Search results for: road side element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6070

Search results for: road side element

5530 A Software Tool for Computer Forensic Investigation Using Client-Side Web History Visualization

Authors: Francisca Onaolapo Oladipo, Peter Afam Ugwu

Abstract:

Records of user activities which are valuable for forensic investigation purposes are provided by web browsers -these records in most cases are not in visual formats that are easily understood, thereby requiring some extra processes. This paper describes the implementation of a software tool for client-side web history visualization providing suitable forensic evidence for investigative purposes. Visual C#, Perl and gnuplot were deployed on Windows Operating System (OS) environment to implement the system and the resulting tool parses and transforms a web browser history into a visual format that enables an investigator to quickly and efficiently explore, understand, and interpret the user online activities in the context of a specific investigation. The system was tested using two forensic cases: the client-side web history files generated by Mozilla Firefox browser was extracted using MozillaHistoryView utility, then parsed and visualized using bar and stacked column charts. From the visual representation, results of user web activities across various productive and non-productive websites were obtained.

Keywords: history, forensics, visualization, web activities

Procedia PDF Downloads 281
5529 Compressive Stresses near Crack Tip Induced by Thermo-Electric Field

Authors: Thomas Jin-Chee Liu

Abstract:

In this paper, the thermo-electro-structural coupled-field in a cracked metal plate is studied using the finite element analysis. From the computational results, the compressive stresses reveal near the crack tip. This conclusion agrees with the past reference. Furthermore, the compressive condition can retard and stop the crack growth during the Joule heating process.

Keywords: compressive stress, crack tip, Joule heating, finite element

Procedia PDF Downloads 391
5528 Robotic Mini Gastric Bypass Surgery

Authors: Arun Prasad, Abhishek Tiwari, Rekha Jaiswal, Vivek Chaudhary

Abstract:

Background: Robotic Roux en Y gastric bypass is being done for some time but is technically difficult, requiring operating in both the sub diaphragmatic and infracolic compartments of the abdomen. This can mean a dual docking of the robot or a hybrid partial laparoscopic and partial robotic surgery. The Mini /One anastomosis /omega loop gastric bypass (MGB) has the advantage of having all dissection and anastomosis in the supracolic compartment and is therefore suitable technically for robotic surgery. Methods: We have done 208 robotic mini gastric bypass surgeries. The robot is docked above the head of the patient in the midline. Camera port is placed supra umbilically. Two ports are placed on the left side of the patient and one port on the right side of the patient. An assistant port is placed between the camera port and right sided robotic port for use of stapler. Distal stomach is stapled from the lesser curve followed by a vertical sleeve upwards leading to a long sleeve pouch. Jejunum is taken at 200 cm from the duodenojejunal junction and brought up to do a side to side gastrojejunostomy. Results: All patients had a successful robotic procedure. Mean time taken was 85 minutes. There were major intraoperative or post operative complications. No patient needed conversion or re-explorative surgery. Mean excess weight loss over a period of 2 year was about 75%. There was no mortality. Patient satisfaction score was high and was attributed to the good weight loss and minimal dietary modifications that were needed after the procedure. Long term side effects were anemia and bile reflux in a small number of patients. Conclusions: MGB / OAGB is gaining worldwide interest as a short simple procedure that has been shown to very effective and safe bariatric surgery. The purpose of this study was to report on the safety and efficacy of robotic surgery for this procedure. This is the first report of totally robotic mini gastric bypass.

Keywords: MGB, mini gastric bypass, OAGB, robotic bariatric surgery

Procedia PDF Downloads 279
5527 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation

Authors: Stephen Kirkup

Abstract:

This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.

