Search results for: fuzzy multi-objective combinatorial programming problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8278

Search results for: fuzzy multi-objective combinatorial programming problem

7738 The Location of Park and Ride Facilities Using the Fuzzy Inference Model

Authors: Anna Lower, Michal Lower, Robert Masztalski, Agnieszka Szumilas

Abstract:

Contemporary cities are facing serious congestion and parking problems. In urban transport policy the introduction of the park and ride system (P&R) is an increasingly popular way of limiting vehicular traffic. The determining of P&R facilities location is a key aspect of the system. Criteria for assessing the quality of the selected location are formulated generally and descriptively. The research outsourced to specialists are expensive and time consuming. The most focus is on the examination of a few selected places. The practice has shown that the choice of the location of these sites in a intuitive way without a detailed analysis of all the circumstances, often gives negative results. Then the existing facilities are not used as expected. Methods of location as a research topic are also widely taken in the scientific literature. Built mathematical models often do not bring the problem comprehensively, e.g. assuming that the city is linear, developed along one important communications corridor. The paper presents a new method where the expert knowledge is applied to fuzzy inference model. With such a built system even a less experienced person could benefit from it, e.g. urban planners, officials. The analysis result is obtained in a very short time, so a large number of the proposed location can also be verified in a short time. The proposed method is intended for testing of car parks location in a city. The paper will show selected examples of locations of the P&R facilities in cities planning to introduce the P&R. The analysis of existing objects will also be shown in the paper and they will be confronted with the opinions of the system users, with particular emphasis on unpopular locations. The research are executed using the fuzzy inference model which was built and described in more detail in the earlier paper of the authors. The results of analyzes are compared to documents of P&R facilities location outsourced by the city and opinions of existing facilities users expressed on social networking sites. The research of existing facilities were conducted by means of the fuzzy model. The results are consistent with actual users feedback. The proposed method proves to be good, but does not require the involvement of a large experts team and large financial contributions for complicated research. The method also provides an opportunity to show the alternative location of P&R facilities. The performed studies show that the method has been confirmed. The method can be applied in urban planning of the P&R facilities location in relation to the accompanying functions. Although the results of the method are approximate, they are not worse than results of analysis of employed experts. The advantage of this method is ease of use, which simplifies the professional expert analysis. The ability of analyzing a large number of alternative locations gives a broader view on the problem. It is valuable that the arduous analysis of the team of people can be replaced by the model's calculation. According to the authors, the proposed method is also suitable for implementation on a GIS platform.

Keywords: fuzzy logic inference, park and ride system, P&R facilities, P&R location

Procedia PDF Downloads 312
7737 Creation of an Integrated Development Environment to Assist and Optimize the Learning the Languages C and C++

Authors: Francimar Alves, Marcos Castro, Marllus Lustosa

Abstract:

In the context of the teaching of computer programming, the choice of tool to use is very important in the initiation and continuity of learning a programming language. The literature tools do not always provide usability and pedagogical dynamism clearly and accurately for effective learning. This hypothesis implies fall in productivity and difficulty of learning a particular programming language by students. The integrated development environments (IDEs) Dev-C ++ and Code :: Blocks are widely used in introductory courses for undergraduate courses in Computer Science for learning C and C ++ languages. However, after several years of discontinuity maintaining the source code of Dev-C ++ tool, the continued use of the same in the teaching and learning process of the students of these institutions has led to difficulties, mainly due to the lack of update by the official developers, which resulted in a sequence of problems in using it on educational settings. Much of the users, dissatisfied with the IDE Dev-C ++, migrated to Code :: Blocks platform targeting the more dynamic range in the learning process of the C and C ++ languages. Nevertheless, there is still the need to create a tool that can provide the resources of most IDE's software development literature, however, more interactive, simple, accurate and efficient. This motivation led to the creation of Falcon C ++ tool, IDE that brings with features that turn it into an educational platform, which focuses primarily on increasing student learning index in the early disciplines of programming and algorithms that use the languages ​​C and C ++ . As a working methodology, a field research to prove the truth of the proposed tool was used. The test results and interviews with entry-level students and intermediate in a postsecondary institution gave basis for the composition of this work, demonstrating a positive impact on the use of the tool in teaching programming, showing that the use of Falcon C ++ software is beneficial in the teaching process of the C and C ++ programming languages.

