Search results for: clinical decision support systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20992

Search results for: clinical decision support systems

20452 Structural Health Monitoring-Integrated Structural Reliability Based Decision Making

Authors: Caglayan Hizal, Kutay Yuceturk, Ertugrul Turker Uzun, Hasan Ceylan, Engin Aktas, Gursoy Turan

Abstract:

Monitoring concepts for structural systems have been investigated by researchers for decades since such tools are quite convenient to determine intervention planning of structures. Despite the considerable development in this regard, the efficient use of monitoring data in reliability assessment, and prediction models are still in need of improvement in their efficiency. More specifically, reliability-based seismic risk assessment of engineering structures may play a crucial role in the post-earthquake decision-making process for the structures. After an earthquake, professionals could identify heavily damaged structures based on visual observations. Among these, it is hard to identify the ones with minimum signs of damages, even if they would experience considerable structural degradation. Besides, visual observations are open to human interpretations, which make the decision process controversial, and thus, less reliable. In this context, when a continuous monitoring system has been previously installed on the corresponding structure, this decision process might be completed rapidly and with higher confidence by means of the observed data. At this stage, the Structural Health Monitoring (SHM) procedure has an important role since it can make it possible to estimate the system reliability based on a recursively updated mathematical model. Therefore, integrating an SHM procedure into the reliability assessment process comes forward as an important challenge due to the arising uncertainties for the updated model in case of the environmental, material and earthquake induced changes. In this context, this study presents a case study on SHM-integrated reliability assessment of the continuously monitored progressively damaged systems. The objective of this study is to get instant feedback on the current state of the structure after an extreme event, such as earthquakes, by involving the observed data rather than the visual inspections. Thus, the decision-making process after such an event can be carried out on a rational basis. In the near future, this can give wing to the design of self-reported structures which can warn about its current situation after an extreme event.

Keywords: condition assessment, vibration-based SHM, reliability analysis, seismic risk assessment

Procedia PDF Downloads 145
20451 Development of a Consult Liaison Psychology Service: A Systematic Review

Authors: Ben J. Lippe

Abstract:

Consult Liaison Psychology services are overgrowing, given the robust empirical support of the utility of this service in hospital settings. These psychological services, including clinical assessment, applied psychotherapy, and consultation with other healthcare providers, have been shown to improve health outcomes for patients and bolster important areas of administrative interest such as decreased length of patient admission. However, there is little descriptive literature outlining the process and mechanisms of building or developing a Consult Liaison Psychology service. The main findings of this current conceptual work are intended to be clear in nature to elucidate the essential methods involved in developing consult liaison psychology programs, including thorough reviews of relevant behavioral health literature and inclusion of experiential outcomes. The diverse range of hospital settings and healthcare systems makes a “blueprint” method of program development challenging to define, yet important structural frameworks presented here based on the relevant literature and applied practice can help lay critical groundwork for program development in this growing area of psychological service. This conceptual approach addresses the prominent processes, as well as common programmatic and clinical pitfalls, involved in the event of a Consult Liaison Psychology service. This paper, including a systematic review of relevant literature, is intended to serve as a key program development reference for the development of Consult Liaison Psychology services, other related behavioral health programs, and to help inform further research efforts.

Keywords: behavioral health, consult liaison, health psychology, psychology program development

Procedia PDF Downloads 159
20450 Prioritizing Temporary Shelter Areas for Disaster Affected People Using Hybrid Decision Support Model

Authors: Ashish Trivedi, Amol Singh

Abstract:

In the recent years, the magnitude and frequency of disasters have increased at an alarming rate. Every year, more than 400 natural disasters affect global population. A large-scale disaster leads to destruction or damage to houses, thereby rendering a notable number of residents homeless. Since humanitarian response and recovery process takes considerable time, temporary establishments are arranged in order to provide shelter to affected population. These shelter areas are vital for an effective humanitarian relief; therefore, they must be strategically planned. Choosing the locations of temporary shelter areas for accommodating homeless people is critical to the quality of humanitarian assistance provided after a large-scale emergency. There has been extensive research on the facility location problem both in theory and in application. In order to deliver sufficient relief aid within a relatively short timeframe, humanitarian relief organisations pre-position warehouses at strategic locations. However, such approaches have received limited attention from the perspective of providing shelters to disaster-affected people. In present research work, this aspect of humanitarian logistics is considered. The present work proposes a hybrid decision support model to determine relative preference of potential shelter locations by assessing them based on key subjective criteria. Initially, the factors that are kept in mind while locating potential areas for establishing temporary shelters are identified by reviewing extant literature and through consultation from a panel of disaster management experts. In order to determine relative importance of individual criteria by taking into account subjectivity of judgements, a hybrid approach of fuzzy sets and Analytic Hierarchy Process (AHP) was adopted. Further, Technique for order preference by similarity to ideal solution (TOPSIS) was applied on an illustrative data set to evaluate potential locations for establishing temporary shelter areas for homeless people in a disaster scenario. The contribution of this work is to propose a range of possible shelter locations for a humanitarian relief organization, using a robust multi criteria decision support framework.