Keywords: boundary element method, Laplace’s equation, vector calculus, simulation, education

Procedia PDF Downloads 147
5526 Generating Ideas to Improve Road Intersections Using Design with Intent Approach

Authors: Omar Faruqe Hamim, M. Shamsul Hoque, Rich C. McIlroy, Katherine L. Plant, Neville A. Stanton

Abstract:

Road safety has become an alarming issue, especially in low-middle income developing countries. The traditional approaches lack the out of the box thinking, making engineers confined to applying usual techniques in making roads safer. A socio-technical approach has recently been introduced in improving road intersections through designing with intent. This Design With Intent (DWI) approach aims to give practitioners a more nuanced approach to design and behavior, working with people, people’s understanding, and the complexities of everyday human experience. It's a collection of design patterns —and a design and research approach— for exploring the interactions between design and people’s behavior across products, services, and environments, both digital and physical. Through this approach, it can be seen that how designing with people in behavior change can be applied to social and environmental problems, as well as commercially. It has a total of 101 cards across eight different lenses, such as architectural, error-proofing, interaction, ludic, perceptual, cognitive, Machiavellian, and security lens each having its own distinct characteristics of extracting ideas from the participant of this approach. For this research purpose, a three-legged accident blackspot intersection of a national highway has been chosen to perform the DWI workshop. Participants from varying fields such as civil engineering, naval architecture and marine engineering, urban and regional planning, and sociology actively participated for a day long workshop. While going through the workshops, the participants were given a preamble of the accident scenario and a brief overview of DWI approach. Design cards of varying lenses were distributed among 10 participants and given an hour and a half for brainstorming and generating ideas to improve the safety of the selected intersection. After the brainstorming session, the participants spontaneously went through roundtable discussions regarding the ideas they have come up with. According to consensus of the forum, ideas were accepted or rejected. These generated ideas were then synthesized and agglomerated to bring about an improvement scheme for the intersection selected in our study. To summarize the improvement ideas from DWI approach, color coding of traffic lanes for separate vehicles, channelizing the existing bare intersection, providing advance warning traffic signs, cautionary signs and educational signs motivating road users to drive safe, using textured surfaces at approach with rumble strips before the approach of intersection were the most significant one. The motive of this approach is to bring about new ideas from the road users and not just depend on traditional schemes to increase the efficiency, safety of roads as well and to ensure the compliance of road users since these features are being generated from the minds of users themselves.

Keywords: design with intent, road safety, human experience, behavior

Procedia PDF Downloads 126
5525 Simulation of Non-Crimp 3D Orthogonal Carbon Fabric Composite for Aerospace Applications Using Finite Element Method

Authors: Sh. Minapoor, S. Ajeli, M. Javadi Toghchi

Abstract:

Non-crimp 3D orthogonal fabric composite is one of the textile-based composite materials that are rapidly developing light-weight engineering materials. The present paper focuses on geometric and micro mechanical modeling of non-crimp 3D orthogonal carbon fabric and composites reinforced with it for aerospace applications. In this research meso-finite element (FE) modeling employs for stress analysis in different load conditions. Since mechanical testing of expensive textile carbon composites with specific application isn't affordable, simulation composite in a virtual environment is a helpful way to investigate its mechanical properties in different conditions.

Keywords: woven composite, aerospace applications, finite element method, mechanical properties

Procedia PDF Downloads 446
5524 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression

Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu

Abstract:

The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.

Keywords: artificial neural network (ANN), finite element method (FEM), perforated sections, thin-walled Steel, ultimate load

Procedia PDF Downloads 334
5523 Finite Element Simulation of Deep Drawing Process to Minimize Earing

Authors: Pawan S. Nagda, Purnank S. Bhatt, Mit K. Shah

Abstract:

Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing.

Keywords: anisotropy, deep drawing, earing, finite element simulation

Procedia PDF Downloads 364
5522 Valorization of Clay Material in the Road Sector By Adding Granulated Recycled Plastic

Authors: Ouaaz Oum Essaad, Melbouci Bachir

Abstract:

The experimental study conducted has a dual purpose: to valorize the clay material in the road domain and improve the lift of the shape layers by strengthening with plastic waste (in the form of aggregates). To do this, six mixtures of Clay and sand of different percentages were studied: 100% Clay, 95% Clay + 05% Sand, 90% Clay + 10% Sand, 85% Clay + 15% Sand, 80% Clay + 20% Sand, 75% Clay + 25% Sand. Proctor compaction and simple compression tests have been carried out on mixtures (sand + clay + plastic waste). The results obtained show a clear evolution of the characteristics of the Proctor test and the compressive strength of the mixtures according to the different types and percentages of the recycled plastic Plasticity and consistency index are important parameters that play a role in the toughness of plastic soil.

