, interpretation of the subsurface geology,Pitfalls and limitations in seismic attribute interpretation of tectonic features, Seismic attributes are routinely used to accelerate and quantify the interpretation of tectonic features in 3D seismic data. Coherence (or variance) cubes delineate the edges of megablocks and faulted strata, curvature delineates folds and flexures, while spectral components delineate lateral changes in thickness and lithology. Carbon capture and geological storage leakage surveillance because fault behave as a seal or a conduit for hydrocarbon transportation to a trap,etc.Keywords: tectonics, seismic imaging, fold and thrust belts, seismic interpretation
Procedia PDF Downloads 705087 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm
Authors: Hooman Torabifard
Abstract:
In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.Keywords: image summarization, particle swarm optimization, image threshold, image processing
Procedia PDF Downloads 1335086 Aliasing Free and Additive Error in Spectra for Alpha Stable Signals
Authors: R. Sabre
Abstract:
This work focuses on the symmetric alpha stable process with continuous time frequently used in modeling the signal with indefinitely growing variance, often observed with an unknown additive error. The objective of this paper is to estimate this error from discrete observations of the signal. For that, we propose a method based on the smoothing of the observations via Jackson polynomial kernel and taking into account the width of the interval where the spectral density is non-zero. This technique allows avoiding the “Aliasing phenomenon” encountered when the estimation is made from the discrete observations of a process with continuous time. We have studied the convergence rate of the estimator and have shown that the convergence rate improves in the case where the spectral density is zero at the origin. Thus, we set up an estimator of the additive error that can be subtracted for approaching the original signal without error.Keywords: spectral density, stable processes, aliasing, non parametric
Procedia PDF Downloads 1305085 Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels
Authors: Z. Zerdoumi, D. Benatia, , D. Chicouche
Abstract:
This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart.Keywords: Artificial Neural Network, signal restoration, Nonlinear Channel equalization, equalization
Procedia PDF Downloads 4965084 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria
Authors: Mairo Musa Galadima, Phoebe Mshelia
Abstract:
In Nigeria, the national policy of education stipulates that the kindergarten primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5(five) selected secondary school in Bauchi. It was discover that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequate qualified teachers and relevant materials including text-books. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.Keywords: kindergarten, stress, phonetic and intonation, Nigeria
Procedia PDF Downloads 3005083 Wavelength Conversion of Dispersion Managed Solitons at 100 Gbps through Semiconductor Optical Amplifier
Authors: Kadam Bhambri, Neena Gupta
Abstract:
All optical wavelength conversion is essential in present day optical networks for transparent interoperability, contention resolution, and wavelength routing. The incorporation of all optical wavelength convertors leads to better utilization of the network resources and hence improves the efficiency of optical networks. Wavelength convertors that can work with Dispersion Managed (DM) solitons are attractive due to their superior transmission capabilities. In this paper, wavelength conversion for dispersion managed soliton signals was demonstrated at 100 Gbps through semiconductor optical amplifier and an optical filter. The wavelength conversion was achieved for a 1550 nm input signal to1555nm output signal. The output signal was measured in terms of BER, Q factor and system margin.Keywords: all optical wavelength conversion, dispersion managed solitons, semiconductor optical amplifier, cross gain modultation
Procedia PDF Downloads 4535082 EEG and ABER Abnormalities in Children with Speech and Language Delay
Authors: Bharati Mehta, Manish Parakh, Bharti Bhandari, Sneha Ambwani
Abstract:
Speech and language delay (SLD) is seen commonly as a co-morbidity in children having severe resistant focal and generalized, syndromic and symptomatic epilepsies. It is however not clear whether epilepsy contributes to or is a mere association in the pathogenesis of SLD. Also, it is acknowledged that Auditory Brainstem Evoked Responses (ABER), besides used for evaluating hearing threshold, also aid in prognostication of neurological disorders and abnormalities in the hearing pathway in the brainstem. There is no circumscribed or surrogate neurophysiologic laboratory marker to adjudge the extent of SLD. The current study was designed to evaluate the abnormalities in Electroencephalography (EEG) and ABER in children with SLD who do not have an overt hearing deficit or autism. 