Search results for: greener cloud
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 764

Search results for: greener cloud

224 Statistical Shape Analysis of the Human Upper Airway

Authors: Ramkumar Gunasekaran, John Cater, Vinod Suresh, Haribalan Kumar

Abstract:

The main objective of this project is to develop a statistical shape model using principal component analysis that could be used for analyzing the shape of the human airway. The ultimate goal of this project is to identify geometric risk factors for diagnosis and management of Obstructive Sleep Apnoea (OSA). Anonymous CBCT scans of 25 individuals were obtained from the Otago Radiology Group. The airways were segmented between the hard-palate and the aryepiglottic fold using snake active contour segmentation. The point data cloud of the segmented images was then fitted with a bi-cubic mesh, and pseudo landmarks were placed to perform PCA on the segmented airway to analyze the shape of the airway and to find the relationship between the shape and OSA risk factors. From the PCA results, the first four modes of variation were found to be significant. Mode 1 was interpreted to be the overall length of the airway, Mode 2 was related to the anterior-posterior width of the retroglossal region, Mode 3 was related to the lateral dimension of the oropharyngeal region and Mode 4 was related to the anterior-posterior width of the oropharyngeal region. All these regions are subjected to the risk factors of OSA.

Keywords: medical imaging, image processing, FEM/BEM, statistical modelling

Procedia PDF Downloads 514
223 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment

Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay

Abstract:

Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.

Keywords: machine learning, system performance, performance metrics, IoT, edge

Procedia PDF Downloads 195
222 The Integration of Patient Health Record Generated from Wearable and Internet of Things Devices into Health Information Exchanges

Authors: Dalvin D. Hill, Hector M. Castro Garcia

Abstract:

A growing number of individuals utilize wearable devices on a daily basis. The usage and functionality of these wearable devices vary from user to user. One popular usage of said devices is to track health-related activities that are typically stored on a device’s memory or uploaded to an account in the cloud; based on the current trend, the data accumulated from the wearable device are stored in a standalone location. In many of these cases, this health related datum is not a factor when considering the holistic view of a user’s health lifestyle or record. This health-related data generated from wearable and Internet of Things (IoT) devices can serve as empirical information to a medical provider, as the standalone data can add value to the holistic health record of a patient. This paper proposes a solution to incorporate the data gathered from these wearable and IoT devices, with that a patient’s Personal Health Record (PHR) stored within the confines of a Health Information Exchange (HIE).

Keywords: electronic health record, health information exchanges, internet of things, personal health records, wearable devices, wearables

Procedia PDF Downloads 128
221 New Insights Into Fog Role In Atmospheric Deposition Using Satellite Images

Authors: Suruchi

Abstract:

This study aims to examine the spatial and temporal patterns of fog occurrences across Czech Republic. It utilizes satellite imagery and other data sources to achieve this goal. The main objective is to understand the role of fog in atmospheric deposition processes and its potential impact on the environment and ecosystems. Through satellite image analysis, the study will identify and categorize different types of fog, including radiation fog, orographic fog, and mountain fog. Fog detection algorithms and cloud type products will be evaluated to assess the frequency and distribution of fog events throughout the Czech Republic. Furthermore, the regions covered by fog will be classified based on their fog type and associated pollution levels. This will provide insights into the variability in fog characteristics and its implications for atmospheric deposition. Spatial analysis techniques will be used to pinpoint areas prone to frequent fog events and evaluate their pollution levels. Statistical methods will be employed to analyze patterns in fog occurrence over time and its connection with environmental factors. The ultimate goal of this research is to offer fresh perspectives on fog's role in atmospheric deposition processes, enhancing our understanding of its environmental significance and informing future research and environmental management initiatives.

Keywords: pollution, GIS, FOG, satellie, atmospheric deposition

Procedia PDF Downloads 22
220 Electrodeposition of Silicon Nanoparticles Using Ionic Liquid for Energy Storage Application

Authors: Anjali Vanpariya, Priyanka Marathey, Sakshum Khanna, Roma Patel, Indrajit Mukhopadhyay

Abstract:

Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LiBs) due to its low cost, non-toxicity, and a high theoretical capacity of 4200 mAhg⁻¹. The primary challenge of the application of Si-based LiBs is large volume expansion (~ 300%) during the charge-discharge process. Incorporation of graphene, carbon nanotubes (CNTs), morphological control, and nanoparticles was utilized as effective strategies to tackle volume expansion issues. However, molten salt methods can resolve the issue, but high-temperature requirement limits its application. For sustainable and practical approach, room temperature (RT) based methods are essentially required. Use of ionic liquids (ILs) for electrodeposition of Si nanostructures can possibly resolve the issue of temperature as well as greener media. In this work, electrodeposition of Si nanoparticles on gold substrate was successfully carried out in the presence of ILs media, 1-butyl-3-methylimidazolium-bis (trifluoromethyl sulfonyl) imide (BMImTf₂N) at room temperature. Cyclic voltammetry (CV) suggests the sequential reduction of Si⁴⁺ to Si²⁺ and then Si nanoparticles (SiNs). The structure and morphology of the electrodeposited SiNs were investigated by FE-SEM and observed interconnected Si nanoparticles of average particle size ⁓100-200 nm. XRD and XPS data confirm the deposition of Si on Au (111). The first discharge-charge capacity of Si anode material has been found to be 1857 and 422 mAhg⁻¹, respectively, at current density 7.8 Ag⁻¹. The irreversible capacity of the first discharge-charge process can be attributed to the solid electrolyte interface (SEI) formation via electrolyte decomposition, and trapped Li⁺ inserted into the inner pores of Si. Pulverization of SiNs results in the creation of a new active site, which facilitates the formation of new SEI in the subsequent cycles leading to fading in a specific capacity. After 20 cycles, charge-discharge profiles have been stabilized, and a reversible capacity of 150 mAhg⁻¹ is retained. Electrochemical impedance spectroscopy (EIS) data shows the decrease in Rct value from 94.7 to 47.6 kΩ after 50 cycles of charge-discharge, which demonstrates the improvements of the interfacial charge transfer kinetics. The decrease in the Warburg impedance after 50 cycles of charge-discharge measurements indicates facile diffusion in fragmented and smaller Si nanoparticles. In summary, Si nanoparticles deposited on gold substrate using ILs as media and characterized well with different analytical techniques. Synthesized material was successfully utilized for LiBs application, which is well supported by CV and EIS data.

Keywords: silicon nanoparticles, ionic liquid, electrodeposition, cyclic voltammetry, Li-ion battery

Procedia PDF Downloads 125
219 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams

Authors: Nidhi Sharotri, Dhiraj Sud

Abstract:

Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.

Keywords: quinalphos, doped-TiO2, mineralization, EPR

Procedia PDF Downloads 328
218 IoT Based Approach to Healthcare System for a Quadriplegic Patient Using EEG

Authors: R. Gautam, P. Sastha Kanagasabai, G. N. Rathna

Abstract:

The proposed healthcare system enables quadriplegic patients, people with severe motor disabilities to send commands to electronic devices and monitor their vitals. The growth of Brain-Computer-Interface (BCI) has led to rapid development in 'assistive systems' for the disabled called 'assistive domotics'. Brain-Computer-Interface is capable of reading the brainwaves of an individual and analyse it to obtain some meaningful data. This processed data can be used to assist people having speech disorders and sometimes people with limited locomotion to communicate. In this Project, Emotiv EPOC Headset is used to obtain the electroencephalogram (EEG). The obtained data is processed to communicate pre-defined commands over the internet to the desired mobile phone user. Other Vital Information like the heartbeat, blood pressure, ECG and body temperature are monitored and uploaded to the server. Data analytics enables physicians to scan databases for a specific illness. The Data is processed in Intel Edison, system on chip (SoC). Patient metrics are displayed via Intel IoT Analytics cloud service.

Keywords: brain computer interface, Intel Edison, Emotiv EPOC, IoT analytics, electroencephalogram

Procedia PDF Downloads 186
217 A Real Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport

Authors: Dimitris E. Kontaxis, George Litainas, Dimitris P. Ptochos

Abstract:

Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real-time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination, and sustainability of the supply chain procedures. The technology, the features, and the characteristics of a complete, proprietary system, including hardware, firmware, and software tools -developed in the context of a co-funded R&D programme- are addressed and presented in this paper.

Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform

Procedia PDF Downloads 177
216 Intelligent Technology for Real-Time Monitor and Data Analysis of the Aquaculture Toxic Water Concentration

Authors: Chin-Yuan Hsieh, Wei-Chun Lu, Yu-Hong Zeng

Abstract:

The situation of a group of fish die is frequently found due to the fish disease caused by the deterioration of aquaculture water quality. The toxic ammonia is produced by animals as a byproduct of protein. The system is designed by the smart sensor technology and developed by the mathematical model to monitor the water parameters 24 hours a day and predict the relationship among twelve water quality parameters for monitoring the water quality in aquaculture. All data measured are stored in cloud server. In productive ponds, the daytime pH may be high enough to be lethal to the fish. The sudden change of the aquaculture conditions often results in the increase of PH value of water, lack of oxygen dissolving content, water quality deterioration and yield reduction. From the real measurement, the system can send the message to user’s smartphone successfully on the bad conditions of water quality. From the data comparisons between measurement and model simulation in fish aquaculture site, the difference of parameters is less than 2% and the correlation coefficient is at least 98.34%. The solubility rate of oxygen decreases exponentially with the elevation of water temperature. The correlation coefficient is 98.98%.

