Search results for: different shapes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 599

Search results for: different shapes

59 Effect of Fresh Concrete Curing Methods on Its Compressive Strength

Authors: Xianghe Dai, Dennis Lam, Therese Sheehan, Naveed Rehman, Jie Yang

Abstract:

Concrete is one of the most used construction materials that may be made onsite as fresh concrete and then placed in formwork to produce the desired shapes of structures. It has been recognized that the raw materials and mix proportion of concrete dominate the mechanical characteristics of hardened concrete, and the curing method and environment applied to the concrete in early stages of hardening will significantly influence the concrete properties, such as compressive strength, durability, permeability etc. In construction practice, there are various curing methods to maintain the presence of mixing water throughout the early stages of concrete hardening. They are also beneficial to concrete in hot weather conditions as they provide cooling and prevent the evaporation of water. Such methods include ponding or immersion, spraying or fogging, saturated wet covering etc. Also there are various curing methods that may be implemented to decrease the level of water lost which belongs to the concrete surface, such as putting a layer of impervious paper, plastic sheeting or membrane on the concrete to cover it. In the concrete material laboratory, accelerated strength gain methods supply the concrete with heat and additional moisture by applying live steam, coils that are subject to heating or pads that have been warmed electrically. Currently when determining the mechanical parameters of a concrete, the concrete is usually sampled from fresh concrete on site and then cured and tested in laboratories where standardized curing procedures are adopted. However, in engineering practice, curing procedures in the construction sites after the placing of concrete might be very different from the laboratory criteria, and this includes some standard curing procedures adopted in the laboratory that can’t be applied on site. Sometimes the contractor compromises the curing methods in order to reduce construction costs etc. Obviously the difference between curing procedures adopted in the laboratory and those used on construction sites might over- or under-estimate the real concrete quality. This paper presents the effect of three typical curing methods (air curing, water immersion curing, plastic film curing) and of maintaining concrete in steel moulds on the compressive strength development of normal concrete. In this study, Portland cement with 30% fly ash was used and different curing periods, 7 days, 28 days and 60 days were applied. It was found that the highest compressive strength was observed from concrete samples to which 7-day water immersion curing was applied and from samples maintained in steel moulds up to the testing date. The research results implied that concrete used as infill in steel tubular members might develop a higher strength than predicted by design assumptions based on air curing methods. Wrapping concrete with plastic film as a curing method might delay the concrete strength development in the early stages. Water immersion curing for 7 days might significantly increase the concrete compressive strength.

Keywords: compressive strength, air curing, water immersion curing, plastic film curing, maintaining in steel mould, comparison

Procedia PDF Downloads 293
58 Legal Considerations in Fashion Modeling: Protecting Models' Rights and Ensuring Ethical Practices

Authors: Fatemeh Noori

Abstract:

The fashion industry is a dynamic and ever-evolving realm that continuously shapes societal perceptions of beauty and style. Within this industry, fashion modeling plays a crucial role, acting as the visual representation of brands and designers. However, behind the glamorous façade lies a complex web of legal considerations that govern the rights, responsibilities, and ethical practices within the field. This paper aims to explore the legal landscape surrounding fashion modeling, shedding light on key issues such as contract law, intellectual property, labor rights, and the increasing importance of ethical considerations in the industry. Fashion modeling involves the collaboration of various stakeholders, including models, designers, agencies, and photographers. To ensure a fair and transparent working environment, it is imperative to establish a comprehensive legal framework that addresses the rights and obligations of each party involved. One of the primary legal considerations in fashion modeling is the contractual relationship between models and agencies. Contracts define the terms of engagement, including payment, working conditions, and the scope of services. This section will delve into the essential elements of modeling contracts, the negotiation process, and the importance of clarity to avoid disputes. Models are not just individuals showcasing clothing; they are integral to the creation and dissemination of artistic and commercial content. Intellectual property rights, including image rights and the use of a model's likeness, are critical aspects of the legal landscape. This section will explore the protection of models' image rights, the use of their likeness in advertising, and the potential for unauthorized use. Models, like any other professionals, are entitled to fair and ethical treatment. This section will address issues such as working conditions, hours, and the responsibility of agencies and designers to prioritize the well-being of models. Additionally, it will explore the global movement toward inclusivity, diversity, and the promotion of positive body image within the industry. The fashion industry has faced scrutiny for perpetuating harmful standards of beauty and fostering a culture of exploitation. This section will discuss the ethical responsibilities of all stakeholders, including the promotion of diversity, the prevention of exploitation, and the role of models as influencers for positive change. In conclusion, the legal considerations in fashion modeling are multifaceted, requiring a comprehensive approach to protect the rights of models and ensure ethical practices within the industry. By understanding and addressing these legal aspects, the fashion industry can create a more transparent, fair, and inclusive environment for all stakeholders involved in the art of modeling.

Keywords: fashion modeling contracts, image rights in modeling, labor rights for models, ethical practices in fashion, diversity and inclusivity in modeling

Procedia PDF Downloads 77
57 Developing Confidence of Visual Literacy through Using MIRO during Online Learning

Authors: Rachel S. E. Lim, Winnie L. C. Tan

Abstract:

Visual literacy is about making meaning through the interaction of images, words, and sounds. Graphic communication students typically develop visual literacy through critique and production of studio-based projects for their portfolios. However, the abrupt switch to online learning during the COVID-19 pandemic has made it necessary to consider new strategies of visualization and planning to scaffold teaching and learning. This study, therefore, investigated how MIRO, a cloud-based visual collaboration platform, could be used to develop the visual literacy confidence of 30 diploma in graphic communication students attending a graphic design course at a Singapore arts institution. Due to COVID-19, the course was taught fully online throughout a 16-week semester. Guided by Kolb’s Experiential Learning Cycle, the two lecturers developed students’ engagement with visual literacy concepts through different activities that facilitated concrete experiences, reflective observation, abstract conceptualization, and active experimentation. Throughout the semester, students create, collaborate, and centralize communication in MIRO with infinite canvas, smart frameworks, a robust set of widgets (i.e., sticky notes, freeform pen, shapes, arrows, smart drawing, emoticons, etc.), and powerful platform capabilities that enable asynchronous and synchronous feedback and interaction. Students then drew upon these multimodal experiences to brainstorm, research, and develop their motion design project. A survey was used to examine students’ perceptions of engagement (E), confidence (C), learning strategies (LS). Using multiple regression, it¬ was found that the use of MIRO helped students develop confidence (C) with visual literacy, which predicted performance score (PS) that was measured against their application of visual literacy to the creation of their motion design project. While students’ learning strategies (LS) with MIRO did not directly predict confidence (C) or performance score (PS), it fostered positive perceptions of engagement (E) which in turn predicted confidence (C). Content analysis of students’ open-ended survey responses about their learning strategies (LS) showed that MIRO provides organization and structure in documenting learning progress, in tandem with establishing standards and expectations as a preparatory ground for generating feedback. With the clarity and sequence of the mentioned conditions set in place, these prerequisites then lead to the next level of personal action for self-reflection, self-directed learning, and time management. The study results show that the affordances of MIRO can develop visual literacy and make up for the potential pitfalls of student isolation, communication, and engagement during online learning. The context of how MIRO could be used by lecturers to orientate students for learning in visual literacy and studio-based projects for future development are discussed.