Keywords: AHP, disaster preparedness, fuzzy set theory, humanitarian logistics, TOPSIS, temporary shelters

Procedia PDF Downloads 205
20449 GIS Pavement Maintenance Selection Strategy

Authors: Mekdelawit Teferi Alamirew

Abstract:

As a practical tool, the Geographical information system (GIS) was used for data integration, collection, management, analysis, and output presentation in pavement mangement systems . There are many GIS techniques to improve the maintenance activities like Dynamic segmentation and weighted overlay analysis which considers Multi Criteria Decision Making process. The results indicated that the developed MPI model works sufficiently and yields adequate output for providing accurate decisions. Hence considering multi criteria to prioritize the pavement sections for maintenance, as a result of the fact that GIS maps can express position, extent, and severity of pavement distress features more effectively than manual approaches, lastly the paper also offers digitized distress maps that can help agencies in their decision-making processes.

Keywords: pavement, flexible, maintenance, index

Procedia PDF Downloads 62
20448 The Preceptorship Experience and Clinical Competence of Final Year Nursing Students

Authors: Susan Ka Yee Chow

Abstract:

Effective clinical preceptorship is affecting students’ competence and fostering their growth in applying theoretical knowledge and skills in clinical settings. Any difference between the expected and actual learning experience will reduce nursing students’ interest in clinical practices and having a negative consequence with their clinical performance. This cross-sectional study is an attempt to compare the differences between preferred and actual preceptorship experience of final year nursing students, and to examine the relationship between the actual preceptorship experience and perceived clinical competence of the students in a tertiary institution. Participants of the study were final year bachelor nursing students of a self-financing tertiary institution in Hong Kong. The instruments used to measure the effectiveness of clinical preceptorship was developed by the participating institution. The scale consisted of five items in a 5-point likert scale. The questions including goals development, critical thinking, learning objectives, asking questions and providing feedback to students. The “Clinical Competence Questionnaire” by Liou & Cheng (2014) was used to examine students’ perceived clinical competences. The scale consisted of 47 items categorized into four domains, namely nursing professional behaviours; skill competence: general performance; skill competence: core nursing skills and skill competence: advanced nursing skills. There were 193 questionnaires returned with a response rate of 89%. The paired t-test was used to compare the differences between preferred and actual preceptorship experiences of students. The results showed significant differences (p<0.001) for the five questions. The mean for the preferred scores is higher than the actual scores resulting statistically significance. The maximum mean difference was accepted goal and the highest mean different was giving feedback. The Pearson Correlation Coefficient was used to examine the relationship. The results showed moderate correlations between nursing professional behaviours with asking questions and providing feedback. Providing useful feedback to students is having moderate correlations with all domains of the Clinical Competence Questionnaire (r=0.269 – 0.345). It is concluded that nursing students do not have a positive perception of the clinical preceptorship. Their perceptions are significantly different from their expected preceptorship. If students were given more opportunities to ask questions in a pedagogical atmosphere, their perceived clinical competence and learning outcomes could be improved as a result.

Keywords: clinical preceptor, clinical competence, clinical practicum, nursing students

Procedia PDF Downloads 127
20447 Determining Current and Future Training Needs of Ontario Workers Supporting Persons with Developmental Disabilities

Authors: Erin C. Rodenburg, Jennifer McWhirter, Andrew Papadopoulos

Abstract:

Support workers for adults with developmental disabilities promote the care and wellbeing of a historically underserved population. Poor employment training and low work satisfaction for these disability support workers are linked to low productivity, poor quality of care, turnover, and intention to leave employment. Therefore, to improve the lives of those within disability support homes, both client and caregiver, it is vital to determine where improvements to training and support for those providing direct care can be made. The current study aims to explore disability support worker’s perceptions of the training received in their employment at the residential homes, how it prepared them for their role, and where there is room for improvement with the aim of developing recommendations for an improved training experience. Responses were collected from 85 disability support workers across 40 Ontario group homes. Findings suggest most disability support workers within the 40 support homes feel adequately trained in their responsibilities of employment. For those who did not feel adequately trained, the main issues expressed were a lack of standardization in training, a need for more continuous training, and a move away from trial and error in performing tasks to support clients with developmental disabilities.