Keywords: aquaculture, sensor, ammonia, dissolved oxygen

Procedia PDF Downloads 283
215 Machine Learning Assisted Performance Optimization in Memory Tiering

Authors: Derssie Mebratu

Abstract:

As a large variety of micro services, web services, social graphic applications, and media applications are continuously developed, it is substantially vital to design and build a reliable, efficient, and faster memory tiering system. Despite limited design, implementation, and deployment in the last few years, several techniques are currently developed to improve a memory tiering system in a cloud. Some of these techniques are to develop an optimal scanning frequency; improve and track pages movement; identify pages that recently accessed; store pages across each tiering, and then identify pages as a hot, warm, and cold so that hot pages can store in the first tiering Dynamic Random Access Memory (DRAM) and warm pages store in the second tiering Compute Express Link(CXL) and cold pages store in the third tiering Non-Volatile Memory (NVM). Apart from the current proposal and implementation, we also develop a new technique based on a machine learning algorithm in that the throughput produced 25% improved performance compared to the performance produced by the baseline as well as the latency produced 95% improved performance compared to the performance produced by the baseline.

Keywords: machine learning, bayesian optimization, memory tiering, CXL, DRAM

Procedia PDF Downloads 96
214 Developing Fault Tolerance Metrics of Web and Mobile Applications

Authors: Ahmad Mohsin, Irfan Raza Naqvi, Syda Fatima Usamn

Abstract:

Applications with higher fault tolerance index are considered more reliable and trustworthy to drive quality. In recent years application development has been shifted from traditional desktop and web to native and hybrid application(s) for the web and mobile platforms. With the emergence of Internet of things IOTs, cloud and big data trends, the need for measuring Fault Tolerance for these complex nature applications has increased to evaluate their performance. There is a phenomenal gap between fault tolerance metrics development and measurement. Classic quality metric models focused on metrics for traditional systems ignoring the essence of today’s applications software, hardware & deployment characteristics. In this paper, we have proposed simple metrics to measure fault tolerance considering general requirements for Web and Mobile Applications. We have aligned factors – subfactors, using GQM for metrics development considering the nature of mobile we apps. Systematic Mathematical formulation is done to measure metrics quantitatively. Three web mobile applications are selected to measure Fault Tolerance factors using formulated metrics. Applications are then analysed on the basis of results from observations in a controlled environment on different mobile devices. Quantitative results are presented depicting Fault tolerance in respective applications.

Keywords: web and mobile applications, reliability, fault tolerance metric, quality metrics, GQM based metrics

Procedia PDF Downloads 344
213 Polarimetric Synthetic Aperture Radar Data Classification Using Support Vector Machine and Mahalanobis Distance

Authors: Najoua El Hajjaji El Idrissi, Necip Gokhan Kasapoglu

Abstract:

Polarimetric Synthetic Aperture Radar-based imaging is a powerful technique used for earth observation and classification of surfaces. Forest evolution has been one of the vital areas of attention for the remote sensing experts. The information about forest areas can be achieved by remote sensing, whether by using active radars or optical instruments. However, due to several weather constraints, such as cloud cover, limited information can be recovered using optical data and for that reason, Polarimetric Synthetic Aperture Radar (PolSAR) is used as a powerful tool for forestry inventory. In this [14paper, we applied support vector machine (SVM) and Mahalanobis distance to the fully polarimetric AIRSAR P, L, C-bands data from the Nezer forest areas, the classification is based in the separation of different tree ages. The classification results were evaluated and the results show that the SVM performs better than the Mahalanobis distance and SVM achieves approximately 75% accuracy. This result proves that SVM classification can be used as a useful method to evaluate fully polarimetric SAR data with sufficient value of accuracy.