Keywords: design education, graphic communication, online learning, visual literacy

Procedia PDF Downloads 112
56 Effect of Maturation on the Characteristics and Physicochemical Properties of Banana and Its Starch

Authors: Chien-Chun Huang, P. W. Yuan

Abstract:

Banana is one of the important fruits which constitute a valuable source of energy, vitamins and minerals and an important food component throughout the world. The fruit ripening and maturity standards vary from country to country depending on the expected shelf life of market. During ripening there are changes in appearance, texture and chemical composition of banana. The changes of component of banana during ethylene-induced ripening are categorized as nutritive values and commercial utilization. The objectives of this study were to investigate the changes of chemical composition and physicochemical properties of banana during ethylene-induced ripening. Green bananas were harvested and ripened by ethylene gas at low temperature (15℃) for seven stages. At each stage, banana was sliced and freeze-dried for banana flour preparation. The changes of total starch, resistant starch, chemical compositions, physicochemical properties, activity of amylase, polyphenolic oxidase (PPO) and phenylalanine ammonia lyase (PAL) of banana were analyzed each stage during ripening. The banana starch was isolated and analyzed for gelatinization properties, pasting properties and microscopic appearance each stage of ripening. The results indicated that the highest total starch and resistant starch content of green banana were 76.2% and 34.6%, respectively at the harvest stage. Both total starch and resistant starch content were significantly declined to 25.3% and 8.8%, respectively at the seventh stage. Soluble sugars content of banana increased from 1.21% at harvest stage to 37.72% at seventh stage during ethylene-induced ripening. Swelling power of banana flour decreased with the progress of ripening stage, but solubility increased. These results strongly related with the decreases of starch content of banana flour during ethylene-induced ripening. Both water insoluble and alcohol insoluble solids of banana flour decreased with the progress of ripening stage. Both activity of PPO and PAL increased, but the total free phenolics content decreased, with the increases of ripening stages. As ripening stage extended, the gelatinization enthalpy of banana starch significantly decreased from 15.31 J/g at the harvest stage to 10.55 J/g at the seventh stage. The peak viscosity and setback increased with the progress of ripening stages in the pasting properties of banana starch. The highest final viscosity, 5701 RVU, of banana starch slurry was found at the seventh stage. The scanning electron micrograph of banana starch showed the shapes of banana starch appeared to be round and elongated forms, ranging in 10-50 μm at the harvest stage. As the banana closed to ripe status, some parallel striations were observed on the surface of banana starch granular which could be caused by enzyme reaction during ripening. These results inferred that the highest resistant starch was found in the green banana could be considered as a potential application of healthy foods. The changes of chemical composition and physicochemical properties of banana could be caused by the hydrolysis of enzymes during the ethylene-induced ripening treatment.

Keywords: maturation of banana, appearance, texture, soluble sugars, resistant starch, enzyme activities, physicochemical properties of banana starch

Procedia PDF Downloads 316
55 The Impact of Team Heterogeneity and Team Reflexivity on Entrepreneurial Decision -Making - Empirical Study in China

Authors: Chang Liu, Rui Xing, Liyan Tang, Guohong Wang

Abstract:

Entrepreneurial actions are based on entrepreneurial decisions. The quality of decisions influences entrepreneurial activities and subsequent new venture performance. Uncertainty of surroundings put heightened demands on the team as a whole, and each team member. Diverse team composition provides rich information, which a team can draw when making complex decisions. However, team heterogeneity may cause emotional conflicts, which is adverse to team outcomes. Thus, the effects of team heterogeneity on team outcomes are complex. Although team heterogeneity is an essential factor influencing entrepreneurial decision-making, there is a lack of empirical analysis on under what conditions team heterogeneity plays a positive role in promoting decision-making quality. Entrepreneurial teams always struggle with complex tasks. How a team shapes its teamwork is key in resolving constant issues. As a collective regulatory process, team reflexivity is characterized by continuous joint evaluation and discussion of team goals, strategies, and processes, and adapt them to current or anticipated circumstances. It enables diversified information to be shared and overtly discussed. Instead of hostile interpretation of opposite opinions team members take them as useful insights from different perspectives. Team reflexivity leads to better integration of expertise to avoid the interference of negative emotions and conflict. Therefore, we propose that team reflexivity is a conditional factor that influences the impact of team heterogeneity on high-quality entrepreneurial decisions. In this study, we identify team heterogeneity as a crucial determinant of entrepreneurial decision quality. Integrating the literature on decision-making and team heterogeneity, we investigate the relationship between team heterogeneity and entrepreneurial decision-making quality, treating team reflexivity as a moderator. We tested our hypotheses using the hierarchical regression method and the data gathered from 63 teams and 205 individual members from 45 new firms in China's first-tier cities such as Beijing, Shanghai, and Shenzhen. This research found that both teams' education heterogeneity and teams' functional background heterogeneity were significantly positively related to entrepreneurial decision-making quality, and the positive relation was stronger in teams with a high level of team reflexivity. While teams' specialization of education heterogeneity was negatively related to decision-making quality, and the negative relationship was weaker in teams with a high level of team reflexivity. We offer two contributions to decision-making and entrepreneurial team literatures. Firstly, our study enriches the understanding of the role of entrepreneurial team heterogeneity in entrepreneurial decision-making quality. Different from previous entrepreneurial decision-making literatures, which focus more on decision-making modes of entrepreneurs and the top management team, this study is a significant attempt to highlight that entrepreneurial team heterogeneity makes a unique contribution to generating high-quality entrepreneurial decisions. Secondly, this study introduced team reflexivity as the moderating variable, to explore the boundary conditions under which the entrepreneurial team heterogeneity play their roles.

Keywords: decision-making quality, entrepreneurial teams, education heterogeneity, functional background heterogeneity, specialization of education heterogeneity

Procedia PDF Downloads 119
54 Authentic Connection between the Deity and the Individual Human Being Is Vital for Psychological, Biological, and Social Health

Authors: Sukran Karatas

Abstract:

Authentic energy network interrelations between the Creator and the creations as well as from creations to creations are the most important points for the worlds of physics and metaphysic to unite together and work in harmony, both within human beings, on the other hand, have the ability to choose their own life style voluntarily. However, it includes the automated involuntary spirit, soul and body working systems together with the voluntary actions, which involve personal, cultural and universal, rational or irrational variable values. Therefore, it is necessary for human beings to know the methods of existing authentic energy network connections to be able to communicate correlate and accommodate the physical and metaphysical entities as a proper functioning unity; this is essential for complete human psychological, biological and social well-being. Authentic knowledge is necessary for human beings to verify the position of self within self and with others to regulate conscious and voluntary actions accordingly in order to prevent oppressions and frictions within self and between self and others. Unfortunately, the absence of genuine individual and universal basic knowledge about how to establish an authentic energy network connection within self, with the deity and the environment is the most problematic issue even in the twenty-first century. The second most problematic issue is how to maintain freedom, equality and justice among human beings during these strictly interwoven network connections, which naturally involve physical, metaphysical and behavioral actions of the self and the others. The third and probably the most complicated problem is the scientific identification and the authentication of the deity. This not only provides the whole power and control over the choosers to set their life orders but also to establish perfect physical and metaphysical links as fully coordinated functional energy network. This thus indicates that choosing an authentic deity is the key-point that influences automated, emotional, and behavioral actions altogether, which shapes human perception, personal actions, and life orders. Therefore, we will be considering the existing ‘four types of energy wave end boundary behaviors’, comprising, free end, fixed end boundary behaviors, as well as boundary behaviors from denser medium to less dense medium and from less dense medium to denser medium. Consequently, this article aims to demonstrate that the authentication and the choice of deity has an important effect on individual psychological, biological and social health. It is hoped that it will encourage new researches in the field of authentic energy network connections to establish the best position and the most correct interrelation connections with self and others without violating the authorized orders and the borders of one another to live happier and healthier lives together. In addition, the book ‘Deity and Freedom, Equality, Justice in History, Philosophy, Science’ has more detailed information for those interested in this subject.

Keywords: deity, energy network, power, freedom, equality, justice, happiness, sadness, hope, fear, psychology, biology, sociology

Procedia PDF Downloads 346
53 The Effect of Interpersonal Relationships on Eating Patterns and Physical Activity among Asian-American and European-American Adolescents

Authors: Jamil Lane, Jason Freeman

Abstract:

Background: The role of interpersonal relationships is vital predictors of adolescents’ eating habits, exercise activity, and health problems including obesity. The effect of interpersonal relationships (i.e. family, friends, and intimate partners) on individual health behaviors and development have gained considerable attention during the past 10 years. Teenagers eating habits and exercise activities are established through a dynamic course involving internal and external factors such as food preferences, body weight perception, and parental and peer influence. When conceptualizing one’s interpersonal relationships, it is important to understand that how one relates to others is shaped by their culture. East-Asian culture has been characterized as collectivistic, which describes the significant role intergroup relationships play in their construction of the self. Cultures found in North America, on the other hand, can be characterized as individualistic, meaning that these cultures encourage individuals to prioritize their interest over the needs and want of their compatriots. Individuals from collectivistic cultures typically have stronger boundaries between in-group and out-group membership, whereas those from individualistic cultures see themselves as distinct and separate from strangers as well as family or friends. Objective: The purpose of this study is to examine the effect of collectivism and individualism on interpersonal relationships that shapes eating patterns and physical activity among Asian-American and European-American adolescents. Design/Methods: Analyses were based on data from the National Longitudinal Study of Adolescent Health, a nationally representative sample of adolescents in the United States who were surveyed from 1994 through 2008. This data will be used to examine interpersonal relationship factors that shape dietary intake and physical activity patterns within the Asian-American and European-American population in the United States. Factors relating to relationship strength, eating, and exercise behaviors were reported by participants in this first wave of data collection (1995). We plan to analyze our data using intragroup comparisons among those who identified as 'Asian-American' (n = 270) and 'White or European American' (n = 4,294) among the domains of positivity of peer influence and level of physical activity / healthy eating. Further, intergroup comparisons of these relationships will be made to extricate how the role positive peer influence in maintaining healthy eating and exercise habits differs with cultural variation. Results: We hypothesize that East-Asian participants with a higher degree of positivity in their peer and family relationships will experience a significantly greater rise in healthy eating and exercise behaviors than European-American participants with similar degrees of relationship positivity.