94 children of age group 2-8 years with predominant SLD and without any gross motor developmental delay, head injury, gross hearing disorder, cleft lip/palate and autism were selected. Standard video Electroencephalography using the 10:20 international system and ABER after click stimulus with intensities 110 db until 40 db was performed in all children. EEG was abnormal in 47.9% (n= 45; 36 boys and 9 girls) children. In the children with abnormal EEG, 64.5% (n=29) had an abnormal background, 57.8% (n=27) had presence of generalized interictal epileptiform discharges (IEDs), 20% (n=9) had focal epileptiform discharges exclusively from left side and 33.3% (n=15) had multifocal IEDs occurring both in isolation or associated with generalised abnormalities. In ABER, surprisingly, the peak latencies for waves I, III & V, inter-peak latencies I-III & I-V, III-V and wave amplitude ratio V/I, were found within normal limits in both ears of all the children. Thus in the current study it is certain that presence of generalized IEDs in EEG are seen in higher frequency with SLD and focal IEDs are seen exclusively in left hemisphere in these children. It may be possible that even with generalized EEG abnormalities present in these children, left hemispheric abnormalities as a part of this generalized dysfunction may be responsible for the speech and language dysfunction. The current study also emphasizes that ABER may not be routinely recommended as diagnostic or prognostic tool in children with SLD without frank hearing deficit or autism, thus reducing the burden on electro physiologists, laboratories and saving time and financial resources.Keywords: ABER, EEG, speech, language delay
Procedia PDF Downloads 5355081 Irrelevant Angry Faces, Compared to Happy Faces, Facilitate the Response Inhibition
Authors: Rashmi Gupta
Abstract:
It is unclear whether arousal or valence modulates the response inhibition process. It has been suggested that irrelevant positive emotional information (e.g., happy faces) and negative emotional information (e.g., angry faces) interact with attention differently. In the present study, we used arousal-matched irrelevant happy and angry faces. These faces were used as stop-signals in the stop-signal paradigm. There were two kinds of trials: go-trials and stop-trials. Participants were required to discriminate between the letter X or O by pressing the corresponding keys on go-trials. However, a stop signal was occasionally presented on stop trials, where participants were required to withhold their motor response. A significant main effect of emotion on response inhibition was observed. It indicated that the valence of a stop signal modulates inhibitory control. We found that stop-signal reaction time was faster in response to irrelevant angry faces than happy faces, indicating that irrelevant angry faces facilitate the response inhibition process compared to happy faces. These results shed light on the interaction of emotion with cognitive control functions.Keywords: attention, emotion, response inhibition, inhibitory control
Procedia PDF Downloads 1045080 An Assistive Robotic Arm for Defence and Rescue Application
Authors: J. Harrison Kurunathan, R. Jayaparvathy
Abstract:
"Assistive Robotics" is the field that deals with the study of robots that helps in human motion and also empowers human abilities by interfacing the robotic systems to be manipulated by human motion. The proposed model is a robotic arm that works as a haptic interface on the basis on accelerometers and DC motors that will function with respect to the movement of the human muscle. The proposed model would effectively work as a haptic interface that would reduce human effort in the field of defense and rescue. This can be used in very critical conditions like fire accidents to avoid causalities.Keywords: accelerometers, haptic interface, servo motors, signal processing
Procedia PDF Downloads 3975079 A Review of Research on Pre-training Technology for Natural Language Processing
Authors: Moquan Gong
Abstract:
In recent years, with the rapid development of deep learning, pre-training technology for natural language processing has made great progress. The early field of natural language processing has long used word vector methods such as Word2Vec to encode text. These word vector methods can also be regarded as static pre-training techniques. However, this context-free text representation brings very limited improvement to subsequent natural language processing tasks and cannot solve the problem of word polysemy. ELMo proposes a context-sensitive text representation method that can effectively handle polysemy problems. Since then, pre-training language models such as GPT and BERT have been proposed one after another. Among them, the BERT model has significantly improved its performance on many typical downstream tasks, greatly promoting the technological development in the field of natural language processing, and has since entered the field of natural language processing. The era of dynamic pre-training technology. Since then, a large number of pre-trained language models based on BERT and XLNet have continued to emerge, and pre-training technology has become an indispensable mainstream technology in the field of natural language processing. This article first gives an overview of pre-training technology and its development history, and introduces in detail the classic pre-training technology in the field of natural language processing, including early static pre-training technology and classic dynamic pre-training technology; and then briefly sorts out a series of enlightening technologies. Pre-training technology, including improved models based on BERT and XLNet; on this basis, analyze the problems faced by current pre-training technology research; finally, look forward to the future development trend of pre-training technology.Keywords: natural language processing, pre-training, language model, word vectors