Keywords: valorization, recycling, soil mixture, mechanical tests

Procedia PDF Downloads 86
5521 Stress Concentration Trend for Combined Loading Conditions

Authors: Aderet M. Pantierer, Shmuel Pantierer, Raphael Cordina, Yougashwar Budhoo

Abstract:

Stress concentration occurs when there is an abrupt change in geometry, a mechanical part under loading. These changes in geometry can include holes, notches, or cracks within the component. The modifications create larger stress within the part. This maximum stress is difficult to determine, as it is directly at the point of the minimum area. Strain gauges have yet to be developed to analyze stresses at such minute areas. Therefore, a stress concentration factor must be utilized. The stress concentration factor is a dimensionless parameter calculated solely on the geometry of a part. The factor is multiplied by the nominal, or average, stress of the component, which can be found analytically or experimentally. Stress concentration graphs exist for common loading conditions and geometrical configurations to aid in the determination of the maximum stress a part can withstand. These graphs were developed from historical data yielded from experimentation. This project seeks to verify a stress concentration graph for combined loading conditions. The aforementioned graph was developed using CATIA Finite Element Analysis software. The results of this analysis will be validated through further testing. The 3D modeled parts will be subjected to further finite element analysis using Patran-Nastran software. The finite element models will then be verified by testing physical specimen using a tensile testing machine. Once the data is validated, the unique stress concentration graph will be submitted for publication so it can aid engineers in future projects.

Keywords: stress concentration, finite element analysis, finite element models, combined loading

Procedia PDF Downloads 418
5520 Performance Analysis of a Hybrid Channel for Foglet Assisted Smart Asset Reporting

Authors: Hasan Farahneh

Abstract:

Smart asset management along roadsides and in deserted areas is a topic of deprived attention. We find most of the work in emergency reporting services in intelligent transportation systems (ITS) and rural areas but not much in asset reporting. Currently, available asset management mechanisms are based on scheduled maintenance and do not effectively report any emergency situation in a timely manner. This paper is the continuation of our previous work, in which we proposed the usage of Foglets and VLC link between smart vehicles and road side assets. In this paper, we propose a hybrid communication system for asset management and emergency reporting architecture for smart transportation. We incorporate Foglets along with visible light communication (VLC) and radio frequency (RF) communication. We present the channel model and parameters of a hybrid model to support an intelligent transportation system (ITS) system. Simulations show high improvement in the system performance in terms of communication range and received data. We present a comparative analysis of a hybrid ITS system.

Keywords: Internet of Things, Foglets, VLC, RF, smart vehicle, roadside asset management

Procedia PDF Downloads 117
5519 Economized Sensor Data Processing with Vehicle Platooning

Authors: Henry Hexmoor, Kailash Yelasani

Abstract:

We present vehicular platooning as a special case of crowd-sensing framework where sharing sensory information among a crowd is used for their collective benefit. After offering an abstract policy that governs processes involving a vehicular platoon, we review several common scenarios and components surrounding vehicular platooning. We then present a simulated prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that one of the paramount benefits of platooning that is overlooked elsewhere, is the substantial computational savings (i.e., economizing benefits) in acquisition and processing of sensory data among vehicles sharing the road. The most capable vehicle can share data gathered from its sensors with nearby vehicles grouped into a platoon.

Keywords: cloud network, collaboration, internet of things, social network

Procedia PDF Downloads 179
5518 Preparation and Characterization of Road Base Material Based on Kazakhstan Production Waste

Authors: K. K. Kaidarova, Ye. K. Aibuldinov, Zh. B. Iskakova, G. Zh. Alzhanova, S. Zh. Zayrova

Abstract:

Currently, the existing road infrastructure of Kazakhstan needs the reconstruction of existing highways and the construction of new roads. The solution to this problem can be achieved by replacing traditional building materials with industrial waste, which in their chemical and mineralogical composition are close to natural raw materials and can partially or completely replace some natural binding materials in road construction. In this regard, the purpose of this study is to develop building materials based on the red sludge of the Pavlodar aluminum plant, blast furnace slag of the Karaganda Metallurgical Plant, lime production waste of the Pavlodar Aluminum Plant as a binder for natural loam. Changes in physical and mechanical properties were studied for uniaxial compression strength, linear expansion coefficient, water resistance, and frost resistance of the samples. Nine mixtures were formed with different percentages of these wastes 1-20:25:4; 2-20:25:6; 3-20:25:8; 4-30:30:4; 5-30:30:6; 6-30:30:8; 7-40:35:4; 8-40:35:6; 9-40:35:8 and the mixture identifier were labeled based on the waste content and composition number. The results of strength measurement during uniaxial compression of the samples showed an almost constant increase in strength and amounted to 0.67–3.56 MPa after three days and 3.33–7.38 MPa after 90 days. This increase in compressive strength is a consequence of the addition of lime and becomes more pronounced over time. The water resistance of the developed materials after 90 days was 7.12 MPa, and the frost resistance for the same period was 7.35 MPa. The maximum values of strength determination were shown by a sample of the composition 9-40:35:8. The study of the mineral composition showed that there was no contamination with heavy metals or dangerous substances. It was determined that road materials made of red sludge, blast furnace slag, lime production waste, and natural loam mixture could be used due to their strength indicators and environmental characteristics.

Keywords: production waste, uniaxial compression, water resistance of materials, frost resistance of samples

Procedia PDF Downloads 98
5517 Study of Elastic-Plastic Fatigue Crack in Functionally Graded Materials

Authors: Somnath Bhattacharya, Kamal Sharma, Vaibhav Sonkar

Abstract:

Composite materials emerged in the middle of the 20th century as a promising class of engineering materials providing new prospects for modern technology. Recently, a new class of composite materials known as functionally graded materials (FGMs) has drawn considerable attention of the scientific community. In general, FGMs are defined as composite materials in which the composition or microstructure or both are locally varied so that a certain variation of the local material properties is achieved. This gradual change in composition and microstructure of material is suitable to get gradient of properties and performances. FGMs are synthesized in such a way that they possess continuous spatial variations in volume fractions of their constituents to yield a predetermined composition. These variations lead to the formation of a non-homogeneous macrostructure with continuously varying mechanical and / or thermal properties in one or more than one direction. Lightweight functionally graded composites with high strength to weight and stiffness to weight ratios have been used successfully in aircraft industry and other engineering applications like in electronics industry and in thermal barrier coatings. In the present work, elastic-plastic crack growth problems (using Ramberg-Osgood Model) in an FGM plate under cyclic load has been explored by extended finite element method. Both edge and centre crack problems have been solved by taking additionally holes, inclusions and minor cracks under plane stress conditions. Both soft and hard inclusions have been implemented in the problems. The validity of linear elastic fracture mechanics theory is limited to the brittle materials. A rectangular plate of functionally graded material of length 100 mm and height 200 mm with 100% copper-nickel alloy on left side and 100% ceramic (alumina) on right side is considered in the problem. Exponential gradation in property is imparted in x-direction. A uniform traction of 100 MPa is applied to the top edge of the rectangular domain along y direction. In some problems, domain contains major crack along with minor cracks or / and holes or / and inclusions. Major crack is located the centre of the left edge or the centre of the domain. The discontinuities, such as minor cracks, holes, and inclusions are added either singly or in combination with each other. On the basis of this study, it is found that effect of minor crack in the domain’s failure crack length is minimum whereas soft inclusions have moderate effect and the effect of holes have maximum effect. It is observed that the crack growth is more before the failure in each case when hard inclusions are present in place of soft inclusions.

Keywords: elastic-plastic, fatigue crack, functionally graded materials, extended finite element method (XFEM)

Procedia PDF Downloads 374
5516 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method

Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a

Abstract:

The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.