Keywords: interpersonal relationships, eating patterns, physical activity, adolescent health

Procedia PDF Downloads 198
52 Structural Analysis of a Composite Wind Turbine Blade

Authors: C. Amer, M. Sahin

Abstract:

The design of an optimised horizontal axis 5-meter-long wind turbine rotor blade in according with IEC 61400-2 standard is a research and development project in order to fulfil the requirements of high efficiency of torque from wind production and to optimise the structural components to the lightest and strongest way possible. For this purpose, a research study is presented here by focusing on the structural characteristics of a composite wind turbine blade via finite element modelling and analysis tools. In this work, first, the required data regarding the general geometrical parts are gathered. Then, the airfoil geometries are created at various sections along the span of the blade by using CATIA software to obtain the two surfaces, namely; the suction and the pressure side of the blade in which there is a hat shaped fibre reinforced plastic spar beam, so-called chassis starting at 0.5m from the root of the blade and extends up to 4 m and filled with a foam core. The root part connecting the blade to the main rotor differential metallic hub having twelve hollow threaded studs is then modelled. The materials are assigned as two different types of glass fabrics, polymeric foam core material and the steel-balsa wood combination for the root connection parts. The glass fabrics are applied using hand wet lay-up lamination with epoxy resin as METYX L600E10C-0, is the unidirectional continuous fibres and METYX XL800E10F having a tri-axial architecture with fibres in the 0,+45,-45 degree orientations in a ratio of 2:1:1. Divinycell H45 is used as the polymeric foam. The finite element modelling of the blade is performed via MSC PATRAN software with various meshes created on each structural part considering shell type for all surface geometries, and lumped mass were added to simulate extra adhesive locations. For the static analysis, the boundary conditions are assigned as fixed at the root through aforementioned bolts, where for dynamic analysis both fixed-free and free-free boundary conditions are made. By also taking the mesh independency into account, MSC NASTRAN is used as a solver for both analyses. The static analysis aims the tip deflection of the blade under its own weight and the dynamic analysis comprises normal mode dynamic analysis performed in order to obtain the natural frequencies and corresponding mode shapes focusing the first five in and out-of-plane bending and the torsional modes of the blade. The analyses results of this study are then used as a benchmark prior to modal testing, where the experiments over the produced wind turbine rotor blade has approved the analytical calculations.

Keywords: dynamic analysis, fiber reinforced composites, horizontal axis wind turbine blade, hand-wet layup, modal testing

Procedia PDF Downloads 425
51 The Role of Law in the Transformation of Collective Identities in Nigeria

Authors: Henry Okechukwu Onyeiwu

Abstract:

Nigeria, with its rich tapestry of ethnicities, cultures, and religions, serves as a critical case study in understanding how law influences and shapes collective identities. This abstract delves into the historical context of legal systems in Nigeria, examining the colonial legacies that have influenced contemporary laws and how these laws interact with traditional practices and beliefs. This study examines the critical role of law in shaping and transforming collective identities in Nigeria, a nation characterized by its rich tapestry of ethnicities, cultures, and religions. The legal framework in Nigeria has evolved in response to historical, social, and political dynamics, influencing the way communities perceive themselves and interact with one another. This research highlights the interplay between law and collective identity, exploring how legal instruments, such as constitutions, statutes, and judicial rulings, have contributed to the formation, negotiation, and reformation of group identities over time. Moreover, contemporary legal debates surrounding issues such as citizenship, resource allocation, and communal conflicts further illustrate the law's role in identity formation. The legal recognition of different ethnic groups fosters a sense of belonging and collective identity among these groups, yet it simultaneously raises questions about inclusivity and equality. Laws concerning indigenous rights and affirmative action are essential in this discourse, as they reflect the necessity of balancing majority rule with minority rights—a challenge that Nigeria continues to navigate. By employing a multidisciplinary approach that integrates legal studies, sociology, and anthropology, the study analyses key historical milestones, such as colonial legal legacies, post-independence constitutional developments, and ongoing debates surrounding federalism and ethnic rights. It also investigates how laws affect social cohesion and conflict among Nigeria's diverse ethnic groups, as well as the role of law in promoting inclusivity and recognizing minority rights. Case studies are utilized to illustrate practical examples of legal transformations and their impact on collective identities in various Nigerian contexts, including land rights, religious freedoms, and ethnic representation in government. The findings reveal that while the law has the potential to unify disparate groups under a national identity, it can also exacerbate divisions when applied inequitably or favouring particular groups over others. Ultimately, this study aims to shed light on the dual nature of law as both a tool for transformation and a potential source of conflict in the evolution of collective identities in Nigeria. By understanding these dynamics, policymakers and legal practitioners can develop strategies to foster unity and respect for diversity in a complex societal landscape.

Keywords: law, collective identity, Nigeria, ethnicity, conflict, inclusion, legal framework, transformation

Procedia PDF Downloads 26
50 Fractional, Component and Morphological Composition of Ambient Air Dust in the Areas of Mining Industry

Authors: S.V. Kleyn, S.Yu. Zagorodnov, А.А. Kokoulina

Abstract:

Technogenic emissions of the mining and processing complex are characterized by a high content of chemical components and solid dust particles. However, each industrial enterprise and the surrounding area have features that require refinement and parameterization. Numerous studies have shown the negative impact of fine dust PM10 and PM2.5 on the health, as well as the possibility of toxic components absorption, including heavy metals by dust particles. The target of the study was the quantitative assessment of the fractional and particle size composition of ambient air dust in the area of impact by primary magnesium production complex. Also, we tried to describe the morphology features of dust particles. Study methods. To identify the dust emission sources, the analysis of the production process has been carried out. The particulate composition of the emissions was measured using laser particle analyzer Microtrac S3500 (covered range of particle size is 20 nm to 2000 km). Particle morphology and the component composition were established by electron microscopy by scanning microscope of high resolution (magnification rate - 5 to 300 000 times) with X-ray fluorescence device S3400N ‘HITACHI’. The chemical composition was identified by X-ray analysis of the samples using an X-ray diffractometer XRD-700 ‘Shimadzu’. Determination of the dust pollution level was carried out using model calculations of emissions in the atmosphere dispersion. The calculations were verified by instrumental studies. Results of the study. The results demonstrated that the dust emissions of different technical processes are heterogeneous and fractional structure is complicated. The percentage of particle sizes up to 2.5 micrometres inclusive was ranged from 0.00 to 56.70%; particle sizes less than 10 microns inclusive – 0.00 - 85.60%; particle sizes greater than 10 microns - 14.40% -100.00%. During microscopy, the presence of nanoscale size particles has been detected. Studied dust particles are round, irregular, cubic and integral shapes. The composition of the dust includes magnesium, sodium, potassium, calcium, iron, chlorine. On the base of obtained results, it was performed the model calculations of dust emissions dispersion and establishment of the areas of fine dust РМ 10 and РМ 2.5 distribution. It was found that the dust emissions of fine powder fractions PM10 and PM2.5 are dispersed over large distances and beyond the border of the industrial site of the enterprise. The population living near the enterprise is exposed to the risk of diseases associated with dust exposure. Data are transferred to the economic entity to make decisions on the measures to minimize the risks. Exposure and risks indicators on the health are used to provide named patient health and preventive care to the citizens living in the area of negative impact of the facility.