Keywords: classification, synthetic aperture radar, SAR polarimetry, support vector machine, mahalanobis distance

Procedia PDF Downloads 133
212 Biorefinery as Extension to Sugar Mills: Sustainability and Social Upliftment in the Green Economy

Authors: Asfaw Gezae Daful, Mohsen Alimandagari, Kathleen Haigh, Somayeh Farzad, Eugene Van Rensburg, Johann F. Görgens

Abstract:

The sugar industry has to 're-invent' itself to ensure long-term economic survival and opportunities for job creation and enhanced community-level impacts, given increasing pressure from fluctuating and low global sugar prices, increasing energy prices and sustainability demands. We propose biorefineries for re-vitalisation of the sugar industry using low value lignocellulosic biomass (sugarcane bagasse, leaves, and tops) annexed to existing sugar mills, producing a spectrum of high value platform chemicals along with biofuel, bioenergy, and electricity. Opportunity is presented for greener products, to mitigate climate change and overcome economic challenges. Xylose from labile hemicellulose remains largely underutilized and the conversion to value-add products a major challenge. Insight is required on pretreatment and/or extraction to optimize production of cellulosic ethanol together with lactic acid, furfural or biopolymers from sugarcane bagasse, leaves, and tops. Experimental conditions for alkaline and pressurized hot water extraction dilute acid and steam explosion pretreatment of sugarcane bagasse and harvest residues were investigated to serve as a basis for developing various process scenarios under a sugarcane biorefinery scheme. Dilute acid and steam explosion pretreatment were optimized for maximum hemicellulose recovery, combined sugar yield and solids digestibility. An optimal range of conditions for alkaline and liquid hot water extraction of hemicellulosic biopolymers, as well as conditions for acceptable enzymatic digestibility of the solid residue, after such extraction was established. Using data from the above, a series of energy efficient biorefinery scenarios are under development and modeled using Aspen Plus® software, to simulate potential factories to better understand the biorefinery processes and estimate the CAPEX and OPEX, environmental impacts, and overall viability. Rigorous and detailed sustainability assessment methodology was formulated to address all pillars of sustainability. This work is ongoing and to date, models have been developed for some of the processes which can ultimately be combined into biorefinery scenarios. This will allow systematic comparison of a series of biorefinery scenarios to assess the potential to reduce negative impacts on and maximize the benefits of social, economic, and environmental factors on a lifecycle basis.

Keywords: biomass, biorefinery, green economy, sustainability

Procedia PDF Downloads 514
211 Modeling the Elastic Mean Free Path of Electron Collision with Pyrimidine: The Screen Corrected Additivity Rule Method

Authors: Aouina Nabila Yasmina, Chaoui Zine El Abiddine

Abstract:

This study presents a comprehensive investigation into the elastic mean free path (EMFP) of electrons colliding with pyrimidine, a precursor to the pyrimidine bases in DNA, employing the Screen Corrected Additivity Rule (SCAR) method. The SCAR method is introduced as a novel approach that combines classical and quantum mechanical principles to elucidate the interaction of electrons with pyrimidine. One of the most fundamental properties characterizing the propagation of a particle in the nuclear medium is its mean free path. Knowledge of the elastic mean free path is essential to accurately predict the effects of radiation on biological matter, as it contributes to the distances between collisions. Additionally, the mean free path plays a role in the interpretation of almost all experiments in which an excited electron moves through a solid. Pyrimidine, the precursor of the pyrimidine bases of DNA, has interesting physicochemical properties, which make it an interesting molecule to study from a fundamental point of view. These include a relatively large dipole polarizability and dipole moment and an electronic charge cloud with a significant spatial extension, which justifies its choice in this present study.

Keywords: elastic mean free path, elastic collision, pyrimidine, SCAR

Procedia PDF Downloads 64
210 Assessment of N₂ Fixation and Water-Use Efficiency in a Soybean-Sorghum Rotation System

Authors: Mmatladi D. Mnguni, Mustapha Mohammed, George Y. Mahama, Alhassan L. Abdulai, Felix D. Dakora

Abstract:

Industrial-based nitrogen (N) fertilizers are justifiably credited for the current state of food production across the globe, but their continued use is not sustainable and has an adverse effect on the environment. The search for greener and sustainable technologies has led to an increase in exploiting biological systems such as legumes and organic amendments for plant growth promotion in cropping systems. Although the benefits of legume rotation with cereal crops have been documented, the full benefits of soybean-sorghum rotation systems have not been properly evaluated in Africa. This study explored the benefits of soybean-sorghum rotation through assessing N₂ fixation and water-use efficiency of soybean in rotation with sorghum with and without organic and inorganic amendments. The field trials were conducted from 2017 to 2020. Sorghum was grown on plots previously cultivated to soybean and vice versa. The succeeding sorghum crop received fertilizer amendments [organic fertilizer (5 tons/ha as poultry litter, OF); inorganic fertilizer (80N-60P-60K) IF; organic + inorganic fertilizer (OF+IF); half organic + inorganic fertilizer (HIF+OF); organic + half inorganic fertilizer (OF+HIF); half organic + half inorganic (HOF+HIF) and control] and was arranged in a randomized complete block design. The soybean crop succeeding fertilized sorghum received a blanket application of triple superphosphate at 26 kg P ha⁻¹. Nitrogen fixation and water-use efficiency were respectively assessed at the flowering stage using the ¹⁵N and ¹³C natural abundance techniques. The results showed that the shoot dry matter of soybean plants supplied with HOF+HIF was much higher (43.20 g plant-1), followed by OF+HIF (36.45 g plant⁻¹), and HOF+IF (33.50 g plant⁻¹). Shoot N concentration ranged from 1.60 to 1.66%, and total N content from 339 to 691 mg N plant⁻¹. The δ¹⁵N values of soybean shoots ranged from -1.17‰ to -0.64‰, with plants growing on plots previously treated to HOF+HIF exhibiting much higher δ¹⁵N values, and hence lower percent N derived from N₂ fixation (%Ndfa). Shoot %Ndfa values varied from 70 to 82%. The high %Ndfa values obtained in this study suggest that the previous year’s organic and inorganic fertilizer amendments to sorghum did not inhibit N₂ fixation in the following soybean crop. The amount of N-fixed by soybean ranged from 106 to 197 kg N ha⁻¹. The treatments showed marked variations in carbon (C) content, with HOF+HIF treatment recording the highest C content. Although water-use efficiency varied from -29.32‰ to -27.85‰, shoot water-use efficiency, C concentration, and C:N ratio were not altered by previous fertilizer application to sorghum. This study provides strong evidence that previous HOF+HIF sorghum residues can enhance N nutrition and water-use efficiency in nodulated soybean.

Keywords: ¹³C and ¹⁵N natural abundance, N-fixed, organic and inorganic fertilizer amendments, shoot %Ndfa

Procedia PDF Downloads 169
209 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 54
208 Internal Product Management: The Key to Achieving Digital Maturity and Business Agility for Manufacturing IT Organizations

Authors: Frederick Johnson

Abstract:

Product management has a long and well-established history within the consumer goods industry, despite being one of the most obscure aspects of brand management. Many global manufacturing organizations are now opting for external cloud-based Manufacturing Execution Systems (MES) to replace costly and outdated monolithic MES solutions. Other global manufacturing leaders are restructuring their organizations to support human-centered values, agile methodologies, and fluid operating principles. Still, industry-leading organizations struggle to apply the appropriate framework for managing evolving external MES solutions as internal "digital products." Product management complements these current trends in technology and philosophical thinking in the market. This paper discusses the central problems associated with adopting product management processes by analyzing its traditional theories and characteristics. Considering these ideas, the article then constructs a translated internal digital product management framework by combining new and existing approaches and principles. The report concludes by demonstrating the framework's capabilities and potential effectiveness in achieving digital maturity and business agility within a manufacturing environment.

Keywords: internal product management, digital transformation, manufacturing information technology, manufacturing execution systems

Procedia PDF Downloads 135
207 Flood Monitoring Using Active Microwave Remote Sensed Synthetic Aperture Radar Data

Authors: Bikramjit Goswami, Manoranjan Kalita

Abstract:

Active microwave remote sensing is useful in remote sensing applications in cloud-covered regions in the world. Because of high spatial resolution, the spatial variations of land cover can be monitored in greater detail using synthetic aperture radar (SAR). Inundation is studied using the SAR images obtained from Sentinel-1A in both VH and VV polarizations in the present experimental study. The temporal variation of the SAR scattering coefficient values for the area gives a good indication of flood and its boundary. The study area is the district of Morigaon in the state of Assam in India. The period of flood monitoring study is the monsoon season of the year 2017, during which high flood occurred in the state of Assam. The variation of microwave scattering value shows a distinctive indication of flood from the non-flooded period. Frequent monitoring of flood in a large area (10 km x 10 km) using passive microwave sensing and pin-pointing the actual flooded portions (5 m x 5 m) within the flooded area using active microwave sensing, can be a highly useful combination, as revealed by the present experimental results.