Keywords: ide, education, learning, development, language

Procedia PDF Downloads 426
7736 Design of Membership Ranges for Fuzzy Logic Control of Refrigeration Cycle Driven by a Variable Speed Compressor

Authors: Changho Han, Jaemin Lee, Li Hua, Seokkwon Jeong

Abstract:

Design of membership function ranges in fuzzy logic control (FLC) is presented for robust control of a variable speed refrigeration system (VSRS). The criterion values of the membership function ranges can be carried out from the static experimental data, and two different values are offered to compare control performance. Some simulations and real experiments for the VSRS were conducted to verify the validity of the designed membership functions. The experimental results showed good agreement with the simulation results, and the error change rate and its sampling time strongly affected the control performance at transient state of the VSRS.

Keywords: variable speed refrigeration system, fuzzy logic control, membership function range, control performance

Procedia PDF Downloads 248
7735 Sensorless Controller of Induction Motor Using Backstepping Approach and Fuzzy MRAS

Authors: Ahmed Abbou

Abstract:

This paper present a sensorless controller designed by the backstepping approach for the speed control of induction motor. In this strategy of control, we also combined the method Fuzzy MRAS to estimate the rotor speed and the observer type Luenburger to observe Rotor flux. The control model involves a division by the flux variable that may lead to unbounded solutions. Such a risk is avoided by basing the controller design on Lyapunov function that accounts for the model singularity. On the other hand, this mixed method gives better results in Sensorless operation and especially at low speed. The response time at 5% of the flux is 20ms while the error between the speed with sensor and the estimated speed remains in the range of ±0.8 rad/s for the rated functioning and ±1.5 rad/s for low speed.

Keywords: backstepping approach, fuzzy logic, induction motor, luenburger observer, sensorless MRAS

Procedia PDF Downloads 356
7734 Stochastic Fleet Sizing and Routing in Drone Delivery

Authors: Amin Karimi, Lele Zhang, Mark Fackrell

Abstract:

Rural-to-urban population migrations are a global phenomenon, with projections indicating that by 2050, 68% of the world's population will inhabit densely populated urban centers. Concurrently, the popularity of e-commerce shopping has surged, evidenced by a 51% increase in total e-commerce sales from 2017 to 2021. Consequently, distribution and logistics systems, integral to effective supply chain management, confront escalating hurdles in efficiently delivering and distributing products within bustling urban environments. Additionally, events like environmental challenges and the COVID-19 pandemic have indicated that decision-makers are facing numerous sources of uncertainty. Therefore, to design an efficient and reliable logistics system, uncertainty must be considered. In this study, it examine fleet sizing and routing while considering uncertainty in demand rate. Fleet sizing is typically a strategic-level decision, while routing is an operational-level one. In this study, a carrier must make two types of decisions: strategic-level decisions regarding the number and types of drones to be purchased, and operational-level decisions regarding planning routes based on available fleet and realized demand. If the available fleets are insufficient to serve some customers, the carrier must outsource that delivery at a relatively high cost, calculated per order. With this hierarchy of decisions, it can model the problem using two-stage stochastic programming. The first-stage decisions involve planning the number and type of drones to be purchased, while the second-stage decisions involve planning routes. To solve this model, it employ logic-based benders decomposition, which decomposes the problem into a master problem and a set of sub-problems. The master problem becomes a mixed integer programming model to find the best fleet sizing decisions, and the sub-problems become capacitated vehicle routing problems considering battery status. Additionally, it assume a heterogeneous fleet based on load and battery capacity, and it consider that battery health deteriorates over time as it plan for multiple periods.

Keywords: drone-delivery, stochastic demand, VRP, fleet sizing

Procedia PDF Downloads 39
7733 Power Energy Management For A Grid-Connected PV System Using Rule-Base Fuzzy Logic

Authors: Nousheen Hashmi, Shoab Ahmad Khan

Abstract:

Active collaboration among the green energy sources and the load demand leads to serious issues related to power quality and stability. The growing number of green energy resources and Distributed-Generators need newer strategies to be incorporated for their operations to keep the power energy stability among green energy resources and micro-grid/Utility Grid. This paper presents a novel technique for energy power management in Grid-Connected Photovoltaic with energy storage system under set of constraints including weather conditions, Load Shedding Hours, Peak pricing Hours by using rule-based fuzzy smart grid controller to schedule power coming from multiple Power sources (photovoltaic, grid, battery) under the above set of constraints. The technique fuzzifies all the inputs and establishes fuzzify rule set from fuzzy outputs before defuzzification. Simulations are run for 24 hours period and rule base power scheduler is developed. The proposed fuzzy controller control strategy is able to sense the continuous fluctuations in Photovoltaic power generation, Load Demands, Grid (load Shedding patterns) and Battery State of Charge in order to make correct and quick decisions.The suggested Fuzzy Rule-based scheduler can operate well with vague inputs thus doesn’t not require any exact numerical model and can handle nonlinearity. This technique provides a framework for the extension to handle multiple special cases for optimized working of the system.