Keywords: dust emissions, еxposure assessment, PM 10, PM 2.5

Procedia PDF Downloads 261
49 Conceptual Design of Gravity Anchor Focusing on Anchor Towing and Lowering

Authors: Vinay Kumar Vanjakula, Frank Adam, Nils Goseberg

Abstract:

Wind power is one of the leading renewable energy generation methods. Due to abundant higher wind speeds far away from shore, the construction of offshore wind turbines began in the last decades. However, installation of offshore foundation-based (monopiles) wind turbines in deep waters are often associated with technical and financial challenges. To overcome such challenges, the concept of floating wind turbines is expanded as the basis from the oil and gas industry. The unfolding of Universal heavyweight gravity anchor (UGA) for floating based foundation for floating Tension Leg Platform (TLP) sub-structures is developed in this research work. It is funded by the German Federal Ministry of Education and Research) for a three-year (2019-2022) research program called “Offshore Wind Solutions Plus (OWSplus) - Floating Offshore Wind Solutions Mecklenburg-Vorpommern.” It’s a group consists of German institutions (Universities, laboratories, and consulting companies). The part of the project is focused on the numerical modeling of gravity anchor that involves to analyze and solve fluid flow problems. Compared to gravity-based torpedo anchors, these UGA will be towed and lowered via controlled machines (tug boats) at lower speeds. This kind of installation of UGA are new to the offshore wind industry, particularly for TLP, and very few research works have been carried out in recent years. Conventional methods for transporting the anchor requires a large transportation crane vessel which involves a greater cost. This conceptual UGA anchors consists of ballasting chambers which utilizes the concept of buoyancy forces; the inside chambers are filled with the required amount of water in a way that they can float on the water for towing. After reaching the installation site, those chambers are ballasted with water for lowering. After it’s lifetime, these UGA can be unballasted (for erection or replacement) results in self-rising to the sea surface; buoyancy chambers give an advantage for using an UGA without the need of heavy machinery. However, while lowering/rising the UGA towards/away from the seabed, it experiences difficult, harsh marine environments due to the interaction of waves and currents. This leads to drifting of the anchor from the desired installation position and damage to the lowering machines. To overcome such harsh environments problems, a numerical model is built to investigate the influences of different outer contours and other fluid governing shapes that can be installed on the UGA to overcome the turbulence and drifting. The presentation will highlight the importance of the Computational Fluid Dynamics (CFD) numerical model in OpenFOAM, which is open-source programming software.

Keywords: anchor lowering, towing, waves, currrents, computational fluid dynamics

Procedia PDF Downloads 166
48 Virtual Experiments on Coarse-Grained Soil Using X-Ray CT and Finite Element Analysis

Authors: Mohamed Ali Abdennadher

Abstract:

Digital rock physics, an emerging field leveraging advanced imaging and numerical techniques, offers a promising approach to investigating the mechanical properties of granular materials without extensive physical experiments. This study focuses on using X-Ray Computed Tomography (CT) to capture the three-dimensional (3D) structure of coarse-grained soil at the particle level, combined with finite element analysis (FEA) to simulate the soil's behavior under compression. The primary goal is to establish a reliable virtual testing framework that can replicate laboratory results and offer deeper insights into soil mechanics. The methodology involves acquiring high-resolution CT scans of coarse-grained soil samples to visualize internal particle morphology. These CT images undergo processing through noise reduction, thresholding, and watershed segmentation techniques to isolate individual particles, preparing the data for subsequent analysis. A custom Python script is employed to extract particle shapes and conduct a statistical analysis of particle size distribution. The processed particle data then serves as the basis for creating a finite element model comprising approximately 500 particles subjected to one-dimensional compression. The FEA simulations explore the effects of mesh refinement and friction coefficient on stress distribution at grain contacts. A multi-layer meshing strategy is applied, featuring finer meshes at inter-particle contacts to accurately capture mechanical interactions and coarser meshes within particle interiors to optimize computational efficiency. Despite the known challenges in parallelizing FEA to high core counts, this study demonstrates that an appropriate domain-level parallelization strategy can achieve significant scalability, allowing simulations to extend to very high core counts. The results show a strong correlation between the finite element simulations and laboratory compression test data, validating the effectiveness of the virtual experiment approach. Detailed stress distribution patterns reveal that soil compression behavior is significantly influenced by frictional interactions, with frictional sliding, rotation, and rolling at inter-particle contacts being the primary deformation modes under low to intermediate confining pressures. These findings highlight that CT data analysis combined with numerical simulations offers a robust method for approximating soil behavior, potentially reducing the need for physical laboratory experiments.

Keywords: X-Ray computed tomography, finite element analysis, soil compression behavior, particle morphology

Procedia PDF Downloads 29
47 Determining Factors of Suspended Glass Systems with Pre-Stress Cable Truss

Authors: Cemil Atakara, Hüseyin Eryaman

Abstract:

The use of glass as an envelope of a building has been increasing in the twentieth century. For more transparency and dematerialization new glass facade types have emerged in the past two decades which depends on point fixed glazing system (PFGS). The aim of this study is to analyze of the PFGS systems which are used on the glass curtain wall according to their types, degree, architectural and structural effects. This new system is desired because it enhances the transparency of the façade and it minimizes the component of the frames or of the profiles. This PFGS led to new structural elements which use cables, rods, trusses when designing a glass building facades, this structural element called the suspended glass system with pre-stressed cable truss (SGSPCT) which has been used for the first time in 1980 in Serres building. The twenty glass buildings which are designed in different systems have been analyzed during this study. After these analyses five selected SGSPCT building analyzed deeply and one skeletal frame building selected from Lefkosa redesigned according to the analysis results. These selected buildings have been included of various cable-truss system typologies and degree. The methodology of this study is building analysis method and literature survey with the help of books, articles, magazines, drawings, internet sources and applied connection details of the glass buildings. The selected five glass buildings and case building have been detailed analyzed with their architectural drawings, photographs and details. A gridshell structure can be compared with a shell structure; it consists of discrete members connecting nodal points. As these nodal points lie on the surface of an imaginary shell, their shapes function almost identically. Difference between shell and gridshell structures can be found in the fact that, due to their free-form and thus, due to the presence of bending forces, gridshells are required to resist loading through their cross-section. This research is divided into parts. A general study about the glass building and cable-glass and grid shell system will be done in the first chapters. Structural analyses and detailed analyses with schematic drawings with the plans, sections of the selected buildings will be explained in the second part. The third part it consists of the advantages and disadvantages of the use of the SGSPCT and Grid Shell in architecture. The study consists of four chapters including the introduction chapter. The general information of the SGSPCT and glazing system has been mentioned in the first chapter. Structural features, typologies, transparency principle and analytical information on systems have been explained of the selected buildings in the second chapter. The detailed analyses of case building have been done according to their schematic drawings with the plans, sections in the third chapter. After third chapter SGSPCT discussed on to the case building and selected buildings. SGSPCT systems have been compared with their advantages and disadvantages to the other systems. Advantages of cable-truss systems and SGSPCT have been concluded that the use of glass substrates in the last chapter.

Keywords: cable truss, glass, grid shell, transparency

Procedia PDF Downloads 411
46 Citation Analysis of New Zealand Court Decisions

Authors: Tobias Milz, L. Macpherson, Varvara Vetrova

Abstract:

The law is a fundamental pillar of human societies as it shapes, controls and governs how humans conduct business, behave and interact with each other. Recent advances in computer-assisted technologies such as NLP, data science and AI are creating opportunities to support the practice, research and study of this pervasive domain. It is therefore not surprising that there has been an increase in investments into supporting technologies for the legal industry (also known as “legal tech” or “law tech”) over the last decade. A sub-discipline of particular appeal is concerned with assisted legal research. Supporting law researchers and practitioners to retrieve information from the vast amount of ever-growing legal documentation is of natural interest to the legal research community. One tool that has been in use for this purpose since the early nineteenth century is legal citation indexing. Among other use cases, they provided an effective means to discover new precedent cases. Nowadays, computer-assisted network analysis tools can allow for new and more efficient ways to reveal the “hidden” information that is conveyed through citation behavior. Unfortunately, access to openly available legal data is still lacking in New Zealand and access to such networks is only commercially available via providers such as LexisNexis. Consequently, there is a need to create, analyze and provide a legal citation network with sufficient data to support legal research tasks. This paper describes the development and analysis of a legal citation Network for New Zealand containing over 300.000 decisions from 125 different courts of all areas of law and jurisdiction. Using python, the authors assembled web crawlers, scrapers and an OCR pipeline to collect and convert court decisions from openly available sources such as NZLII into uniform and machine-readable text. This facilitated the use of regular expressions to identify references to other court decisions from within the decision text. The data was then imported into a graph-based database (Neo4j) with the courts and their respective cases represented as nodes and the extracted citations as links. Furthermore, additional links between courts of connected cases were added to indicate an indirect citation between the courts. Neo4j, as a graph-based database, allows efficient querying and use of network algorithms such as PageRank to reveal the most influential/most cited courts and court decisions over time. This paper shows that the in-degree distribution of the New Zealand legal citation network resembles a power-law distribution, which indicates a possible scale-free behavior of the network. This is in line with findings of the respective citation networks of the U.S. Supreme Court, Austria and Germany. The authors of this paper provide the database as an openly available data source to support further legal research. The decision texts can be exported from the database to be used for NLP-related legal research, while the network can be used for in-depth analysis. For example, users of the database can specify the network algorithms and metrics to only include specific courts to filter the results to the area of law of interest.