Keywords: damage detection, finite element, tapered pipe, vibration characteristics

Procedia PDF Downloads 151
5515 The Discussion of Peritoneal Dialysis Patients Taking Proper Portion of Valacyclovir

Authors: Wan Shan Chiang, Charn Ting Wang, Wei-Chih Kan, Hui-Chen Huang

Abstract:

Dialysis patients have risk in Zoster virus because of low immune. Valacyclovir (product name: Valtex) 500mg/tab, an anti-zoster virus medicine, is digested in kidney and it has side-effect of nervous system in patients with malfunction kidneys. Although the clinical basis of the proposed administration, we found that patients still have side effects. So we want to explore the appropriate dose of peritoneal dialysis patients. We read small samples of case reports and analyze 8 cases in our hospital, some patients’ Kt/v, match the standard of dialysis, and still go to the toilet, they still have side effect seriously with 500mg portion. The solution to this includes stopping medicine, reduction of medicine, increase of liquid change and timely hemodialysis and all of them speed up the recovery. The safety of medication needs extra attention of medical care employee. If they can tell the doctor if the patient has urine or not in his or her Kt/v, the doctor can prescribe the medicine accordingly. About the limitation, due to the lack of cases and related pharmacokinetics numbers. Therefore, for peritoneal patients, we think 500mg/48hoursis the saves. We also want to remind pharmaceuticals to revise the portion taken by patients, so that the doctor may judge the use.

Keywords: herpes zoster, Valacyclovir, peritoneal dialysis, health education

Procedia PDF Downloads 300
5514 Developing Medium Term Maintenance Plan For Road Networks

Authors: Helen S. Ghali, Haidy S. Ghali, Salma Ibrahim, Ossama Hosny, Hatem S. Elbehairy

Abstract:

Infrastructure systems are essential assets in any community; accordingly, authorities aim to maximize its life span while minimizing the life cycle cost. This requires studying the asset conditions throughout its operation and forming a cost-efficient maintenance strategy plan. The objective of this study is to develop a highway management system that provides medium-term maintenance plans with the minimum life cycle cost subject to budget constraints. The model is applied to data collected for the highway network in India with the aim to output a 5-year maintenance plan strategy from 2019 till 2023. The main element considered is the surface coarse, either rigid or flexible pavement. The model outputs a 5-year maintenance plan for each segment given the budget constraint while maximizing the new pavement condition rating and minimizing its life cycle cost.

Keywords: infrastructure, asset management, optimization, maintenance plan

Procedia PDF Downloads 203
5513 Non-Linear Finite Element Investigation on the Behavior of CFRP Strengthened Steel Square HSS Columns under Eccentric Loading

Authors: Tasnuba Binte Jamal, Khan Mahmud Amanat

Abstract:

Carbon Fiber-Reinforced Polymer (CFRP) composite materials have proven to have valuable properties and suitability to be used in the construction of new buildings and in upgrading the existing ones due to its effectiveness, ease of implementation and many more. In the present study, a numerical finite element investigation has been conducted using ANSYS 18.1 to study the behavior of square HSS AISC sections under eccentric compressive loading strengthened with CFRP materials. A three-dimensional finite element model for square HSS section using shell element was developed. Application of CFRP strengthening was incorporated in the finite element model by adding an additional layer of shell elements. Both material and geometric nonlinearities were incorporated in the model. The developed finite element model was applied to simulate experimental studies done by past researchers and it was found that good agreement exists between the current analysis and past experimental results, which established the acceptability and validity of the developed finite element model to carry out further investigation. Study was then focused on some selected non-compact AISC square HSS columns and the effects of number of CFRP layers, amount of eccentricities and cross-sectional geometry on the strength gain of those columns were observed. Load was applied at a distance equal to the column dimension and twice that of column dimension. It was observed that CFRP strengthening is comparatively effective for smaller eccentricities. For medium sized sections, strengthening tends to be effective at smaller eccentricities as well. For relatively large AISC square HSS columns, with increasing number of CFRP layers (from 1 to 3 layers) the gain in strength is approximately 1 to 38% to that of unstrengthened section for smaller eccentricities and slenderness ratio ranging from 27 to 54. For medium sized square HSS sections, effectiveness of CFRP strengthening increases approximately by about 12 to 162%. The findings of the present study provide a better understanding of the behavior of HSS sections strengthened with CFRP subjected to eccentric compressive load.