Keywords: photovoltaic, power, fuzzy logic, distributed generators, state of charge, load shedding, membership functions

Procedia PDF Downloads 465
7732 Fuzzy Expert Systems Applied to Intelligent Design of Data Centers

Authors: Mario M. Figueroa de la Cruz, Claudia I. Solorzano, Raul Acosta, Ignacio Funes

Abstract:

This technological development project seeks to create a tool that allows companies, in need of implementing a Data Center, intelligently determining factors for allocating resources support cooling and power supply (UPS) in its conception. The results should show clearly the speed, robustness and reliability of a system designed for deployment in environments where they must manage and protect large volumes of data.

Keywords: telecommunications, data center, fuzzy logic, expert systems

Procedia PDF Downloads 331
7731 Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)

Authors: Stojan Kravanja, Andrej Ivanič, Tomaž Žula

Abstract:

This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering.

Keywords: MINLP, mixed-integer non-linear programming, optimization, structures

Procedia PDF Downloads 26
7730 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture

Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac

Abstract:

This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.

Keywords: fuzzy logic, intelligent system, precision agriculture, renewable energy

Procedia PDF Downloads 108
7729 Collaboration and Automatic Tutoring as a Learning Strategy: A Case Study in Programming Courses

Authors: Luis H. Gonzalez-Guerra, Armandina J. Leal-Flores

Abstract:

Students attending classrooms nowadays are habituated to use digital devices all the time and for multiple things. They have been familiar with digital technology throughout their lives so they have developed skills that should be naturally adopted as part of their study strategies. New learning styles require taking in consideration the use of models that support and promote student motivation for learning and development of their creative thinking skills. To achieve student learning in programming courses, different strategies are used. One of them is a collaboration between students, which is a tool which faculty can take advantage of when teaching these kinds of courses. Moreover, cooperation is an essential skill that society should reinforce in order to promote a healthy social environment and cohabitation. Nevertheless, students will still require support and advice to get a complete and correct programming solution to successfully address and solve the problems given throughout the course. This paper present a model where collaboration between students is associated with an automatic tutoring platform providing an excellent approach for the individual learning in collaborative activities in programming courses, and also motivates students to increase their knowledge regarding the topics covered in the classroom.

Keywords: automatic tutoring, collaboration learning, creative thinking, motivation

Procedia PDF Downloads 253
7728 A New Intelligent, Dynamic and Real Time Management System of Sewerage

Authors: R. Tlili Yaakoubi, H.Nakouri, O. Blanpain, S. Lallahem

Abstract:

The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of this project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 19 to 100 %. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 40 % of total volume rejected to the natural environment and of 65 % in the number of discharges.

Keywords: automation, optimization, paradigm, RTC

Procedia PDF Downloads 283
7727 A New Fuzzy Fractional Order Model of Transmission of Covid-19 With Quarantine Class

Authors: Asma Hanif, A. I. K. Butt, Shabir Ahmad, Rahim Ud Din, Mustafa Inc

Abstract:

This paper is devoted to a study of the fuzzy fractional mathematical model reviewing the transmission dynamics of the infectious disease Covid-19. The proposed dynamical model consists of susceptible, exposed, symptomatic, asymptomatic, quarantine, hospitalized and recovered compartments. In this study, we deal with the fuzzy fractional model defined in Caputo’s sense. We show the positivity of state variables that all the state variables that represent different compartments of the model are positive. Using Gronwall inequality, we show that the solution of the model is bounded. Using the notion of the next-generation matrix, we find the basic reproduction number of the model. We demonstrate the local and global stability of the equilibrium point by using the concept of Castillo-Chavez and Lyapunov theory with the Lasalle invariant principle, respectively. We present the results that reveal the existence and uniqueness of the solution of the considered model through the fixed point theorem of Schauder and Banach. Using the fuzzy hybrid Laplace method, we acquire the approximate solution of the proposed model. The results are graphically presented via MATLAB-17.