Keywords: case citation network, citation analysis, network analysis, Neo4j

Procedia PDF Downloads 106
45 Elucidation of Dynamics of Murine Double Minute 2 Shed Light on the Anti-cancer Drug Development

Authors: Nigar Kantarci Carsibasi

Abstract:

Coarse-grained elastic network models, namely Gaussian network model (GNM) and Anisotropic network model (ANM), are utilized in order to investigate the fluctuation dynamics of Murine Double Minute 2 (MDM2), which is the native inhibitor of p53. Conformational dynamics of MDM2 are elucidated in unbound, p53 bound, and non-peptide small molecule inhibitor bound forms. With this, it is aimed to gain insights about the alterations brought to global dynamics of MDM2 by native peptide inhibitor p53, and two small molecule inhibitors (HDM201 and NVP-CGM097) that are undergoing clinical stages in cancer studies. MDM2 undergoes significant conformational changes upon inhibitor binding, carrying pieces of evidence of induced-fit mechanism. Small molecule inhibitors examined in this work exhibit similar fluctuation dynamics and characteristic mode shapes with p53 when complexed with MDM2, which would shed light on the design of novel small molecule inhibitors for cancer therapy. The results showed that residues Phe 19, Trp 23, Leu 26 reside in the minima of slowest modes of p53, pointing to the accepted three-finger binding model. Pro 27 displays the most significant hinge present in p53 and comes out to be another functionally important residue. Three distinct regions are identified in MDM2, for which significant conformational changes are observed upon binding. Regions I (residues 50-77) and III (residues 90-105) correspond to the binding interface of MDM2, including (α2, L2, and α4), which are stabilized during complex formation. Region II (residues 77-90) exhibits a large amplitude motion, being highly flexible, both in the absence and presence of p53 or other inhibitors. MDM2 exhibits a scattered profile in the fastest modes of motion, while binding of p53 and inhibitors puts restraints on MDM2 domains, clearly distinguishing the kinetically hot regions. Mode shape analysis revealed that the α4 domain controls the size of the cleft by keeping the cleft narrow in unbound MDM2; and open in the bound states for proper penetration and binding of p53 and inhibitors, which points to the induced-fit mechanism of p53 binding. P53 interacts with α2 and α4 in a synchronized manner. Collective modes are shifted upon inhibitor binding, i.e., second mode characteristic motion in MDM2-p53 complex is observed in the first mode of apo MDM2; however, apo and bound MDM2 exhibits similar features in the softest modes pointing to pre-existing modes facilitating the ligand binding. Although much higher amplitude motions are attained in the presence of non-peptide small molecule inhibitor molecules as compared to p53, they demonstrate close similarity. Hence, NVP-CGM097 and HDM201 succeed in mimicking the p53 behavior well. Elucidating how drug candidates alter the MDM2 global and conformational dynamics would shed light on the rational design of novel anticancer drugs.

Keywords: cancer, drug design, elastic network model, MDM2

Procedia PDF Downloads 130
44 Changes of Chemical Composition and Physicochemical Properties of Banana during Ethylene-Induced Ripening

Authors: Chiun-C.R. Wang, Po-Wen Yen, Chien-Chun Huang

Abstract:

Banana is produced in large quantities in tropical and subtropical areas. Banana is one of the important fruits which constitute a valuable source of energy, vitamins and minerals. The ripening and maturity standards of banana vary from country to country depending on the expected shelf life of market. The compositions of bananas change dramatically during ethylene-induced ripening that are categorized as nutritive values and commercial utilization. Nevertheless, there is few study reporting the changes of physicochemical properties of banana starch during ethylene-induced ripening of green banana. The objectives of this study were to investigate the changes of chemical composition and enzyme activity of banana and physicochemical properties of banana starch during ethylene-induced ripening. Green bananas were harvested and ripened by ethylene gas at low temperature (15℃) for seven stages. At each stage, banana was sliced and freeze-dried for banana flour preparation. The changes of total starch, resistant starch, chemical compositions, physicochemical properties, activity of amylase, polyphenolic oxidase (PPO) and phenylalanine ammonia lyase (PAL) of banana were analyzed each stage during ripening. The banana starch was isolated and analyzed for gelatinization properties, pasting properties and microscopic appearance each stage of ripening. The results indicated that the highest total starch and resistant starch content of green banana were 76.2% and 34.6%, respectively at the harvest stage. Both total starch and resistant starch content were significantly declined to 25.3% and 8.8%, respectively at the seventh stage. Soluble sugars content of banana increased from 1.21% at harvest stage to 37.72% at seventh stage during ethylene-induced ripening. Swelling power of banana flour decreased with the progress of ripening stage, but solubility increased. These results strongly related with the decreases of starch content of banana flour during ethylene-induced ripening. Both water insoluble and alcohol insoluble solids of banana flour decreased with the progress of ripening stage. Both activity of PPO and PAL increased, but the total free phenolics content decreased, with the increases of ripening stages. As ripening stage extended, the gelatinization enthalpy of banana starch significantly decreased from 15.31 J/g at the harvest stage to 10.55 J/g at the seventh stage. The peak viscosity and setback increased with the progress of ripening stages in the pasting properties of banana starch. The highest final viscosity, 5701 RVU, of banana starch slurry was found at the seventh stage. The scanning electron micrograph of banana starch showed the shapes of banana starch appeared to be round and elongated forms, ranging in 10-50 μm at the harvest stage. As the banana closed to ripe status, some parallel striations were observed on the surface of banana starch granular which could be caused by enzyme reaction during ripening. These results inferred that the highest resistant starch was found in the green banana at the harvest stage could be considered as a potential application of healthy foods. The changes of chemical composition and physicochemical properties of banana could be caused by the hydrolysis of enzymes during the ethylene-induced ripening treatment.

Keywords: ethylene-induced ripening, banana starch, resistant starch, soluble sugars, physicochemical properties, gelatinization enthalpy, pasting characteristics, microscopic appearance

Procedia PDF Downloads 474
43 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System

Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii

Abstract:

Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.

Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression

Procedia PDF Downloads 157
42 Analysis of Overall Thermo-Elastic Properties of Random Particulate Nanocomposites with Various Interphase Models

Authors: Lidiia Nazarenko, Henryk Stolarski, Holm Altenbach

Abstract:

In the paper, a (hierarchical) approach to analysis of thermo-elastic properties of random composites with interphases is outlined and illustrated. It is based on the statistical homogenization method – the method of conditional moments – combined with recently introduced notion of the energy-equivalent inhomogeneity which, in this paper, is extended to include thermal effects. After exposition of the general principles, the approach is applied in the investigation of the effective thermo-elastic properties of a material with randomly distributed nanoparticles. The basic idea of equivalent inhomogeneity is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity of constant stiffness tensor and coefficient of thermal expansion, combining thermal and elastic properties of both. The equivalent inhomogeneity is then perfectly bonded to the matrix which allows to analyze composites with interphases using techniques devised for problems without interphases. From the mechanical viewpoint, definition of the equivalent inhomogeneity is based on Hill’s energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective thermo-elastic properties of randomly distributed particulate composites. The effective stiffness tensor and coefficient of thermal extension of the material with so defined equivalent inhomogeneities are determined by the method of conditional moments. Closed-form expressions for the effective thermo-elastic parameters of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are derived for the bulk and the shear moduli as well as for the coefficient of thermal expansion. Dependence of the effective parameters on the interphase properties is included in the resulting expressions, exhibiting analytically the nature of the size-effects in nanomaterials. As a numerical example, the epoxy matrix with randomly distributed spherical glass particles is investigated. The dependence of the effective bulk and shear moduli, as well as of the effective thermal expansion coefficient on the particle volume fraction (for different radii of nanoparticles) and on the radius of nanoparticle (for fixed volume fraction of nanoparticles) for different interphase models are compared to and discussed in the context of other theoretical predictions. Possible applications of the proposed approach to short-fiber composites with various types of interphases are discussed.

Keywords: effective properties, energy equivalence, Gurtin-Murdoch surface model, interphase, random composites, spherical equivalent inhomogeneity, spring layer model

Procedia PDF Downloads 185
41 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections

Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz

Abstract:

In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.

Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process

Procedia PDF Downloads 213
40 Differentiating Third Instar Larvae of Three Species of Flies (Family: Sarcophagidae) of Potential Forensic Importance in Jamaica, Using Morphological Characteristics

Authors: Rochelle Daley, Eric Garraway, Catherine Murphy

Abstract:

Crime is a major problem in Jamaica as well as the high number of unsolved violent crimes. The introduction of forensic entomology in criminal investigations has the potential to decrease the number of unsolved violent crimes through the estimation of PMI (post-mortem interval) or time since death. Though it has great potential, forensic entomology requires data from insects specific to a geographical location to be credibly applied in legal investigations. It is a relatively new area of study in the Caribbean, with multiple pioneer research opportunities. Of critical importance in forensic entomology is the ability to identify the species of interest. Larvae are commonly collected at crime scenes and a means of rapid identification is crucial. Moreover, a low-cost method is critical in countries with limited budget available for crime fighting. Sarcophagids are one of the most important colonisers of a carcass however, they are difficult to distinguish using morphology due to their similarities, however, there is a lack of research on the larvae of this family. This research contributes to that, having identified the larvae of three species from the family Sarcophagidae: Peckia nicasia, Peckia chrysostoma and Blaesoxipha plinthopyga; important agents in flesh decomposition. Adults of Sarcophidae are also difficult to differentiate, often requiring study of the genitalia; the use of larvae in species identification is important in such cases. Adult Sarcophagids were attracted using bottle traps baited with pig liver. These adults larviposited and the larvae were collected and colonises (generation 2 and 3) reared at room temperature for morphological work (n=50). The posterior ends of the larvae from segments 9 or 10 were removed and mounted posterior end upwards to allow study using a light microscope at magnification X200 (posterior cavity and intersegmental spine bands) and X640 (anterior and posterior spiracle). The remaining sections of the larvae were cleared in 10 % KOH and the cephalopharyngeal skeleton dissected out and measured at different points. The cephalopharyngeal skeletons show observable differences in the shapes and sizes of the mouth hooks as well as the length of the ventral cornua. The most notable difference between species is in the general shape of the anal segments and the shape of the posterior spiracles. Intersegmental spine bands of these larvae become less pigmented and visible as the larvae change instars. Spine bands along with anterior spiracle are not recommended as features for species distinction. Larvae can potentially be used to distinguish Sarcophagids to the level of species, with observable differences in the anal segments and the cephalopharyngeal skeletons. However, this method of identification should be tested by comparing these morphological features with other Jamaican Sarcophagids to further support this conclusion.

Keywords: 3rd instar larval morphology, forensic entomology, Jamaica, Sarcophagidae

Procedia PDF Downloads 146
39 Various Shaped ZnO and ZnO/Graphene Oxide Nanocomposites and Their Use in Water Splitting Reaction

Authors: Sundaram Chandrasekaran, Seung Hyun Hur

Abstract:

Exploring strategies for oxygen vacancy engineering under mild conditions and understanding the relationship between dislocations and photoelectrochemical (PEC) cell performance are challenging issues for designing high performance PEC devices. Therefore, it is very important to understand that how the oxygen vacancies (VO) or other defect states affect the performance of the photocatalyst in photoelectric transfer. So far, it has been found that defects in nano or micro crystals can have two possible significances on the PEC performance. Firstly, an electron-hole pair produced at the interface of photoelectrode and electrolyte can recombine at the defect centers under illumination of light, thereby reducing the PEC performances. On the other hand, the defects could lead to a higher light absorption in the longer wavelength region and may act as energy centers for the water splitting reaction that can improve the PEC performances. Even if the dislocation growth of ZnO has been verified by the full density functional theory (DFT) calculations and local density approximation calculations (LDA), it requires further studies to correlate the structures of ZnO and PEC performances. Exploring the hybrid structures composed of graphene oxide (GO) and ZnO nanostructures offer not only the vision of how the complex structure form from a simple starting materials but also the tools to improve PEC performances by understanding the underlying mechanisms of mutual interactions. As there are few studies for the ZnO growth with other materials and the growth mechanism in those cases has not been clearly explored yet, it is very important to understand the fundamental growth process of nanomaterials with the specific materials, so that rational and controllable syntheses of efficient ZnO-based hybrid materials can be designed to prepare nanostructures that can exhibit significant PEC performances. Herein, we fabricated various ZnO nanostructures such as hollow sphere, bucky bowl, nanorod and triangle, investigated their pH dependent growth mechanism, and correlated the PEC performances with them. Especially, the origin of well-controlled dislocation-driven growth and its transformation mechanism of ZnO nanorods to triangles on the GO surface were discussed in detail. Surprisingly, the addition of GO during the synthesis process not only tunes the morphology of ZnO nanocrystals and also creates more oxygen vacancies (oxygen defects) in the lattice of ZnO, which obviously suggest that the oxygen vacancies be created by the redox reaction between GO and ZnO in which the surface oxygen is extracted from the surface of ZnO by the functional groups of GO. On the basis of our experimental and theoretical analysis, the detailed mechanism for the formation of specific structural shapes and oxygen vacancies via dislocation, and its impact in PEC performances are explored. In water splitting performance, the maximum photocurrent density of GO-ZnO triangles was 1.517mA/cm-2 (under UV light ~ 360 nm) vs. RHE with high incident photon to current conversion Efficiency (IPCE) of 10.41%, which is the highest among all samples fabricated in this study and also one of the highest IPCE reported so far obtained from GO-ZnO triangular shaped photocatalyst.

Keywords: dislocation driven growth, zinc oxide, graphene oxide, water splitting

Procedia PDF Downloads 294
38 Electrophoretic Light Scattering Based on Total Internal Reflection as a Promising Diagnostic Method

Authors: Ekaterina A. Savchenko, Elena N. Velichko, Evgenii T. Aksenov

Abstract:

The development of pathological processes, such as cardiovascular and oncological diseases, are accompanied by changes in molecular parameters in cells, tissues, and serum. The study of the behavior of protein molecules in solutions is of primarily importance for diagnosis of such diseases. Various physical and chemical methods are used to study molecular systems. With the advent of the laser and advances in electronics, optical methods, such as scanning electron microscopy, sedimentation analysis, nephelometry, static and dynamic light scattering, have become the most universal, informative and accurate tools for estimating the parameters of nanoscale objects. The electrophoretic light scattering is the most effective technique. It has a high potential in the study of biological solutions and their properties. This technique allows one to investigate the processes of aggregation and dissociation of different macromolecules and obtain information on their shapes, sizes and molecular weights. Electrophoretic light scattering is an analytical method for registration of the motion of microscopic particles under the influence of an electric field by means of quasi-elastic light scattering in a homogeneous solution with a subsequent registration of the spectral or correlation characteristics of the light scattered from a moving object. We modified the technique by using the regime of total internal reflection with the aim of increasing its sensitivity and reducing the volume of the sample to be investigated, which opens the prospects of automating simultaneous multiparameter measurements. In addition, the method of total internal reflection allows one to study biological fluids on the level of single molecules, which also makes it possible to increase the sensitivity and the informativeness of the results because the data obtained from an individual molecule is not averaged over an ensemble, which is important in the study of bimolecular fluids. To our best knowledge the study of electrophoretic light scattering in the regime of total internal reflection is proposed for the first time, latex microspheres 1 μm in size were used as test objects. In this study, the total internal reflection regime was realized on a quartz prism where the free electrophoresis regime was set. A semiconductor laser with a wavelength of 655 nm was used as a radiation source, and the light scattering signal was registered by a pin-diode. Then the signal from a photodetector was transmitted to a digital oscilloscope and to a computer. The autocorrelation functions and the fast Fourier transform in the regime of Brownian motion and under the action of the field were calculated to obtain the parameters of the object investigated. The main result of the study was the dependence of the autocorrelation function on the concentration of microspheres and the applied field magnitude. The effect of heating became more pronounced with increasing sample concentrations and electric field. The results obtained in our study demonstrated the applicability of the method for the examination of liquid solutions, including biological fluids.