Keywords: developmental disabilities, disability workers, support homes, training

Procedia PDF Downloads 189
20446 A Behaviourally Plausible Decision Centred Perspective on the Role of Corporate Governance in Corporate Failures

Authors: Navdeep Kaur

Abstract:

The primary focus of this study is to answer “What is the role of corporate governance in corporate failures? Does poor corporate governance lead to corporate failures? If so, how?”. In doing so, the study examines the literature from multiple fields, including corporate governance, corporate failures and organizational decision making, and presents a research gap to analyze and explore the relationship between corporate governance practices and corporate failures through a behavioral lens. In approaching this, a qualitative research methodology is adopted to analyze the failure of Enron Corporation (United States). The research considered the case study organizations as the primary unit of analysis and the decision-makers as the secondary unit of analysis. Based on this research approach, the study reports the analytical results drawn from extensive and triangulated secondary data. The study then interprets the results in the context of the theoretical synthesis. The study contributes towards filling a gap in the research and presents a behaviourally plausible decision centered model of the role of corporate governance in corporate failures. The model highlights the critical role of the behavioral aspects of corporate governance decision making in corporate failures and focuses attention on the under-explored aspects of corporate governance decision making. The study also suggests a further understanding of ‘A Behavioral Theory of the Firm’ in relation to corporate failures.

Keywords: behavior, corporate failure, corporate governance, decision making, values

Procedia PDF Downloads 133
20445 Analyzing the Impact of the COVID-19 Pandemic on Clinicians’ Perceptions of Resuscitation and Escalation Decision-Making Processes: Cross-Sectional Survey of Hospital Clinicians in the United Kingdom

Authors: Michelle Hartanto, Risheka Suthantirakumar

Abstract:

Introduction Staff redeployment, increased numbers of acutely unwell patients requiring resuscitation decision-making conversations, visiting restrictions, and varying guidance regarding resuscitation for patients with COVID-19 disrupted clinicians’ management of resuscitation and escalation decision-making processes. While it was generally accepted that the COVID-19 pandemic disturbed numerous aspects of the Recommended Summary Plan for Emergency Care and Treatment (ReSPECT) process in the United Kingdom, a process which establishes a patient’s CPR status and treatment escalation plans, the impact of the pandemic on clinicians’ attitudes towards these resuscitation and decision-making conversations was unknown. This was the first study to examine the impact of the COVID-19 pandemic on clinicians’ knowledge, skills, and attitudes towards the ReSPECT process. Methods A cross-sectional survey of clinicians at one acute teaching hospital in the UK was conducted. A questionnaire with a defined five-point Likert scale was distributed and clinicians were asked to recall their pre-pandemic views on ReSPECT and report their current views at the time of survey distribution (May 2020, end of the first COVID-19 wave in the UK). Responses were received from 171 clinicians, and self-reported views before and during the pandemic were compared. Results Clinicians reported they found managing ReSPECT conversations more challenging during the pandemic, especially when conducted over the telephone with relatives, and they experienced an increase in negative emotions before, during, and after conducting ReSPECT conversations. Our findings identified that due to the pandemic there was now a need for clinicians to receive training and support in conducting resuscitation and escalation decision-making conversations over the telephone with relatives and managing these processes.

Keywords: cardiopulmonary resuscitation, COVID-19 pandemic, DNACPR discussion, education, recommended summary plan for emergency care and treatment, resuscitation order

Procedia PDF Downloads 102
20444 A Comprehensive Key Performance Indicators Dashboard for Emergency Medical Services

Authors: Giada Feletti, Daniela Tedesco, Paolo Trucco

Abstract:

The present study aims to develop a dashboard of Key Performance Indicators (KPI) to enhance information and predictive capabilities in Emergency Medical Services (EMS) systems, supporting both operational and strategic decisions of different actors. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning the indicators currently used for the performance measurement of EMS systems. From this literature analysis, it emerged that current studies focus on two distinct perspectives: the ambulance service, a fundamental component of pre-hospital health treatment, and the patient care in the Emergency Department (ED). The perspective proposed by this study is to consider an integrated view of the ambulance service process and the ED process, both essential to ensure high quality of care and patient safety. Thus, the proposal focuses on the entire healthcare service process and, as such, allows considering the interconnection between the two EMS processes, the pre-hospital and hospital ones, connected by the assignment of the patient to a specific ED. In this way, it is possible to optimize the entire patient management. Therefore, attention is paid to the dependency of decisions that in current EMS management models tend to be neglected or underestimated. In particular, the integration of the two processes enables the evaluation of the advantage of an ED selection decision having visibility on EDs’ saturation status and therefore considering the distance, the available resources and the expected waiting times. Starting from a critical review of the KPIs proposed in the extant literature, the design of the dashboard was carried out: the high number of analyzed KPIs was reduced by eliminating the ones firstly not in line with the aim of the study and then the ones supporting a similar functionality. The KPIs finally selected were tested on a realistic dataset, which draws us to exclude additional indicators due to the unavailability of data required for their computation. The final dashboard, which was discussed and validated by experts in the field, includes a variety of KPIs able to support operational and planning decisions, early warning, and citizens’ awareness of EDs accessibility in real-time. By associating each KPI to the EMS phase it refers to, it was also possible to design a well-balanced dashboard covering both efficiency and effective performance of the entire EMS process. Indeed, just the initial phases related to the interconnection between ambulance service and patient’s care are covered by traditional KPIs compared to the subsequent phases taking place in the hospital ED. This could be taken into consideration for the potential future development of the dashboard. Moreover, the research could proceed by building a multi-layer dashboard composed of the first level with a minimal set of KPIs to measure the basic performance of the EMS system at an aggregate level and further levels with KPIs that can bring additional and more detailed information.

Keywords: dashboard, decision support, emergency medical services, key performance indicators

Procedia PDF Downloads 113
20443 Real-Time Classification of Marbles with Decision-Tree Method

Authors: K. S. Parlak, E. Turan

Abstract:

The separation of marbles according to the pattern quality is a process made according to expert decision. The classification phase is the most critical part in terms of economic value. In this study, a self-learning system is proposed which performs the classification of marbles quickly and with high success. This system performs ten feature extraction by taking ten marble images from the camera. The marbles are classified by decision tree method using the obtained properties. The user forms the training set by training the system at the marble classification stage. The system evolves itself in every marble image that is classified. The aim of the proposed system is to minimize the error caused by the person performing the classification and achieve it quickly.

Keywords: decision tree, feature extraction, k-means clustering, marble classification

Procedia PDF Downloads 383
20442 The Impact of Cloud Accounting on Boards of Directors in the Middle East and North African (MENA) Countries

Authors: Ahmad Alqatan

Abstract:

Purpose: The purpose of this study is to analyze how the adoption of cloud accounting systems influences the governance practices and performance of boards of directors in MENA countries. The research aims to identify the benefits and challenges associated with cloud accounting and its role in improving board efficiency and oversight. Methodology: This research employs a mixed-method approach, combining quantitative surveys and qualitative interviews with board members and financial officers from a diverse range of companies in the MENA region. The quantitative data is analyzed to determine patterns and correlations, while qualitative insights provide a deeper understanding of the contextual factors influencing cloud accounting adoption and its impacts. Findings: The findings indicate that cloud accounting significantly enhances the decision-making capabilities of boards by providing real-time financial information and facilitating better communication among board members. Companies using cloud accounting reports improved financial oversight and more timely and accurate financial reporting. However, the research also identifies challenges such as cybersecurity concerns, resistance to change, and the need for ongoing training and support. Practical Implications: The study suggests that MENA companies can benefit from investing in cloud accounting technologies to improve board governance and strategic decision-making. It highlights the importance of addressing cybersecurity issues and providing adequate training for board members to maximize the advantages of cloud accounting. Originality: This research contributes to the limited literature on cloud accounting in the MENA region, offering valuable insights for policymakers, business leaders, and academics. It underscores the transformative potential of cloud accounting for enhancing board performance and corporate governance in emerging markets.

Keywords: cloud accounting, board of directors, MENA region, corporate governance, financial transparency, real-time data, decision-making, cybersecurity, technology adoption

Procedia PDF Downloads 34
20441 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring

Procedia PDF Downloads 152
20440 Managing the Transition from Voluntary to Mandatory Climate Reporting: The Role of Carbon Accounting

Authors: Qingliang Tang

Abstract:

The transition from voluntary to mandatory carbon reporting (also refers to climate reporting) poses serious challenges for accounting professionals aiming to support firms in achieving net-zero goals. The accounting literature addresses the topics that are currently bewildering accounting academics and professional accountants on how to make accounting as a useful tool for the management to achieve a carbon neutral business model. This paper explores the evolving role of carbon accounting within corporate financial reporting systems, emphasizing its integration as a crucial component. Key challenges addressed include data availability, climate risk assessment, defining reporting boundaries, selecting appropriate greenhouse gas (GHG) accounting methodologies, and integrating climate-related events into traditional financial statements. A dynamic, integrated carbon accounting framework is proposed to facilitate this transformative process effectively. Furthermore, the paper identifies critical knowledge gaps and sets forth a research agenda aimed at enhancing transparency and relevance in carbon accounting and reporting systems, thereby empowering informed decision-making. The purpose of the paper is to succinctly capture the essence of carbon accounting practice in the transitional period, focusing on the challenges, proposed solutions, and future research directions in the realm of carbon accounting and mandatory climate reporting.