Keywords: active remote sensing, flood monitoring, microwave remote sensing, synthetic aperture radar

Procedia PDF Downloads 151
206 Bituminous Geomembranes: Sustainable Products for Road Construction and Maintenance

Authors: Ines Antunes, Andrea Massari, Concetta Bartucca

Abstract:

Greenhouse gasses (GHG) role in the atmosphere has been well known since the 19th century; however, researchers have begun to relate them to climate changes only in the second half of the following century. From this moment, scientists started to correlate the presence of GHG such as CO₂ with the global warming phenomena. This has raised the awareness not only of those who were experts in this field but also of public opinion, which is becoming more and more sensitive to environmental pollution and sustainability issues. Nowadays the reduction of GHG emissions is one of the principal objectives of EU nations. The target is an 80% reduction of emissions in 2050 and to reach the important goal of carbon neutrality. Road sector is responsible for an important amount of those emissions (about 20%). The most part is due to traffic, but a good contribution is also given directly or indirectly from road construction and maintenance. Raw material choice and reuse of post-consumer plastic rather than a cleverer design of roads have an important contribution to reducing carbon footprint. Bituminous membranes can be successfully used as reinforcement systems in asphalt layers to improve road pavement performance against cracking. Composite materials coupling membranes with grids and/or fabrics should be able to combine improved tensile properties of the reinforcement with stress absorbing and waterproofing effects of membranes. Polyglass, with its brand dedicated to road construction and maintenance called Polystrada, has done more than this. The company's target was not only to focus sustainability on the final application but also to implement a greener mentality from the cradle to the grave. Starting from production, Polyglass has made important improvements finalized to increase efficiency and minimize waste. The installation of a trigeneration plant and the usage of selected production scraps inside the products as well as the reduction of emissions into the environment, are one of the main efforts of the company to reduce impact during final product build-up. Moreover, the benefit given by installing Polystrada products brings a significant improvement in road lifetime. This has an impact not only on the number of maintenance or renewal that needs to be done (build less) but also on traffic density due to works and road deviation in case of operations. During the end of the life of a road, Polystrada products can be 100% recycled and milled with classical systems used without changing the normal maintenance procedures. In this work, all these contributions were quantified in terms of CO₂ emission thanks to an LCA analysis. The data obtained were compared with a classical system or a standard production of a membrane. What it is possible to see is that the usage of Polyglass products for street maintenance and building gives a significant reduction of emissions in case of membrane installation under the road wearing course.

Keywords: CO₂ emission, LCA, maintenance, sustainability

Procedia PDF Downloads 65
205 Fish Oil and Its Methyl Ester as an Alternate Fuel in the Direct Injection Diesel Engine

Authors: Pavan Pujar

Abstract:

Mackerel Fish oil was used as the raw material to produce the biodiesel in this study. The raw oil (RO) was collected from discarded fish products. This oil was filtered and heated to 110oC and made it moisture free. The filtered and moisture free RO was transesterified to produce biodiesel. The experimental results showed that oleic acid and lauric acid were the two major components of the fish oil biodiesel (FOB). Palmitic acid and linoleic acid were found approximately same in the quantity. The fuel properties kinematic viscosity, flash point, fire point, specific gravity, calorific value, cetane number, density, acid value, saponification value, iodine value, cloud point, pour point, ash content, Cu strip corrosion, carbon residue, API gravity were determined for FOB. A comparative study of the properties was carried out with RO and Neat diesel (ND). It was found that Cetane number was 59 for FOB which was more than RO, which showed 57. Blends (B20, B40, B60, B80: example: B20: 20% FOB + 80% ND) of FOB and ND were prepared on volume basis and comparative study was carried out with ND and FOB. Performance parameters BSFE, BSEC, A:F Ratio, Break thermal efficiency were analyzed and it was found that complete replacement of neat diesel (ND) is possible without any engine modifications.

Keywords: fish oil biodiesel, raw oil, blends, performance parameters

Procedia PDF Downloads 413
204 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach

Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas

Abstract:

Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.

Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality

Procedia PDF Downloads 187
203 The Role of Homocysteine in Bone and Cartilage Regeneration

Authors: Arif İsmailov, Naila Hasanova, Gunay Orujalieva

Abstract:

Homocysteine (HCY) is an indicator of prognostic value in monitoring regenerative processes in osteoporosis and osteoporotic fractures. The osteoporosis is known to be a serious health and economic problem, especially for women in the postmenopausal period. The study was carried out on patients 45-83 years old divided into 3 groups: group I – 14 patients with osteoporosis , group II – 15 patients with non-osteoporotic fractures, group III – 25 patients with osteoporotic fractures. The control group consisted of practically healthy 14 people. A blood sample was taken at 3 stages to monitor the dynamics of HCY level: on the 1st day before treatment, on the 10th day of treatment and 1 month after it. Blood levels of Hcy were determined at a wavelength of 450 nm by the ELİSA(Cloud Clone Corp.Elisa kits,USA). The statistical evaluation was performed by using SPSS 26.0 program (IBM SPSS Inc., USA).The results showed that on the 1st day before the treatment HCY concentration was statistically increased 2.7 times(PU = 0.108) in group I, 5.6 times (PU <0.001) in group II and 6.5 times (PU <0.001) in group III compared to the control group. Thus, the average value of HCY in group I was 1.76 ± 0.56 μg/ml; in group II – 3.57 ± 0.62 μg/ml; in group III – 4.2 ± 0.50 μg/ml. HCY level increases more sharply after fractures,especially in osteoporotic patients. In treatment period Vitamin D plays an important role in synthesis of the Cystathionine β‐synthase enzyme, which regulates HCY metabolism. Increased Hcy levels could lead to an increase in the risk of fracture through the interference in collagen cross-linking.

Keywords: homocysteine, osteoporosis, osteoporotic fractures, Vitamin D

Procedia PDF Downloads 59
202 Detectability Analysis of Typical Aerial Targets from Space-Based Platforms

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to achieve effective detection of aerial targets over long distances from space-based platforms, the mechanism of interaction between the radiation characteristics of the aerial targets and the complex scene environment including the sunlight conditions, underlying surfaces and the atmosphere are analyzed. A large simulated database of space-based radiance images is constructed considering several typical aerial targets, target working modes (flight velocity and altitude), illumination and observation angles, background types (cloud, ocean, and urban areas) and sensor spectrums ranging from visible to thermal infrared. The target detectability is characterized by the signal-to-clutter ratio (SCR) extracted from the images. The influence laws of the target detectability are discussed under different detection bands and instantaneous fields of view (IFOV). Furthermore, the optimal center wavelengths and widths of the detection bands are suggested, and the minimum IFOV requirements are proposed. The research can provide theoretical support and scientific guidance for the design of space-based detection systems and on-board information processing algorithms.

Keywords: space-based detection, aerial targets, detectability analysis, scene environment

Procedia PDF Downloads 144
201 Non-Singular Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space

Authors: Amir Hadi Ziaie

Abstract:

In the present work, we revisit the collapse process of a spherically symmetric homogeneous scalar field (in FRW background) minimally coupled to gravity, when the phase-space deformations are taken into account. Such a deformation is mathematically introduced as a particular type of noncommutativity between the canonical momenta of the scale factor and of the scalar field. In the absence of such deformation, the collapse culminates in a spacetime singularity. However, when the phase-space is deformed, we find that the singularity is removed by a non-singular bounce, beyond which the collapsing cloud re-expands to infinity. More precisely, for negative values of the deformation parameter, we identify the appearance of a negative pressure, which decelerates the collapse to finally avoid the singularity formation. While in the un-deformed case, the horizon curve monotonically decreases to finally cover the singularity, in the deformed case the horizon has a minimum value that this value depends on deformation parameter and initial configuration of the collapse. Such a setting predicts a threshold mass for black hole formation in stellar collapse and manifests the role of non-commutative geometry in physics and especially in stellar collapse and supernova explosion.

Keywords: gravitational collapse, non-commutative geometry, spacetime singularity, black hole physics

Procedia PDF Downloads 343
200 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center

Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael

Abstract:

Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.

Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency

Procedia PDF Downloads 33
199 Adsorption and Corrosion Inhibition of New Synthesized Thiophene Schiff Base on Mild Steel in HCL Solution

Authors: H. Elmsellem, A. Aouniti, S. Radi, A. Chetouani, B. Hammouti

Abstract:

The synthesis of new organic molecules offers various molecular structures containing heteroatoms and substituents for corrosion protection in acid pickling of metals. The most synthesized compounds are the nitrogen heterocyclic compounds, which are known to be excellent complex or chelate forming substances with metals. The choice of the inhibitor is based on two considerations: first it could be synthesized conveniently from relatively cheap raw materials, secondly, it contains the electron cloud on the aromatic ring or, the electro negative atoms such as nitrogen and oxygen in the relatively long chain compounds. In the present study, (NE)‐2‐methyl‐N‐(thiophen‐2‐ylmethylidene) aniline(T) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid was examined by different corrosion methods, such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results suggest that this compound is an efficient corrosion inhibitor and the inhibition efficiency increases with the increase in inhibitor concentration. Adsorption of this compound on mild steel surface obeys Langmuir’s isotherm. Correlation between quantum chemical calculations and inhibition efficiency of the investigated compound is discussed using the Density Functional Theory method (DFT).