Keywords: light scattering, electrophoretic light scattering, electrophoresis, total internal reflection

Procedia PDF Downloads 214
37 Historical Memory and Social Representation of Violence in Latin American Cinema: A Cultural Criminology Approach

Authors: Maylen Villamanan Alba

Abstract:

Latin America is marked by its history: conquest, colonialism, and slavery left deep footprints in most Latin American countries. Also, the past century has been affected by wars, military dictatorships, and political violence, which profoundly influenced Latin American popular culture. Consequently, reminiscences of historical crimes are frequently present in daily life, media, public opinion, and arts. This legacy is remembered in novels, paintings, songs, and films. In fact, Latin American cinema has a trend which refers to the verisimilitude with reality in fiction films. These films about historical violence are narrated as fictional characters, but their stories are based on real historical contexts. Therefore, cultural criminology has considered films as a significant field to understand social representations of violence related to historical crimes. The aim of the present contribution is to analyze the legacy of past and historical memory in social representations of violence in Latin American cinema as a critical approach to historical crimes. This qualitative research is based on content analysis. The sample is seven multi-award winning films of the International Festival of New Latin American Cinema of Havana. The films selected are Kamchatka, Argentina (2002); Carandiru, Brazil (2003); Enlightened by fire, Argentina (2005); Post-mortem, Chile (2010); No, Chile (2012) Wakolda; Argentina (2013) and The Clan, Argentina (2015). Cultural criminology highlights that cinema shapes meanings of social practices such as historical crimes. Critical criminology offers a critical theory framework to interpret Latin American cinema. This analysis reveals historical conditions deeply associated with power relationships, policy, and inequality issues. As indicated by this theory, violence is characterized as a structural process based on social asymmetries. These social asymmetries are crossed by social scopes, including institutional and personal dimensions. Thus, institutions of the states are depicted through personal stories of characters involved with human conflicts. Intimacy and social background are linked in the personages who simultaneously perform roles such as soldiers, policemen, professionals or inmates and they are at the same time depict as human beings with family, gender, racial, ideological or generational issues. Social representations of violence related to past legacy are a portrait of historical crimes perpetrated against Latin American citizens. Thereby, they have contributed to political positions, social behaviors, and public opinion. The legacy of these historical crimes suggests a path that should never be taken again. It means past legacy is a reminder, a warning, and a historic lesson for Latin American people. Social representations of violence are permeated by historical memory as denunciation under a critical approach.

Keywords: Latin American cinema, historical memory, social representation, violence

Procedia PDF Downloads 147
36 Designing a Thermal Management System for Lithium Ion Battery Packs in Electric Vehicles

Authors: Ekin Esen, Mohammad Alipour, Riza Kizilel

Abstract:

Rechargeable lithium-ion batteries have been replacing lead-acid batteries for the last decade due to their outstanding properties such as high energy density, long shelf life, and almost no memory effect. Besides these, being very light compared to lead acid batteries has gained them their dominant place in the portable electronics market, and they are now the leading candidate for electric vehicles (EVs) and hybrid electric vehicles (HEVs). However, their performance strongly depends on temperature, and this causes some inconveniences for their utilization in extreme temperatures. Since weather conditions vary across the globe, this situation limits their utilization for EVs and HEVs and makes a thermal management system obligatory for the battery units. The objective of this study is to understand thermal characteristics of Li-ion battery modules for various operation conditions and design a thermal management system to enhance battery performance in EVs and HEVs. In the first part of our study, we investigated thermal behavior of commercially available pouch type 20Ah LiFePO₄ (LFP) cells under various conditions. Main parameters were chosen as ambient temperature and discharge current rate. Each cell was charged and discharged at temperatures of 0°C, 10°C, 20°C, 30°C, 40°C, and 50°C. The current rate of charging process was 1C while it was 1C, 2C, 3C, 4C, and 5C for discharge process. Temperatures of 7 different points on the cells were measured throughout charging and discharging with N-type thermocouples, and a detailed temperature profile was obtained. In the second part of our study, we connected 4 cells in series by clinching and prepared 4S1P battery modules similar to ones in EVs and HEVs. Three reference points were determined according to the findings of the first part of the study, and a thermocouple is placed on each reference point on the cells composing the 4S1P battery modules. In the end, temperatures of 6 points in the module and 3 points on the top surface were measured and changes in the surface temperatures were recorded for different discharge rates (0.2C, 0.5C, 0.7C, and 1C) at various ambient temperatures (0°C – 50°C). Afterwards, aluminum plates with channels were placed between the cells in the 4S1P battery modules, and temperatures were controlled with airflow. Airflow was provided with a regular compressor, and the effect of flow rate on cell temperature was analyzed. Diameters of the channels were in mm range, and shapes of the channels were determined in order to make the cell temperatures uniform. Results showed that the designed thermal management system could help keeping the cell temperatures in the modules uniform throughout charge and discharge processes. Other than temperature uniformity, the system was also beneficial to keep cell temperature close to the optimum working temperature of Li-ion batteries. It is known that keeping the temperature at an optimum degree and maintaining uniform temperature throughout utilization can help obtaining maximum power from the cells in battery modules for a longer time. Furthermore, it will increase safety by decreasing the risk of thermal runaways. Therefore, the current study is believed to be beneficial for wider use of Li batteries for battery modules of EVs and HEVs globally.

Keywords: lithium ion batteries, thermal management system, electric vehicles, hybrid electric vehicles

Procedia PDF Downloads 163
35 42CrMo4 Steel Flow Behavior Characterization for High Temperature Closed Dies Hot Forging in Automotive Components Applications

Authors: O. Bilbao, I. Loizaga, F. A. Girot, A. Torregaray

Abstract:

The current energetical situation and the high competitiveness in industrial sectors as the automotive one have become the development of new manufacturing processes with less energy and raw material consumption a real necessity. As consequence, new forming processes related with high temperature hot forging in closed dies have emerged in the last years as new solutions to expand the possibilities of hot forging and iron casting in the automotive industry. These technologies are mid-way between hot forging and semi-solid metal processes, working at temperatures higher than the hot forging but below the solidus temperature or the semi solid range, where no liquid phase is expected. This represents an advantage comparing with semi-solid forming processes as thixoforging, by the reason that no so high temperatures need to be reached in the case of high melting point alloys as steels, reducing the manufacturing costs and the difficulties associated to semi-solid processing of them. Comparing with hot forging, this kind of technologies allow the production of parts with as forged properties and more complex and near-net shapes (thinner sidewalls), enhancing the possibility of designing lightweight components. From the process viewpoint, the forging forces are significantly decreased, and a significant reduction of the raw material, energy consumption, and the forging steps have been demonstrated. Despite the mentioned advantages, from the material behavior point of view, the expansion of these technologies has shown the necessity of developing new material flow behavior models in the process working temperature range to make the simulation or the prediction of these new forming processes feasible. Moreover, the knowledge of the material flow behavior at the working temperature range also allows the design of the new closed dies concept required. In this work, the flow behavior characterization in the mentioned temperature range of the widely used in automotive commercial components 42CrMo4 steel has been studied. For that, hot compression tests have been carried out in a thermomechanical tester in a temperature range that covers the material behavior from the hot forging until the NDT (Nil Ductility Temperature) temperature (1250 ºC, 1275 ºC, 1300 ºC, 1325 ºC, 1350ºC, and 1375 ºC). As for the strain rates, three different orders of magnitudes have been considered (0,1 s-1, 1s-1, and 10s-1). Then, results obtained from the hot compression tests have been treated in order to adapt or re-write the Spittel model, widely used in automotive commercial softwares as FORGE® that restrict the current existing models up to 1250ºC. Finally, the obtained new flow behavior model has been validated by the process simulation in a commercial automotive component and the comparison of the results of the simulation with the already made experimental tests in a laboratory cellule of the new technology. So as a conclusion of the study, a new flow behavior model for the 42CrMo4 steel in the new working temperature range and the new process simulation in its application in automotive commercial components has been achieved and will be shown.