Keywords: mandatory carbon reporting, carbon management, net zero target, sustainability, climate risks

Procedia PDF Downloads 21
20439 An Integrated Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) Model

Authors: Babak Daneshvar Rouyendegh

Abstract:

The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.

Keywords: Decision-Makers (DMs), Multi-Criteria Decision-Making (MCDM), Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE), Intuitionistic Fuzzy Numbers (IFN)

Procedia PDF Downloads 679
20438 Radar Fault Diagnosis Strategy Based on Deep Learning

Authors: Bin Feng, Zhulin Zong

Abstract:

Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.

Keywords: radar system, fault diagnosis, deep learning, radar fault

Procedia PDF Downloads 92
20437 Degree Tracking System (DTS) to Improve the Efficiency and Effectiveness of Open Distance Learning System: A Case Study of Islamabad Allama Iqbal Open University (AIOU)

Authors: Hatib Shabbir

Abstract:

Student support services play an important role in providing technical and motivational support to distance learner. ICT based systems have improved the efficiency and effectiveness of support services. In distance education, students being at distant require quick responses from their institution. In the manual system, it is practically hard to give prompt response to each and every student, so as a result student has to suffer a lot. The best way to minimize inefficiencies is to use automated systems. This project involves the development of centralized automated software that would not only replace the manual degree issuance system of 1.3 million students studying at AIOU but also provide online tracking to all the students applying for Degrees. DTS is also the first step towards the paperless culture which is adopted by the major organizations of the world. DTS would not only save university cost but also save students cost and time too by conveying all the information/objection through email and SMS. Moreover, DTS also monitors the performance of each and every individual working in the exam department AIOU and generates daily, monthly and yearly reports of every individual which helps a lot in continuous performance monitoring of the employees.

Keywords: aiou dts, dts aiou, dts, degree tracking aiou

Procedia PDF Downloads 219
20436 Identifying Critical Success Factors for Data Quality Management through a Delphi Study

Authors: Maria Paula Santos, Ana Lucas

Abstract:

Organizations support their operations and decision making on the data they have at their disposal, so the quality of these data is remarkably important and Data Quality (DQ) is currently a relevant issue, the literature being unanimous in pointing out that poor DQ can result in large costs for organizations. The literature review identified and described 24 Critical Success Factors (CSF) for Data Quality Management (DQM) that were presented to a panel of experts, who ordered them according to their degree of importance, using the Delphi method with the Q-sort technique, based on an online questionnaire. The study shows that the five most important CSF for DQM are: definition of appropriate policies and standards, control of inputs, definition of a strategic plan for DQ, organizational culture focused on quality of the data and obtaining top management commitment and support.

Keywords: critical success factors, data quality, data quality management, Delphi, Q-Sort

Procedia PDF Downloads 218
20435 Nurses Care Practices at End of Life in Intensive Care Units in the Kingdom of Bahrain

Authors: M. Yaqoob, C. S. O’Neill, S. Faraj, C. L. O’Neill

Abstract:

This paper presents the preliminary findings from a study exploring nurse’s contributions to end of life decisions and to the care of dying patients in ICU units in the Kingdom of Bahrain. The process of dying is complex as medical clinicians are frequently unable to say with certainty when death will occur. It is generally accepted that end of life care begins when it is possible to know that death is imminent. Nurses do not make medical treatment decisions when caring for a dying patient. There are, however, many other types of decisions made when a patient is approaching the end of life and nurses are either formally or informally part of these decision making processes. This study explored nurses care practices at the end of life, in two ICU units in large hospitals in the Kingdom of Bahrain. The research design was a grounded theory approach. Ten nurses participated, six of whom were Bahraini nationals and four were Indian. A core category death avoidance talk was supported by three major subcategories, degrees of involvement in decision making; signalling and creating an awareness of death; care shifting from dying patients to family. Despite nurses asserting that they carried out the orders of doctors and had no role in decision making processes at end of life this study showed that there were degrees of nurse involvement. Doctors frequently discussed the patient’s clinical condition with nurses and also sought information regarding the family. Information about the family was of particular relevance if the doctor was considering a DNR order, which the nurses equated with dying. Families were not always informed when a DNR decision was made. When families were not informed the nurses engaged in sophisticated rituals signalling and creating awareness to family members that the death of their loved one was near. This process also involved a subtle shifting of care from the dying patient to the family. This seminar paper will focus particularly on how nurses signal and create an awareness of death in an ICU setting. The findings suggest that despite the avoidance of death talk in the ICU nurses indirectly convey and create an awareness that death is near to family members.