Keywords: mild steel, Schiff base, inhibition, corrosion, HCl, quantum chemical

Procedia PDF Downloads 332
198 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage

Authors: P. Jayashree, S. Rajkumar

Abstract:

With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.

Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding

Procedia PDF Downloads 294
197 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: receiver tube, heat convection, heat conduction, Nusselt number

Procedia PDF Downloads 356
196 Health and Climate Changes: "Ippocrate" a New Alert System to Monitor and Identify High Risk

Authors: A. Calabrese, V. F. Uricchio, D. di Noia, S. Favale, C. Caiati, G. P. Maggi, G. Donvito, D. Diacono, S. Tangaro, A. Italiano, E. Riezzo, M. Zippitelli, M. Toriello, E. Celiberti, D. Festa, A. Colaianni

Abstract:

Climate change has a severe impact on human health. There is a vast literature demonstrating temperature increase is causally related to cardiovascular problem and represents a high risk for human health, but there are not study that improve a solution. In this work, it is studied how the clime influenced the human parameter through the analysis of climatic conditions in an area of the Apulia Region: Capurso Municipality. At the same time, medical personnel involved identified a set of variables useful to define an index describing health condition. These scientific studies are the base of an innovative alert system, IPPOCRATE, whose aim is to asses climate risk and share information to population at risk to support prevention and mitigation actions. IPPOCRATE is an e-health system, it is designed to provide technological support to analysis of health risk related to climate and provide tools for prevention and management of critical events. It is the first integrated system of prevention of human risk caused by climate change. IPPOCRATE calculates risk weighting meteorological data with the vulnerability of monitored subjects and uses mobile and cloud technologies to acquire and share information on different data channels. It is composed of four components: Multichannel Hub. Multichannel Hub is the ICT infrastructure used to feed IPPOCRATE cloud with a different type of data coming from remote monitoring devices, or imported from meteorological databases. Such data are ingested, transformed and elaborated in order to be dispatched towards mobile app and VoIP phone systems. IPPOCRATE Multichannel Hub uses open communication protocols to create a set of APIs useful to interface IPPOCRATE with 3rd party applications. Internally, it uses non-relational paradigm to create flexible and highly scalable database. WeHeart and Smart Application The wearable device WeHeart is equipped with sensors designed to measure following biometric variables: heart rate, systolic blood pressure and diastolic blood pressure, blood oxygen saturation, body temperature and blood glucose for diabetic subjects. WeHeart is designed to be easy of use and non-invasive. For data acquisition, users need only to wear it and connect it to Smart Application by Bluetooth protocol. Easy Box was designed to take advantage from new technologies related to e-health care. EasyBox allows user to fully exploit all IPPOCRATE features. Its name, Easy Box, reveals its purpose of container for various devices that may be included depending on user needs. Territorial Registry is the IPPOCRATE web module reserved to medical personnel for monitoring, research and analysis activities. Territorial Registry allows to access to all information gathered by IPPOCRATE using GIS system in order to execute spatial analysis combining geographical data (climatological information and monitored data) with information regarding the clinical history of users and their personal details. Territorial Registry was designed for different type of users: control rooms managed by wide area health facilities, single health care center or single doctor. Territorial registry manages such hierarchy diversifying the access to system functionalities. IPPOCRATE is the first e-Health system focused on climate risk prevention.

Keywords: climate change, health risk, new technological system

Procedia PDF Downloads 867
195 Study on Security and Privacy Issues of Mobile Operating Systems Based on Malware Attacks

Authors: Huang Dennis, Aurelio Aziel, Burra Venkata Durga Kumar

Abstract:

Nowadays, smartphones and mobile operating systems have been popularly widespread in our daily lives. As people use smartphones, they tend to store more private and essential data on their devices, because of this it is very important to develop more secure mobile operating systems and cloud storage to secure the data. However, several factors can cause security risks in mobile operating systems such as malware, malicious app, phishing attacks, ransomware, and more, all of which can cause a big problem for users as they can access the user's private data. Those problems can cause data loss, financial loss, identity theft, and other serious consequences. Other than that, during the pandemic, people will use their mobile devices more and do all sorts of transactions online, which may lead to more victims of online scams and inexperienced users being the target. With the increase in attacks, researchers have been actively working to develop several countermeasures to enhance the security of operating systems. This study aims to provide an overview of the security and privacy issues in mobile operating systems, identifying the potential risk of operating systems, and the possible solutions. By examining these issues, we want to provide an easy understanding to users and researchers to improve knowledge and develop more secure mobile operating systems.

Keywords: mobile operating system, security, privacy, Malware

Procedia PDF Downloads 88