Keywords: 42CrMo4 high temperature flow behavior, high temperature hot forging in closed dies, simulation of automotive commercial components, spittel flow behavior model

Procedia PDF Downloads 129
34 Employing Remotely Sensed Soil and Vegetation Indices and Predicting ‎by Long ‎Short-Term Memory to Irrigation Scheduling Analysis

Authors: Elham Koohikerade, Silvio Jose Gumiere

Abstract:

In this research, irrigation is highlighted as crucial for improving both the yield and quality of ‎potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long ‎Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in ‎Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate ‎soil moisture content, addressing the limitations of field data. Developed under the guidance of the ‎Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct ‎soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices ‎like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced ‎Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast ‎soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing ‎drought conditions and determining irrigation needs. This study validated the spectral characteristics ‎of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging ‎Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and ‎Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and ‎NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture ‎was developed using a machine learning approach combining model-based and satellite-based ‎datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and ‎times, with its accuracy verified through cross-validation and comparison with existing soil moisture ‎datasets. The model effectively captures temporal dynamics, making it valuable for applications ‎requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By ‎identifying typical peak soil moisture values and observing distribution shapes, irrigation can be ‎scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 ‎m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a ‎uniform irrigation strategy might be effective across multiple parcels, with adjustments based on ‎specific parcel characteristics and historical data trends. The application of the LSTM model to ‎predict soil moisture and vegetation indices yielded mixed results. While the model effectively ‎captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately ‎predicting EVI, NDVI, and NMDI.‎

Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation ‎monitoring

Procedia PDF Downloads 41
33 Introducing an Innovative Structural Fuse for Creation of Repairable Buildings with See-Saw Motion during Earthquake and Investigating It by Nonlinear Finite Element Modeling

Authors: M. Hosseini, N. Ghorbani Amirabad, M. Zhian

Abstract:

Seismic design codes accept structural and nonstructural damages after the sever earthquakes (provided that the building is prevented from collapse), so that in many cases demolishing and reconstruction of the building is inevitable, and this is usually very difficult, costly and time consuming. Therefore, designing and constructing of buildings in such a way that they can be easily repaired after earthquakes, even major ones, is quite desired. For this purpose giving the possibility of rocking or see-saw motion to the building structure, partially or as a whole, has been used by some researchers in recent decade .the central support which has a main role in creating the possibility of see-saw motion in the building’s structural system. In this paper, paying more attention to the key role of the central fuse and support, an innovative energy dissipater which can act as the central fuse and support of the building with seesaw motion is introduced, and the process of reaching an optimal geometry for that by using finite element analysis is presented. Several geometric shapes were considered for the proposed central fuse and support. In each case the hysteresis moment rotation behavior of the considered fuse were obtained under simultaneous effect of vertical and horizontal loads, by nonlinear finite element analyses. To find the optimal geometric shape, the maximum plastic strain value in the fuse body was considered as the main parameter. The rotational stiffness of the fuse under the effect of acting moments is another important parameter for finding the optimum shape. The proposed fuse and support can be called Yielding Curved Bars and Clipped Hemisphere Core (YCB&CHC or more briefly YCB) energy dissipater. Based on extensive nonlinear finite element analyses it was found out the using rectangular section for the curved bars gives more reliable results. Then, the YCB energy dissipater with the optimal shape was used in a structural model of a 12 story regular building as its central fuse and support to give it the possibility of seesaw motion, and its seismic responses were compared to those of a the building in the fixed based conditions, subjected to three-components acceleration of several selected earthquakes including Loma Prieta, Northridge, and Park Field. In building with see-saw motion some simple yielding-plate energy dissipaters were also used under circumferential columns.The results indicated that equipping the buildings with central and circumferential fuses result in remarkable reduction of seismic responses of the building, including the base shear, inter story drift, and roof acceleration. In fact by using the proposed technique the plastic deformations are concentrated in the fuses in the lowest story of the building, so that the main body of the building structure remains basically elastic, and therefore, the building can be easily repaired after earthquake.

Keywords: rocking mechanism, see-saw motion, finite element analysis, hysteretic behavior

Procedia PDF Downloads 408
32 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89

Authors: A. Chatel, I. S. Torreguitart, T. Verstraete

Abstract:

The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.

Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness

Procedia PDF Downloads 110
31 The Moral Geography of Entertainment Businesses: Boundary Work and Respectability Politics in Global City Singapore

Authors: Tiffany Chuang

Abstract:

The study of inequality in urban space has typically emphasized class and race as dimensions of stratification, but a small and growing body of work also pays attention to exclusionary processes based on moral grounds, as is the case with mainstream disapproval of sexually oriented businesses and red-light districts. However, many sexually-oriented businesses co-exist with similar non-sexually oriented businesses in the tourism and broader entertainment industries. Furthermore, regulators and tourism- and entertainment industries are acknowledged by regulators and ordinary citizens as important contributors to the economy, and in the case of aspiring global cities, to urban prestige. Under such circumstances, it is important to examine how policymakers, residents, and other stakeholders distinguish between sexually oriented and non-sexually oriented businesses, as well as how such efforts shape moral geographies in urban settings. To address this question, this paper introduces the concept of permeable industries to describe businesses that, by their very nature of providing adult entertainment along with a measure of privacy and discretion, facilitate easy interchange between their officially sanctioned purposes and illicit or stigmatised uses, most notably by the sex industry. The permeability and ambiguity surrounding the sexual- and non-sexual activities in such establishments is in fact, a source of tension that generates energetic boundary-drawing exercises that designate legitimate from illegitimate establishments. This paper draws on three years of ethnographic fieldwork, qualitative research, and archival research (1920—2020) on Joo Chiat, a neighborhood in the city-state of Singapore. It then analyzes how middle-class residents reacted to the sudden influx of sexually oriented businesses in the early 2000s, turning the once-quiet residential and commercial neighborhood into a semi-red-light district staffed by migrant Asian women. Ironically, the red-light district had been inadvertently precipitated by the state’s neoliberal policies in the 1990s to cultivate suburban neighborhoods as decentralized tourist attractions while loosening social regulations in pursuit of global city ambitions. Residents mobilized around the discourse of “sleaze”, using it to draw symbolic boundaries while advocating for regulatory boundaries between sexually oriented and non-sexually oriented businesses in the neighborhood. Since the concept of “sleaze” was informed by middle-class distaste for low-status sex work, the result of residents’ efforts was a state-endorsed moral geography that excluded sexually-oriented businesses while tolerating adult-oriented entertainment businesses that dovetailed with global city aspirations. This study contributes to the study of urban inequality by demonstrating the importance of boundary work in reproducing respectability politics, which in turn shapes the urban geographies of moral worth.

Keywords: moral geography, boundary work, respectability politics, entertainment businesses

Procedia PDF Downloads 71
30 Visuospatial Perspective Taking and Theory of Mind in a Clinical Approach: Development of a Task for Adults

Authors: Britt Erni, Aldara Vazquez Fernandez, Roland Maurer

Abstract:

Visuospatial perspective taking (VSPT) is a process that allows to integrate spatial information from different points of view, and to transform the mental images we have of the environment to properly orient our movements and anticipate the location of landmarks during navigation. VSPT is also related to egocentric perspective transformations (imagined rotations or translations of one's point of view) and to infer the visuospatial experiences of another person (e.g. if and how another person sees objects). This process is deeply related to a wide-ranging capacity called the theory of mind (ToM), an essential cognitive function that allows us to regulate our social behaviour by attributing mental representations to individuals in order to make behavioural predictions. VSPT is often considered in the literature as the starting point of the development of the theory of mind. VSPT and ToM include several levels of knowledge that have to be assessed by specific tasks. Unfortunately, the lack of tasks assessing these functions in clinical neuropsychology leads to underestimate, in brain-damaged patients, deficits of these functions which are essential, in everyday life, to regulate our social behaviour (ToM) and to navigate in known and unknown environments (VSPT). Therefore, this study aims to create and standardize a VSPT task in order to explore the cognitive requirements of VSPT and ToM, and to specify their relationship in healthy adults and thereafter in brain-damaged patients. Two versions of a computerized VSPT task were administered to healthy participants (M = 28.18, SD = 4.8 years). In both versions the environment was a 3D representation of 10 different geometric shapes placed on a circular base. Two sets of eight pictures were generated from this: of the environment with an avatar somewhere on its periphery (locations) and of what the avatar sees from that place (views). Two types of questions were asked: a) identify the location from the view, and b) identify the view from the location. Twenty participants completed version 1 of the task and 20 completed the second version, where the views were offset by ±15° (i.e., clockwise or counterclockwise) and participants were asked to choose the closest location or the closest view. The preliminary findings revealed that version 1 is significantly easier than version 2 for accuracy (with ceiling scores for version 1). In version 2, participants responded significantly slower when they had to infer the avatar's view from the latter's location, probably because they spent more time visually exploring the different views (responses). Furthermore, men significantly performed better than women in version 1 but not in version 2. Most importantly, a sensitive task (version 2) has been created for which the participants do not seem to easily and automatically compute what someone is looking at yet which does not involve more heavily other cognitive functions. This study is further completed by including analysis on non-clinical participants with low and high degrees of schizotypy, different socio-educational status, and with a range of older adults to examine age-related and other differences in VSPT processing.

Keywords: mental transformation, spatial cognition, theory of mind, visuospatial perspective taking

Procedia PDF Downloads 203