Keywords: decision making, dying patients, end of life, intensive care unit

Procedia PDF Downloads 391
20434 Review of Models of Consumer Behaviour and Influence of Emotions in the Decision Making

Authors: Mikel Alonso López

Abstract:

In order to begin the process of studying the task of making consumer decisions, the main decision models must be analyzed. The objective of this task is to see if there is a presence of emotions in those models, and analyze how authors that have created them consider their impact in consumer choices. In this paper, the most important models of consumer behavior are analysed. This review is useful to consider an unproblematic background knowledge in the literature. The order that has been established for this study is chronological.

Keywords: consumer behaviour, emotions, decision making, consumer psychology

Procedia PDF Downloads 453
20433 Impact of Similarity Ratings on Human Judgement

Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos

Abstract:

Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.

Keywords: ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval

Procedia PDF Downloads 137
20432 The Missing Link in Holistic Health Care: Value-Based Medicine in Entrustable Professional Activities for Doctor-Patient Relationship

Authors: Ling-Lang Huang

Abstract:

Background: The holistic health care should ideally cover physical, mental, spiritual, and social aspects of a patient. With very constrained time in current clinical practice system, medical decisions often tip the balance in favor of evidence-based medicine (EBM) in comparison to patient's personal values. Even in the era of competence-based medical education (CBME), when scrutinizing the items of entrustable professional activities (EPAs), we found that EPAs of establishing doctor-patient relationship remained incomplete or even missing. This phenomenon prompted us to raise this project aiming at advocating value-based medicine (VBM), which emphasizes the importance of patient’s values in medical decisions. A true and effective doctor-patient communication and relationship should be a well-balanced harmony of EBM and VBM. By constructing VBM into current EPAs, we can further promote genuine shared decision making (SDM) and fix the missing link in holistic health care. Methods: In this project, we are going to find out EPA elements crucial for establishing an ideal doctor-patient relationship through three distinct pairs of doctor-patient relationships: patients with pulmonary arterial hypertension (relatively young but with grave disease), patients undergoing surgery (facing critical medical decisions), and patients with terminal diseases (facing forthcoming death). We’ll search for important EPA elements through the following steps: 1. Narrative approach to delineate patients’ values among 2. distinct groups. 3.Hermeneutics-based interview: semi-structured interview will be conducted for both patients and physicians, followed by qualitative analysis of collected information by compiling, disassembling, reassembling, interpreting, and concluding. 4. Preliminarily construct those VBM elements into EPAs for doctor-patient relationships in 3 groups. Expected Outcomes: The results of this project are going to give us invaluable information regarding the impact of patients’ values, while facing different medical situations, on the final medical decision. The competence of well-blending and -balanced both values from patients and evidence from clinical sciences is the missing link in holistic health care and should be established in future EPAs to enhance an effective SDM.

Keywords: value-based medicine, shared decision making, entrustable professional activities, holistic health care

Procedia PDF Downloads 122
20431 Synthesis, Antibacterial Activities, and Synergistic Effects of Novel Juglone and Naphthazarin Derivatives Against Clinical Methicillin-Resistant Staphylococcus aureus Strains

Authors: Zohra Benfodda, Valentin Duvauchelle, Chaimae Majdi, David Bénimélis, Catherine Dunyach-Remy, Patrick Meffre

Abstract:

New antibiotics are necessary to treat microbial pathogens, especially ESKAPE pathogens that are becoming increasingly resistant to available treatment. Despite the medical need, the number of newly approved drugs continues to decline. The majority of antibiotics under clinical development are natural products or derivatives thereof. 43 juglone/naphthazarin derivatives were synthesized using Minisci-type direct C–H alkylation and evaluated for their antibacterial properties against various clinical and reference Gram-positive MSSA, clinical Gram-positive MRSA. Different compounds of the synthesized series showed promising activity against clinical and reference MSSA (MIC: 1–8 μg/ml) and good efficacy against clinical MRSA (MIC: 2–8 μg/ml) strains. The synergistic effects of active compounds were evaluated with reference antibiotics (vancomycin and cloxacillin), and it was found that the antibiotic combination with those active compounds efficiently enhanced the antimicrobial activity and consequently the MIC values of reference antibiotics were lowered up to 1/16th of the original MIC. These synthesized compounds did not present hemolytic activity on sheep red blood cells. In addition to the in silico prediction of ADME profile parameter which is promising and encouraging for further development.