Keywords: CFRP strengthening, eccentricity, finite element model, square hollow section

Procedia PDF Downloads 126
5512 Electric Field Investigation in MV PILC Cables with Void Defect

Authors: Mohamed A. Alsharif, Peter A. Wallace, Donald M. Hepburn, Chengke Zhou

Abstract:

Worldwide, most PILC MV underground cables in use are approaching the end of their design life; hence, failures are likely to increase. This paper studies the electric field and potential distributions within the PILC insulted cable containing common void-defect. The finite element model of the performance of the belted PILC MV underground cable is presented. The variation of the electric field stress within the cable using the Finite Element Method (FEM) is concentrated. The effects of the void-defect within the insulation are given. Outcomes will lead to deeper understanding of the modeling of Paper Insulated Lead Covered (PILC) and electric field response of belted PILC insulted cable containing void defect.

Keywords: MV PILC cables, finite element model/COMSOL multiphysics, electric field stress, partial discharge degradation

Procedia PDF Downloads 473
5511 Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method

Authors: Masoud Mahdavi

Abstract:

During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much.

Keywords: steel plate shear wall with opening, cyclic loading, reduced cross-section beam, finite element method, Abaqus software

Procedia PDF Downloads 111
5510 Optimal Design of Composite Cylindrical Shell Based on Nonlinear Finite Element Analysis

Authors: Haider M. Alsaeq

Abstract:

The present research is an attempt to figure out the best configuration of composite cylindrical shells of the sandwich type, i.e. the lightest design of such shells required to sustain a certain load over a certain area. The optimization is based on elastic-plastic geometrically nonlinear incremental-iterative finite element analysis. The nine-node degenerated curved shell element is used in which five degrees of freedom are specified at each nodal point, with a layered model. The formulation of the geometrical nonlinearity problem is carried out using the well-known total Lagrangian principle. For the structural optimization problem, which is dealt with as a constrained nonlinear optimization, the so-called Modified Hooke and Jeeves method is employed by considering the weight of the shell as the objective function with stress and geometrical constraints. It was concluded that the optimum design of composite sandwich cylindrical shell that have a rigid polyurethane foam core and steel facing occurs when the area covered by the shell becomes almost square with a ratio of core thickness to facing thickness lies between 45 and 49, while the optimum height to length ration varies from 0.03 to 0.08 depending on the aspect ratio of the shell and its boundary conditions.

Keywords: composite structure, cylindrical shell, optimization, non-linear analysis, finite element

Procedia PDF Downloads 382
5509 Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport

Authors: Martin Kendra, Tomas Skrucany, Jozef Gnap, Jan Ponicky

Abstract:

Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system ‘well to wheel’.

Keywords: bus, consumption energy, GHG, production, simulation, train

Procedia PDF Downloads 431
5508 The Environmental Benefits of the Adoption of Emission Control for Locomotives in Brazil

Authors: Rui de Abrantes, André Luiz Silva Forcetto

Abstract:

Air pollution is a big problem in many cities around the world. Brazilian big cities also have this problem, where millions of people are exposed daily to pollutants levels above the recommended by WHO. Brazil has taken several actions to reduce air pollution, among others, controlling the atmospheric emissions from vehicles, non-road mobile machinery, and motorcycles, but on the other side, there are no emissions controls for locomotives, which are exposing the population to tons of pollutants annually. The rail network is not homogeneously distributed in the national territory; it is denser near the big cities, and this way, the population is more exposed to pollutants; apart from that, the government intends to increase the rail network as one of the strategies for greenhouse gas mitigation, complying with the international agreements against the climate changes. This paper initially presents the estimated emissions from locomotive fleets with no emission control and with emission control equivalent to US Tier 3 from 2028 and for the next 20 years. However, we realized that a program equivalent to phase Tier 3 would not be effective, so we proposed a program in two steps that will avoid the release of more than 2.4 million tons of CO and 531,000 tons of hydrocarbons, 3.7 million tons of nitrogen oxides, and 102,000 tons of particulate matter in 20 years.