Keywords: Caputo fractional derivative, existence and uniqueness, gronwall inequality, Lyapunov theory

Procedia PDF Downloads 88
7726 Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach

Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed

Abstract:

Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.

Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model

Procedia PDF Downloads 443
7725 Optimal Management of Forest Stands under Wind Risk in Czech Republic

Authors: Zohreh Mohammadi, Jan Kaspar, Peter Lohmander, Robert Marusak, Harald Vacik, Ljusk Ola Eriksson

Abstract:

Storms are important damaging agents in European forest ecosystems. In the latest decades, significant economic losses in European forestry occurred due to storms. This study investigates the problem of optimal harvest planning when forest stands risk to be felled by storms. One of the most applicable mathematical methods which are being used to optimize forest management is stochastic dynamic programming (SDP). This method belongs to the adaptive optimization class. Sequential decisions, such as harvest decisions, can be optimized based on sequential information about events that cannot be perfectly predicted, such as the future storms and the future states of wind protection from other forest stands. In this paper, stochastic dynamic programming is used to maximize the expected present value of the profits from an area consisting of several forest stands. The region of analysis is the Czech Republic. The harvest decisions, in a particular time period, should be simultaneously taken in all neighbor stands. The reason is that different stands protect each other from possible winds. The optimal harvest age of a particular stand is a function of wind speed and different wind protection effects. The optimal harvest age often decreases with wind speed, but it cannot be determined for one stand at a time. When we consider a particular stand, this stand also protects other stands. Furthermore, the particular stand is protected by neighbor stands. In some forest stands, it may even be rational to increase the harvest age under the influence of stronger winds, in order to protect more valuable stands in the neighborhood. It is important to integrate wind risk in forestry decision-making.

Keywords: Czech republic, forest stands, stochastic dynamic programming, wind risk

Procedia PDF Downloads 124
7724 Solving the Transportation Problem for Warehouses and Dealers in Bangalore City

Authors: S. Aditya, K. T. Nideesh, N. Guruprasad

Abstract:

Being a subclass of linear programing problem, the Transportation Problem is a classic Operations Research problem where the objective is to determine the schedule for transporting goods from source to destination in a way that minimizes the shipping cost while satisfying supply and demand constraints. In this paper, we are representing the transportation problem for various warehouses along with various dealers situated in Bangalore city to reduce the transportation cost incurred by them as of now. The problem is solved by obtaining the Initial Basic feasible Solution through various methods and further proceeding to obtain optimal cost.

Keywords: NW method, optimum utilization, transportation problem, Vogel’s approximation method

Procedia PDF Downloads 419
7723 Strategies to Improve Heat Stress Tolerance in Chickpea and Dissecting the Cross Talk Mechanism

Authors: Renu Yadav, Sanjeev Kumar

Abstract:

In northern India, chickpea (Cicer arietinum L.) come across with terminal high-temperature stress during reproductive stage which leads to reduced yield. Hence, stable production of chickpea will depend on the development of new methods like ‘priming’ which allow improved adaptation to the drought and heat stress. In the present experiment, 11-day chickpea seedling was primed with mild drought stress and put on recovery stage by irrigating and finally 30-day seedlings were exposed to heat stress 38°C (4 hours), 35°C (8 hours) and 32°C (12 hours). To study the effect of combinatorial stress, heat and drought stress was applied simultaneously. Analyses of various physiological parameters like membrane damage assay, photosynthetic pigments, antioxidative enzyme, total sugars were estimated at all stages. To study the effect of heat stress on the metabolites of the plants, GC-MS and HPLC were performed, while at transcriptional level Real-Time PCR of predicted heat stress-related genes was done. It was concluded that the heat stress significantly affected the chickpea plant at physiological and molecular level in all the five varieties. Results also show less damaging effect in primed plants by increasing the activity of antioxidative enzymes and increased expression of heat shock proteins and heat shock factors.

Keywords: chickpea, combinatorial stress, heat stress, oxidative stress, priming, RT-PCR

Procedia PDF Downloads 141
7722 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines

Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun

Abstract:

This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.