Keywords: juglone, naphthazarin, antibacterial, clinical MRSA, synergistic studies, MIC determination

Procedia PDF Downloads 127
20430 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine

Authors: Chen Wang, Chun Liang

Abstract:

Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.

Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine

Procedia PDF Downloads 174
20429 Advanced Analytical Competency Is Necessary for Strategic Leadership to Achieve High-Quality Decision-Making

Authors: Amal Mohammed Alqahatni

Abstract:

This paper is a non-empirical analysis of existing literature on digital leadership competency, data-driven organizations, and dealing with AI technology (big data). This paper will provide insights into the importance of developing the leader’s analytical skills and style to be more effective for high-quality decision-making in a data-driven organization and achieve creativity during the organization's transformation to be digitalized. Despite the enormous potential that big data has, there are not enough experts in the field. Many organizations faced an issue with leadership style, which was considered an obstacle to organizational improvement. It investigates the obstacles to leadership style in this context and the challenges leaders face in coaching and development. The leader's lack of analytical skill with AI technology, such as big data tools, was noticed, as was the lack of understanding of the value of that data, resulting in poor communication with others, especially in meetings when the decision should be made. By acknowledging the different dynamics of work competency and organizational structure and culture, organizations can make the necessary adjustments to best support their leaders. This paper reviews prior research studies and applies what is known to assist with current obstacles. This paper addresses how analytical leadership will assist in overcoming challenges in a data-driven organization's work environment.

Keywords: digital leadership, big data, leadership style, digital leadership challenge

Procedia PDF Downloads 69
20428 Building Information Modeling-Based Information Exchange to Support Facilities Management Systems

Authors: Sandra T. Matarneh, Mark Danso-Amoako, Salam Al-Bizri, Mark Gaterell

Abstract:

Today’s facilities are ever more sophisticated and the need for available and reliable information for operation and maintenance activities is vital. The key challenge for facilities managers is to have real-time accurate and complete information to perform their day-to-day activities and to provide their senior management with accurate information for decision-making process. Currently, there are various technology platforms, data repositories, or database systems such as Computer-Aided Facility Management (CAFM) that are used for these purposes in different facilities. In most current practices, the data is extracted from paper construction documents and is re-entered manually in one of these computerized information systems. Construction Operations Building information exchange (COBie), is a non-proprietary data format that contains the asset non-geometric data which was captured and collected during the design and construction phases for owners and facility managers use. Recently software vendors developed add-in applications to generate COBie spreadsheet automatically. However, most of these add-in applications are capable of generating a limited amount of COBie data, in which considerable time is still required to enter the remaining data manually to complete the COBie spreadsheet. Some of the data which cannot be generated by these COBie add-ins is essential for facilities manager’s day-to-day activities such as job sheet which includes preventive maintenance schedules. To facilitate a seamless data transfer between BIM models and facilities management systems, we developed a framework that enables automated data generation using the data extracted directly from BIM models to external web database, and then enabling different stakeholders to access to the external web database to enter the required asset data directly to generate a rich COBie spreadsheet that contains most of the required asset data for efficient facilities management operations. The proposed framework is a part of ongoing research and will be demonstrated and validated on a typical university building. Moreover, the proposed framework supplements the existing body of knowledge in facilities management domain by providing a novel framework that facilitates seamless data transfer between BIM models and facilities management systems.

Keywords: building information modeling, BIM, facilities management systems, interoperability, information management

Procedia PDF Downloads 117
20427 Stress and Social Support as Predictors of Quality of Life: A Case among Flood Victims in Malaysia

Authors: Najib Ahmad Marzuki, Che Su Mustaffa, Johana Johari, Nur Haffiza Rahaman

Abstract:

The purpose of this paper is to examine the effects and relationship of stress and social support towards the quality of life among flood victims in Malaysia. A total of 764 respondents took part in the survey via random sampling. The depression, anxiety, and stress scales were utilized to measure stress while The Multidimensional Scale of Perceived Social Support was used to measure the quality of life. The findings of this study indicate that there were significant correlations between variables in the study. The findings show a significant negative relation between stress and quality of life, and significant positive correlations between support from family as well as support from friends with the quality of life. Stress and support from family were found to be significant predictors and influences the quality of life among flood victims.

Keywords: stress, social support, quality of life, flood victims

Procedia PDF Downloads 557
20426 Impacts on Marine Ecosystems Using a Multilayer Network Approach

Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade

Abstract:

Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.

Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management

Procedia PDF Downloads 115
20425 Optimizing Residential Housing Renovation Strategies at Territorial Scale: A Data Driven Approach and Insights from the French Context

Authors: Rit M., Girard R., Villot J., Thorel M.