Keywords: locomotives, emission control, air pollution, pollutants emission

Procedia PDF Downloads 36
5507 Investigation of the Corroded Steel Beam

Authors: Hesamaddin Khoshnoodi, Ahmad Rahbar Ranji

Abstract:

Corrosion in steel structures is one of the most important issues that should be considered in designing and constructing. Corrosion reduces the cross section and load capacity of element and leads to costly damage of structures. In this paper, the corrosion has been modeled for moment stresses. Moreover, the steel beam has been modeled using ABAQUS advanced finite element software. The conclusions of this study demonstrated that the displacement of the analyzed composite steel girder bridge might increase.

Keywords: Abaqus, Corrosion, deformation, Steel Beam

Procedia PDF Downloads 336
5506 Dynamic Modeling of a Robot for Playing a Curved 3D Percussion Instrument Utilizing a Finite Element Method

Authors: Prakash Persad, Kelvin Loutan, Trichelle Seepersad

Abstract:

The Finite Element Method is commonly used in the analysis of flexible manipulators to predict elastic displacements and develop joint control schemes for reducing positioning error. In order to preserve simplicity, regular geometries, ideal joints and connections are assumed. This paper presents the dynamic FE analysis of a 4- degrees of freedom open chain manipulator, intended for striking a curved 3D surface percussion musical instrument. This was done utilizing the new MultiBody Dynamics Module in COMSOL, capable of modeling the elastic behavior of a body undergoing rigid body type motion.

Keywords: dynamic modeling, entertainment robots, finite element method, flexible robot manipulators, multibody dynamics, musical robots

Procedia PDF Downloads 326
5505 Social Studies Teaching Methods: Approaches and Techniques in Teaching History in Primary Education

Authors: Tonguc Basaran

Abstract:

History is a record of a people’s past based on a critical examination of documents and other facts. The essentials of this historical method are not beyond the grasp of even young children. Concrete examples, such as the story of the Rosetta stone, which enabled Champollion to establish the first principles of the deciphering of Egyptian hieroglyphics, vividly illustrate the fundamental processes involved. This search for the facts can be used to illustrate one side of the search for historic truth. The other side is the truth of historic interpretation. The facts cannot be changed, but the interpretation of them can and does change.

Keywords: history, primary education, teaching methods, social studies

Procedia PDF Downloads 287
5504 Emotions in Human-Machine Interaction

Authors: Joanna Maj

Abstract:

Awe inspiring is the idea that emotions could be present in human-machine interactions, both on the human side as well as the machine side. Human factors present intriguing components and are examined in detail while discussing this controversial topic. Mood, attention, memory, performance, assessment, causes of emotion, and neurological responses are analyzed as components of the interaction. Problems in computer-based technology, revenge of the system on its users and design, and applications comprise a major part of all descriptions and examples throughout this paper. It also allows for critical thinking while challenging intriguing questions regarding future directions in research, dealing with emotion in human-machine interactions.

Keywords: biocomputing, biomedical engineering, emotions, human-machine interaction, interfaces

Procedia PDF Downloads 118
5503 Estimation of Particle Number and Mass Doses Inhaled in a Busy Street in Lublin, Poland

Authors: Bernard Polednik, Adam Piotrowicz, Lukasz Guz, Marzenna Dudzinska

Abstract:

Transportation is considered to be responsible for increased exposure of road users – i.e., drivers, car passengers, and pedestrians as well as inhabitants of houses located near roads - to pollutants emitted from vehicles. Accurate estimates are, however, difficult as exposure depends on many factors such as traffic intensity or type of fuel as well as the topography and the built-up area around the individual routes. The season and weather conditions are also of importance. In the case of inhabitants of houses located near roads, their exposure depends on the distance from the road, window tightness and other factors that decrease pollutant infiltration. This work reports the variations of particle concentrations along a selected road in Lublin, Poland. Their impact on the exposure for road users as well as for inhabitants of houses located near the road is also presented. Mobile and fixed-site measurements were carried out in peak (around 8 a.m. and 4 p.m.) and off-peak (12 a.m., 4 a.m., and 12 p.m.) traffic times in all 4 seasons. Fixed-site measurements were performed in 12 measurement points along the route. The number and mass concentration of particles was determined with the use of P-Trak model 8525, OPS 3330, DustTrak DRX model 8533 (TSI Inc. USA) and Grimm Aerosol Spectrometer 1.109 with Nano Sizer 1.321 (Grimm Aerosol Germany). The obtained results indicated that the highest concentrations of traffic-related pollution were measured near 4-way traffic intersections during peak hours in the autumn and winter. The highest average number concentration of ultrafine particles (PN0.1), and mass concentration of fine particles (PM2.5) in fixed-site measurements were obtained in the autumn and amounted to 23.6 ± 9.2×10³ pt/cm³ and 135.1 ± 11.3 µg/m³, respectively. The highest average number concentration of submicrometer particles (PN1) was measured in the winter and amounted to 68 ± 26.8×10³ pt/cm³. The estimated doses of particles deposited in the commuters’ and pedestrians’ lungs within an hour near 4-way TIs in peak hours in the summer amounted to 4.3 ± 3.3×10⁹ pt/h (PN0.1) and 2.9 ± 1.4 µg/h (PM2.5) and 3.9 ± 1.1×10⁹ pt/h (PN0.1) or 2.5 ± 0.4 µg/h (PM2.5), respectively. While estimating the doses inhaled by the inhabitants of premises located near the road one should take into account different fractional penetration of particles from outdoors to indoors. Such doses assessed for the autumn and winter are up to twice as high as the doses inhaled by commuters and pedestrians in the summer. In the winter traffic-related ultrafine particles account for over 70% of all ultrafine particles deposited in the pedestrians’ lungs. The share of traffic-related PM10 particles was estimated at approximately 33.5%. Concluding, the results of the particle concentration measurements along a road in Lublin indicated that the concentration is mainly affected by the traffic intensity and weather conditions. Further detailed research should focus on how the season and the metrological conditions affect concentration levels of traffic-related pollutants and the exposure of commuters and pedestrians as well as the inhabitants of houses located near traffic routes.

Keywords: air quality, deposition dose, health effects, vehicle emissions

Procedia PDF Downloads 84
5502 Analysis of Thermal Effect on Functionally Graded Micro-Beam via Mixed Finite Element Method

Authors: Cagri Mollamahmutoglu, Ali Mercan, Aykut Levent

Abstract:

Studies concerning the microstructures are becoming more important as the utilization of various micro-electro mechanical systems (MEMS) are increasing. Thus in recent years, thermal buckling and vibration analysis of microstructures have been subject to many investigations that are utilizing different numerical methods. In this study, thermal effects on mechanical response of a functionally graded (FG) Timoshenko micro-beam are presented in the framework of a mixed finite element formulation. Size effects are taken into consideration via modified couple stress theory. The mixed formulation is based on a function which in turn is derived via Gateaux Differential scientifically. After the resolution of all field equations of the beam, a potential operator is carefully constructed. Then this operator is used for the manufacturing of the functional. Usual procedures of finite element approximation are utilized for the derivation of the mixed finite element equations once the potential is obtained. Resulting finite element formulation allows usage of C₀ type simple linear shape functions and avoids shear-locking phenomena, which is a common shortcoming of the displacement-based formulations of moderately thick beams. The developed numerical scheme is used to obtain the effects of thermal loads on the static bending, free vibration and buckling of FG Timoshenko micro-beams for different power-law parameters, aspect ratios and boundary conditions. The versatility of the mixed formulation is presented over other numerical methods such as generalized differential quadrature method (GDQM). Another attractive property of the formulation is that it allows direct calculation of the contribution of micro effects on the overall mechanical response.

Keywords: micro-beam, functionally graded materials, thermal effect, mixed finite element method

Procedia PDF Downloads 120
5501 Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory

Authors: Abu Afree Andalib, M. Mezbah Uddin, M. Rafiur Rahman, M. Abir Hossain, Rajia Sultana Kamol

Abstract:

This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results.

Keywords: blade element theory, computational fluid dynamics, finite element analysis, fluid-structure interaction, momentum theory

Procedia PDF Downloads 283