Keywords: capacitated MRP, tabu search, simulated annealing, variable neighborhood search, linear programming, assembly flow shop, application in industry

Procedia PDF Downloads 220
7721 Integrated Approach of Quality Function Deployment, Sensitivity Analysis and Multi-Objective Linear Programming for Business and Supply Chain Programs Selection

Authors: T. T. Tham

Abstract:

The aim of this study is to propose an integrated approach to determine the most suitable programs, based on Quality Function Deployment (QFD), Sensitivity Analysis (SA) and Multi-Objective Linear Programming model (MOLP). Firstly, QFD is used to determine business requirements and transform them into business and supply chain programs. From the QFD, technical scores of all programs are obtained. All programs are then evaluated through five criteria (productivity, quality, cost, technical score, and feasibility). Sets of weight of these criteria are built using Sensitivity Analysis. Multi-Objective Linear Programming model is applied to select suitable programs according to multiple conflicting objectives under a budget constraint. A case study from the Sai Gon-Mien Tay Beer Company is given to illustrate the proposed methodology. The outcome of the study provides a comprehensive picture for companies to select suitable programs to obtain the optimal solution according to their preference.

Keywords: business program, multi-objective linear programming model, quality function deployment, sensitivity analysis, supply chain management

Procedia PDF Downloads 105
7720 Conception of a Regulated, Dynamic and Intelligent Sewerage in Ostrevent

Authors: Rabaa Tlili Yaakoubi, Hind Nakouri, Olivier Blanpain

Abstract:

The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of the CARDIO project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 40 to 100%. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 60% of total volume rejected to the natural environment and of 80 % in the number of discharges.

Keywords: RTC, paradigm, optimization, automation

Procedia PDF Downloads 267
7719 Portfolio Selection with Constraints on Trading Frequency

Authors: Min Dai, Hong Liu, Shuaijie Qian

Abstract:

We study a portfolio selection problem of an investor who faces constraints on rebalancing frequency, which is common in pension fund investment. We formulate it as a multiple optimal stopping problem and utilize the dynamic programming principle. By numerically solving the corresponding Hamilton-Jacobi-Bellman (HJB) equation, we find a series of free boundaries characterizing optimal strategy, and the constraints significantly impact the optimal strategy. Even in the absence of transaction costs, there is a no-trading region, depending on the number of the remaining trading chances. We also find that the equivalent wealth loss caused by the constraints is large. In conclusion, our model clarifies the impact of the constraints on transaction frequency on the optimal strategy.

Keywords: portfolio selection, rebalancing frequency, optimal strategy, free boundary, optimal stopping

Procedia PDF Downloads 66
7718 Use of Fuzzy Logic in the Corporate Reputation Assessment: Stock Market Investors’ Perspective

Authors: Tomasz L. Nawrocki, Danuta Szwajca

Abstract:

The growing importance of reputation in building enterprise value and achieving long-term competitive advantage creates the need for its measurement and evaluation for the management purposes (effective reputation and its risk management). The paper presents practical application of self-developed corporate reputation assessment model from the viewpoint of stock market investors. The model has a pioneer character and example analysis performed for selected industry is a form of specific test for this tool. In the proposed solution, three aspects - informational, financial and development, as well as social ones - were considered. It was also assumed that the individual sub-criteria will be based on public sources of information, and as the calculation apparatus, capable of obtaining synthetic final assessment, fuzzy logic will be used. The main reason for developing this model was to fulfill the gap in the scope of synthetic measure of corporate reputation that would provide higher degree of objectivity by relying on "hard" (not from surveys) and publicly available data. It should be also noted that results obtained on the basis of proposed corporate reputation assessment method give possibilities of various internal as well as inter-branch comparisons and analysis of corporate reputation impact.

Keywords: corporate reputation, fuzzy logic, fuzzy model, stock market investors

Procedia PDF Downloads 224
7717 Design of a Sliding Mode Control Using Nonlinear Sliding Surface and Nonlinear Observer Applied to the Trirotor Mini-Aircraft

Authors: Samir Zeghlache, Abderrahmen Bouguerra, Kamel Kara, Djamel Saigaa

Abstract:

The control of the trirotor helicopter includes nonlinearities, uncertainties and external perturbations that should be considered in the design of control laws. This paper presents a control strategy for an underactuated six degrees of freedom (6 DOF) trirotor helicopter, based on the coupling of the fuzzy logic control and sliding mode control (SMC). The main purpose of this work is to eliminate the chattering phenomenon. To achieve our purpose we have used a fuzzy logic control to generate the hitting control signal, also the non linear observer is then synthesized in order to estimate the unmeasured states. Finally simulation results are included to indicate the trirotor UAV with the proposed controller can greatly alleviate the chattering effect and remain robust to the external disturbances.