Abstract:

In a scenario of extensive residential housing renovation, stakeholders need models that support decision-making through a deep understanding of the existing building stock and accurate energy demand simulations. To address this need, we have modified an optimization model using open data that enables the study of renovation strategies at both territorial and national scales. This approach provides (1) a definition of a strategy to simplify decision trees from theoretical combinations, (2) input to decision makers on real-world renovation constraints, (3) more reliable identification of energy-saving measures (changes in technology or behaviour), and (4) discrepancies between currently planned and actually achieved strategies. The main contribution of the studies described in this document is the geographic scale: all residential buildings in the areas of interest were modeled and simulated using national data (geometries and attributes). These buildings were then renovated, when necessary, in accordance with the environmental objectives, taking into account the constraints applicable to each territory (number of renovations per year) or at the national level (renovation of thermal deficiencies (Energy Performance Certificates F&G)). This differs from traditional approaches that focus only on a few buildings or archetypes. This model can also be used to analyze the evolution of a building stock as a whole, as it can take into account both the construction of new buildings and their demolition or sale. Using specific case studies of French territories, this paper highlights a significant discrepancy between the strategies currently advocated by decision-makers and those proposed by our optimization model. This discrepancy is particularly evident in critical metrics such as the relationship between the number of renovations per year and achievable climate targets or the financial support currently available to households and the remaining costs. In addition, users are free to seek optimizations for their building stock across a range of different metrics (e.g., financial, energy, environmental, or life cycle analysis). These results are a clear call to re-evaluate existing renovation strategies and take a more nuanced and customized approach. As the climate crisis moves inexorably forward, harnessing the potential of advanced technologies and data-driven methodologies is imperative.

Keywords: residential housing renovation, MILP, energy demand simulations, data-driven methodology

Procedia PDF Downloads 68
20424 Incorporating Information Gain in Regular Expressions Based Classifiers

Authors: Rosa L. Figueroa, Christopher A. Flores, Qing Zeng-Treitler

Abstract:

A regular expression consists of sequence characters which allow describing a text path. Usually, in clinical research, regular expressions are manually created by programmers together with domain experts. Lately, there have been several efforts to investigate how to generate them automatically. This article presents a text classification algorithm based on regexes. The algorithm named REX was designed, and then, implemented as a simplified method to create regexes to classify Spanish text automatically. In order to classify ambiguous cases, such as, when multiple labels are assigned to a testing example, REX includes an information gain method Two sets of data were used to evaluate the algorithm’s effectiveness in clinical text classification tasks. The results indicate that the regular expression based classifier proposed in this work performs statically better regarding accuracy and F-measure than Support Vector Machine and Naïve Bayes for both datasets.

Keywords: information gain, regular expressions, smith-waterman algorithm, text classification

Procedia PDF Downloads 321
20423 Redefining Health Information Systems with Machine Learning: Harnessing the Potential of AI-Powered Data Fusion Ecosystems

Authors: Shohoni Mahabub

Abstract:

Health Information Systems (HIS) are essential to contemporary healthcare; nonetheless, they frequently encounter challenges such as data fragmentation, inefficiencies, and an absence of real-time analytics. The advent of machine learning (ML) and artificial intelligence (AI) provides a revolutionary potential to address these difficulties via AI-driven data fusion ecosystems. These ecosystems integrate many health data sources, including electronic health records (EHRs), wearable devices, and genetic data, with sophisticated machine learning techniques such as natural language processing (NLP) and predictive analytics to produce actionable insights. Through the integration of strong data intake layers, secure interoperability protocols, and privacy-preserving models, these ecosystems provide individualized treatment, early illness diagnosis, and enhanced operational efficiency. This paradigm change enhances clinical decision-making and rectifies systemic inefficiencies in healthcare delivery. Nonetheless, adoption presents problems such as data privacy concerns, ethical considerations, and scalability constraints. The study examines options such as federated learning for safe, decentralized data sharing, explainable AI for transparency, and cloud-based infrastructure for scalability to address these issues. These ecosystems aim to address health equity disparities, particularly in resource-limited environments, and improve public health surveillance, notably in pandemic response initiatives. This article emphasizes the revolutionary potential of AI-driven data fusion ecosystems in redefining Health Information Systems by providing an implementation roadmap and showcasing successful deployment case studies. The suggested method promotes a cooperative initiative among legislators, healthcare professionals, and technology to establish a cohesive, efficient, and patient-centric healthcare model.

Keywords: AI-powered healthcare systems, data fusion ecosystem, predictive analytics, digital health interoperability

Procedia PDF Downloads 15