Procedia PDF Downloads 575078 Particle Size Distribution Estimation of a Mixture of Regular and Irregular Sized Particles Using Acoustic Emissions
Authors: Ejay Nsugbe, Andrew Starr, Ian Jennions, Cristobal Ruiz-Carcel
Abstract:
This works investigates the possibility of using Acoustic Emissions (AE) to estimate the Particle Size Distribution (PSD) of a mixture of particles that comprise of particles of different densities and geometry. The experiments carried out involved the mixture of a set of glass and polyethylene particles that ranged from 150-212 microns and 150-250 microns respectively and an experimental rig that allowed the free fall of a continuous stream of particles on a target plate which the AE sensor was placed. By using a time domain based multiple threshold method, it was observed that the PSD of the particles in the mixture could be estimated.Keywords: acoustic emissions, particle sizing, process monitoring, signal processing
Procedia PDF Downloads 3525077 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis
Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine
Abstract:
The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis
Procedia PDF Downloads 4075076 The Effect of the Base Computer Method on Repetitive Behaviors and Communication Skills
Authors: Hoorieh Darvishi, Rezaei
Abstract:
Introduction: This study investigates the efficacy of computer-based interventions for children with Autism Spectrum Disorder , specifically targeting communication deficits and repetitive behaviors. The research evaluates novel software applications designed to enhance narrative capabilities and sensory integration through structured, progressive intervention protocols Method: The study evaluated two intervention software programs designed for children with autism, focusing on narrative speech and sensory integration. Twelve children aged 5-11 participated in the two-month intervention, attending three 45-minute weekly sessions, with pre- and post-tests measuring speech, communication, and behavioral outcomes. The narrative speech software incorporated 14 stories using the Cohen model. It progressively reduced software assistance as children improved their storytelling abilities, ultimately enabling independent narration. The process involved story comprehension questions and guided story completion exercises. The sensory integration software featured approximately 100 exercises progressing from basic classification to complex cognitive tasks. The program included attention exercises, auditory memory training (advancing from single to four-syllable words), problem-solving, decision-making, reasoning, working memory, and emotion recognition activities. Each module was accompanied by frequency and pitch-adjusted music that child enjoys it to enhance learning through multiple sensory channels (visual, auditory, and tactile). Conclusion: The results indicated that the use of these software programs significantly improved communication and narrative speech scores in children, while also reducing scores related to repetitive behaviors. Findings: These findings highlight the positive impact of computer-based interventions on enhancing communication skills and reducing repetitive behaviors in children with autism.Keywords: autism, communication_skills, repetitive_behaviors, sensory_integration
Procedia PDF Downloads 95075 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You
Abstract:
With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)
Procedia PDF Downloads 1125074 Alleviation of Endoplasmic Reticulum Stress in Mosquito Cells to Survive Dengue 2 Virus Infection
Authors: Jiun-Nan Hou, Tien-Huang Chen, Wei-June Chen
Abstract:
Dengue viruses (DENVs) are naturally transmitted between humans by mosquito vectors. Mosquito cells usually survive DENV infection, allowing infected mosquitoes to retain an active status for virus transmission. In this study, we found that DENV2 virus infection in mosquito cells causes the unfolded protein response (UPR) that activates the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signal pathway, leading to shutdown of global protein translation in infected cells which was apparently regulated by the PERK signal pathway. According to observation in this study, the PERK signal pathway in DENV2-infected C6/36 cells alleviates ER stress, and reduces initiator and effector caspases, as well as the apoptosis rate via shutdown of cellular proteins. In fact, phosphorylation of eukaryotic initiation factor 2ɑ (eIF2ɑ) by the PERK signal pathway may impair recruitment of ribosomes that bind to the mRNA 5’-cap structure, resulting in an inhibitory effect on canonical cap-dependent cellular protein translation. The resultant pro-survival “byproduct” of infected mosquito cells is undoubtedly advantageous for viral replication. This finding provides insights into elucidating the PERK-mediated modulating web that is actively involved in dynamic protein synthesis, cell survival, and viral replication in mosquito cells.Keywords: cap-dependent protein translation, dengue virus, endoplasmic reticulum stress, mosquito cells, PERK signal pathway
Procedia PDF Downloads 2675073 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology
Authors: Ugwu O. C., Mamah R. O., Awudu W. S.