Keywords: fuzzy sliding mode control, trirotor helicopter, dynamic modelling, underactuated systems

Procedia PDF Downloads 505
7716 Optimal Protection Coordination in Distribution Systems with Distributed Generations

Authors: Abdorreza Rabiee, Shahla Mohammad Hoseini Mirzaei

Abstract:

The advantages of distributed generations (DGs) based on renewable energy sources (RESs) leads to high penetration level of DGs in distribution network. With incorporation of DGs in distribution systems, the system reliability and security, as well as voltage profile, is improved. However, the protection of such systems is still challenging. In this paper, at first, the related papers are reviewed and then a practical scheme is proposed for coordination of OCRs in distribution system with DGs. The coordination problem is formulated as a nonlinear programming (NLP) optimization problem with the object function of minimizing total operating time of OCRs. The proposed method is studied based on a simple test system. The optimization problem is solved by General Algebraic Modeling System (GAMS) to calculate the optimal time dial setting (TDS) and also pickup current setting of OCRs. The results show the effectiveness of the proposed method and its applicability.

Keywords: distributed generation, DG, distribution network, over current relay, OCR, protection coordination, pickup current, time dial setting, TDS

Procedia PDF Downloads 117
7715 Integrated Vegetable Production Planning Considering Crop Rotation Rules Using a Mathematical Mixed Integer Programming Model

Authors: Mohammadali Abedini Sanigy, Jiangang Fei

Abstract:

In this paper, a mathematical optimization model was developed to maximize the profit in a vegetable production planning problem. It serves as a decision support system that assists farmers in land allocation to crops and harvest scheduling decisions. The developed model can handle different rotation rules in two consecutive cycles of production, which is a common practice in organic production system. Moreover, different production methods of the same crop were considered in the model formulation. The main strength of the model is that it is not restricted to predetermined production periods, which makes the planning more flexible. The model is classified as a mixed integer programming (MIP) model and formulated in PYOMO -a Python package to formulate optimization models- and solved via Gurobi and CPLEX optimizer packages. The model was tested with secondary data from 'Australian vegetable growing farms', and the results were obtained and discussed with the computational test runs. The results show that the model can successfully provide reliable solutions for real size problems.

Keywords: crop rotation, harvesting, mathematical model formulation, vegetable production

Procedia PDF Downloads 167
7714 Application of Genetic Programming for Evolution of Glass-Forming Ability Parameter

Authors: Manwendra Kumar Tripathi, Subhas Ganguly

Abstract:

A few glass forming ability expressions in terms of characteristic temperatures have been proposed in the literature. Attempts have been made to correlate the expression with the critical diameter of the bulk metallic glass composition. However, with the advent of new alloys, many exceptions have been noted and reported. In the present approach, a genetic programming based code which generates an expression in terms of input variables, i.e., three characteristic temperatures viz. glass transition temperature (Tg), onset crystallization temperature (Tx) and offset temperature of melting (Tl) with maximum correlation with a critical diameter (Dmax). The expression evolved shows improved correlation with the critical diameter. In addition, the expression can be explained on the basis of time-temperature transformation curve.

Keywords: glass forming ability, genetic programming, bulk metallic glass, critical diameter

Procedia PDF Downloads 319
7713 Improving Patient-Care Services at an Oncology Center with a Flexible Adaptive Scheduling Procedure

Authors: P. Hooshangitabrizi, I. Contreras, N. Bhuiyan

Abstract:

This work presents an online scheduling problem which accommodates multiple requests of patients for chemotherapy treatments in a cancer center of a major metropolitan hospital in Canada. To solve the problem, an adaptive flexible approach is proposed which systematically combines two optimization models. The first model is intended to dynamically schedule arriving requests in the form of waiting lists whereas the second model is used to reschedule the already booked patients with the goal of finding better resource allocations when new information becomes available. Both models are created as mixed integer programming formulations. Various controllable and flexible parameters such as deviating the prescribed target dates by a pre-determined threshold, changing the start time of already booked appointments and the maximum number of appointments to move in the schedule are included in the proposed approach to have sufficient degrees of flexibility in handling arrival requests and unexpected changes. Several computational experiments are conducted to evaluate the performance of the proposed approach using historical data provided by the oncology clinic. Our approach achieves outstandingly better results as compared to those of the scheduling system being used in practice. Moreover, several analyses are conducted to evaluate the effect of considering different levels of flexibility on the obtained results and to assess the performance of the proposed approach in dealing with last-minute changes. We strongly believe that the proposed flexible adaptive approach is very well-suited for implementation at the clinic to provide better patient-care services and to utilize available resource more efficiently.