Abstract:
This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.Keywords: beamforming algorithm, adaptive beamforming, simulink, reception
Procedia PDF Downloads 415072 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 1135071 Unsupervised Assistive and Adaptative Intelligent Agent in Smart Enviroment
Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lorenço
Abstract:
The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in a smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore relying on fixed operational models would be inappropriate. This paper presents a study on developing an Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose an Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities
Procedia PDF Downloads 5605070 A Novel Method for Silence Removal in Sounds Produced by Percussive Instruments
Authors: B. Kishore Kumar, Rakesh Pogula, T. Kishore Kumar
Abstract:
The steepness of an audio signal which is produced by the musical instruments, specifically percussive instruments is the perception of how high tone or low tone which can be considered as a frequency closely related to the fundamental frequency. This paper presents a novel method for silence removal and segmentation of music signals produced by the percussive instruments and the performance of proposed method is studied with the help of MATLAB simulations. This method is based on two simple features, namely the signal energy and the spectral centroid. As long as the feature sequences are extracted, a simple thresholding criterion is applied in order to remove the silence areas in the sound signal. The simulations were carried on various instruments like drum, flute and guitar and results of the proposed method were analyzed.Keywords: percussive instruments, spectral energy, spectral centroid, silence removal
Procedia PDF Downloads 4115069 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise
Authors: Yasser F. Hassan
Abstract:
The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.Keywords: rough sets, rough neural networks, cellular automata, image processing
Procedia PDF Downloads 4395068 Unsupervised Assistive and Adaptive Intelligent Agent in Smart Environment
Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lourenço
Abstract:
The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore, relying on fixed operational models would be inappropriate. This paper presents a study on developing a Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose a Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities
Procedia PDF Downloads 6435067 Robust Heart Rate Estimation from Multiple Cardiovascular and Non-Cardiovascular Physiological Signals Using Signal Quality Indices and Kalman Filter
Authors: Shalini Rankawat, Mansi Rankawat, Rahul Dubey, Mazad Zaveri
Abstract:
Physiological signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often seriously corrupted by noise, artifacts, and missing data, which lead to errors in the estimation of heart rate (HR) and incidences of false alarm from ICU monitors. Clinical support in ICU requires most reliable heart rate estimation. Cardiac activity, because of its relatively high electrical energy, may introduce artifacts in Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) recordings. This paper presents a robust heart rate estimation method by detection of R-peaks of ECG artifacts in EEG, EMG & EOG signals, using energy-based function and a novel Signal Quality Index (SQI) assessment technique. SQIs of physiological signals (EEG, EMG, & EOG) were obtained by correlation of nonlinear energy operator (teager energy) of these signals with either ECG or ABP signal. HR is estimated from ECG, ABP, EEG, EMG, and EOG signals from separate Kalman filter based upon individual SQIs. Data fusion of each HR estimate was then performed by weighing each estimate by the Kalman filters’ SQI modified innovations. The fused signal HR estimate is more accurate and robust than any of the individual HR estimate. This method was evaluated on MIMIC II data base of PhysioNet from bedside monitors of ICU patients. The method provides an accurate HR estimate even in the presence of noise and artifacts.Keywords: ECG, ABP, EEG, EMG, EOG, ECG artifacts, Teager-Kaiser energy, heart rate, signal quality index, Kalman filter, data fusion
Procedia PDF Downloads 6965066 The Effectiveness of Orthogonal Frequency Division Multiplexing as Modulation Technique
Authors: Mohamed O. Babana
Abstract:
In wireless channel multipath is the propagation phenomena where the transmitted signal arrive at the receiver side with many of paths, the signal at these paths arrive with different time delay the results is random signal fading due to intersymbols interference(ISI). This paper deals with identification of orthogonal frequency division multiplexing (OFDM) technology, and how it is used to overcome intersymbol interference due to multipath. Also investigates the effect of Additive White Gaussian Noise Channel (AWGN) on OFDM using multi-level modulation of Phase Shift Keying (PSK), computer simulation to calculate the bit error rate (BER) under AWGN channel is applied. A comparison study is carried out to obtain the Bit Error Rate performance for OFDM to identify the best multi-level modulation of PSK.Keywords: intersymbol interference(ISI), bit error rate(BER), modulation, multiplexing, simulation
Procedia PDF Downloads 4225065 Dynamic Store Procedures in Database
Authors: Muhammet Dursun Kaya, Hasan Asil
Abstract:
In recent years, different methods have been proposed to optimize question processing in database. Although different methods have been proposed to optimize the query, but the problem which exists here is that most of these methods destroy the query execution plan after executing the query. This research attempts to solve the above problem by using a combination of methods of communicating with the database (the present questions in the programming code and using store procedures) and making query processing adaptive in database, and proposing a new approach for optimization of query processing by introducing the idea of dynamic store procedures. This research creates dynamic store procedures in the database according to the proposed algorithm. This method has been tested on applied software and results shows a significant improvement in reducing the query processing time and also reducing the workload of DBMS. Other advantages of this algorithm include: making the programming environment a single environment, eliminating the parametric limitations of the stored procedures in the database, making the stored procedures in the database dynamic, etc.Keywords: relational database, agent, query processing, adaptable, communication with the database
Procedia PDF Downloads 3715064 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria
Authors: Mairo Musa Galadima, Phoebe Mshelia
Abstract:
In Nigeria, the national policy of education stipulates that the kindergarten-primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo, and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5 (five) selected secondary school in Bauchi. It was discovered that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequately qualified teachers and relevant materials including textbooks. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.Keywords: stress and intonation, phonetic and challenges, teaching and learning English, secondary schools
Procedia PDF Downloads 3525063 Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing
Authors: Martin H¨ausl, Maximilian Auch, Johannes Forster, Peter Mandl, Alexander Schill
Abstract:
In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company’s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs.Keywords: idea ontology, innovation management, semantic search, open information extraction
Procedia PDF Downloads 1885062 Improve Closed Loop Performance and Control Signal Using Evolutionary Algorithms Based PID Controller
Authors: Mehdi Shahbazian, Alireza Aarabi, Mohsen Hadiyan
Abstract:
Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of its simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damages the system but using evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, Genetic algorithm and particle swarm optimization. To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.Keywords: evolutionary algorithm, genetic algorithm, particle swarm optimization, PID controller
Procedia PDF Downloads 4835061 A Simple Device for Characterizing High Power Electron Beams for Welding
Authors: Aman Kaur, Colin Ribton, Wamadeva Balachandaran
Abstract:
Electron beam welding due to its inherent advantages is being extensively used for material processing where high precision is required. Especially in aerospace or nuclear industries, there are high quality requirements and the cost of materials and processes is very high which makes it very important to ensure the beam quality is maintained and checked prior to carrying out the welds. Although the processes in these industries are highly controlled, however, even the minor changes in the operating parameters of the electron gun can make large enough variations in the beam quality that can result in poor welding. To measure the beam quality a simple device has been designed that can be used at high powers. The device consists of two slits in x and y axis which collects a small portion of the beam current when the beam is deflected over the slits. The signals received from the device are processed in data acquisition hardware and the dedicated software developed for the device. The device has been used in controlled laboratory environments to analyse the signals and the weld quality relationships by varying the focus current. The results showed matching trends in the weld dimensions and the beam characteristics. Further experimental work is being carried out to determine the ability of the device and signal processing software to detect subtle changes in the beam quality and to relate these to the physical weld quality indicators.Keywords: electron beam welding, beam quality, high power, weld quality indicators
Procedia PDF Downloads 3245060 Grammatically Coded Corpus of Spoken Lithuanian: Methodology and Development
Authors: L. Kamandulytė-Merfeldienė
Abstract:
The paper deals with the main issues of methodology of the Corpus of Spoken Lithuanian which was started to be developed in 2006. At present, the corpus consists of 300,000 grammatically annotated word forms. The creation of the corpus consists of three main stages: collecting the data, the transcription of the recorded data, and the grammatical annotation. Collecting the data was based on the principles of balance and naturality. The recorded speech was transcribed according to the CHAT requirements of CHILDES. The transcripts were double-checked and annotated grammatically using CHILDES. The development of the Corpus of Spoken Lithuanian has led to the constant increase in studies on spontaneous communication, and various papers have dealt with a distribution of parts of speech, use of different grammatical forms, variation of inflectional paradigms, distribution of fillers, syntactic functions of adjectives, the mean length of utterances.Keywords: CHILDES, corpus of spoken Lithuanian, grammatical annotation, grammatical disambiguation, lexicon, Lithuanian
Procedia PDF Downloads 2365059 Effects of Array Electrode Placement on Identifying Localised Muscle Fatigue
Authors: Mohamed R. Al-Mulla, Bader Al-Bader, Firouz K. Ghaaedi, Francisco Sepulveda
Abstract:
Surface electromyography (sEMG) is utilised in numerous studies on muscle activity. In the beginning, single electrodes were utilised; however, the newest approach is to use an array of electrodes or a grid of electrodes to improve the accuracy of the recorded reading. This research focuses on electrode placement on the biceps brachii, using an array of electrodes placed longitudinal and diagonally on the muscle belly. Trials were conducted on four healthy males, with sEMG signal acquisition from fatiguing isometric contractions. The signal was analysed using the power spectrum density. The separation between the two classes of fatigue (non-fatigue and fatigue) was calculated using the Davies-Bouldin Index (DBI). Results show that higher separability between the fatigue content of the sEMG signal when placed longitudinally, in the same direction as the muscle fibers.Keywords: array electrodes, biceps brachii, electrode placement, EMG, isometric contractions, muscle fatigue
Procedia PDF Downloads 372