Keywords: chemotherapy scheduling, multi-appointment modeling, optimization of resources, satisfaction of patients, mixed integer programming

Procedia PDF Downloads 141
7712 Home Legacy Device Output Estimation Using Temperature and Humidity Information by Adaptive Neural Fuzzy Inference System

Authors: Sung Hyun Yoo, In Hwan Choi, Jun Ho Jung, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Home energy management system (HEMS) has been issued to reduce the power consumption. The HEMS performs electric power control for the indoor electric device. However, HEMS commonly treats the smart devices. In this paper, we suggest the output estimation of home legacy device using the artificial neural fuzzy inference system (ANFIS). This paper discusses the overview and the architecture of the system. In addition, accurate performance of the output estimation using the ANFIS inference system is shown via a numerical example.

Keywords: artificial neural fuzzy inference system (ANFIS), home energy management system (HEMS), smart device, legacy device

Procedia PDF Downloads 526
7711 Automated Test Data Generation For some types of Algorithm

Authors: Hitesh Tahbildar

Abstract:

The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms.

Keywords: ongest path, saturation point, lmax, kL, kS

Procedia PDF Downloads 387
7710 Programming without Code: An Approach and Environment to Conditions-On-Data Programming

Authors: Philippe Larvet

Abstract:

This paper presents the concept of an object-based programming language where tests (if... then... else) and control structures (while, repeat, for...) disappear and are replaced by conditions on data. According to the object paradigm, by using this concept, data are still embedded inside objects, as variable-value couples, but object methods are expressed into the form of logical propositions (‘conditions on data’ or COD).For instance : variable1 = value1 AND variable2 > value2 => variable3 = value3. Implementing this approach, a central inference engine turns and examines objects one after another, collecting all CODs of each object. CODs are considered as rules in a rule-based system: the left part of each proposition (left side of the ‘=>‘ sign) is the premise and the right part is the conclusion. So, premises are evaluated and conclusions are fired. Conclusions modify the variable-value couples of the object and the engine goes to examine the next object. The paper develops the principles of writing CODs instead of complex algorithms. Through samples, the paper also presents several hints for implementing a simple mechanism able to process this ‘COD language’. The proposed approach can be used within the context of simulation, process control, industrial systems validation, etc. By writing simple and rigorous conditions on data, instead of using classical and long-to-learn languages, engineers and specialists can easily simulate and validate the functioning of complex systems.

Keywords: conditions on data, logical proposition, programming without code, object-oriented programming, system simulation, system validation

Procedia PDF Downloads 204
7709 A Fuzzy Analytic Hierarchy Process Approach for the Decision of Maintenance Priorities of Building Entities: A Case Study in a Facilities Management Company

Authors: Wai Ho Darrell Kwok

Abstract:

Building entities are valuable assets of a society, however, all of them are suffered from the ravages of weather and time. Facilitating onerous maintenance activities is the only way to either maintain or enhance the value and contemporary standard of the premises. By the way, maintenance budget is always bounded by the corresponding threshold limit. In order to optimize the limited resources allocation in carrying out maintenance, there is a substantial need to prioritize maintenance work. This paper reveals the application of Fuzzy AHP in a Facilities Management Company determining the maintenance priorities on the basis of predetermined criteria, viz., Building Status (BS), Effects on Fabrics (EF), Effects on Sustainability (ES), Effects on Users (EU), Importance of Usage (IU) and Physical Condition (PC) in dealing with categorized 8 predominant building components maintenance aspects for building premises. From the case study, it is found that ‘building exterior repainting or re-tiling’, ‘spalling concrete repair works among exterior area’ and ‘lobby renovation’ are the top three maintenance priorities from facilities manager and maintenance expertise personnel. Through the application of the Fuzzy AHP for maintenance priorities decision algorithm, a more systemic and easier comparing scalar linearity factors being explored even in considering other multiple criteria decision scenarios of building maintenance issue.

Keywords: building maintenance, fuzzy AHP, maintenance priority, multi-criteria decision making

Procedia PDF Downloads 223