Search results for: Color Structure-Texture Image Decomposition
3686 Empirical Mode Decomposition Based Denoising by Customized Thresholding
Authors: Wahiba Mohguen, Raïs El’hadi Bekka
Abstract:
This paper presents a denoising method called EMD-Custom that was based on Empirical Mode Decomposition (EMD) and the modified Customized Thresholding Function (Custom) algorithms. EMD was applied to decompose adaptively a noisy signal into intrinsic mode functions (IMFs). Then, all the noisy IMFs got threshold by applying the presented thresholding function to suppress noise and to improve the signal to noise ratio (SNR). The method was tested on simulated data and real ECG signal, and the results were compared to the EMD-Based signal denoising methods using the soft and hard thresholding. The results showed the superior performance of the proposed EMD-Custom denoising over the traditional approach. The performances were evaluated in terms of SNR in dB, and Mean Square Error (MSE).Keywords: customized thresholding, ECG signal, EMD, hard thresholding, soft-thresholding
Procedia PDF Downloads 3023685 To Determine the Effects of Regulatory Food Safety Inspections on the Grades of Different Categories of Retail Food Establishments across the Dubai Region
Authors: Shugufta Mohammad Zubair
Abstract:
This study explores the Effect of the new food System Inspection system also called the new inspection color card scheme on reduction of critical & major food safety violations in Dubai. Data was collected from all retail food service establishments located in two zones in the city. Each establishment was visited twice, once before the launch of the new system and one after the launch of the system. In each visit, the Inspection checklist was used as the evaluation tool for observation of the critical and major violations. The old format of the inspection checklist was concerned with scores based on the violations; but the new format of the checklist for the new inspection color card scheme is divided into administrative, general major and critical which gives a better classification for the inspectors to identify the critical and major violations of concerned. The study found that there has been a better and clear marking of violations after the launch of new inspection system wherein the inspectors are able to mark and categories the violations effectively. There had been a 10% decrease in the number of food establishment that was previously given A grade. The B & C grading were also considerably dropped by 5%.Keywords: food inspection, risk assessment, color card scheme, violations
Procedia PDF Downloads 3243684 Vector Quantization Based on Vector Difference Scheme for Image Enhancement
Authors: Biji Jacob
Abstract:
Vector quantization algorithm which uses minimum distance calculation for codebook generation, a time consuming calculation performed on each pixel values leads to computation complexity. The codebook is updated by comparing the distance of each vector to their centroid vector and measure for their closeness. In this paper vector quantization is modified based on vector difference algorithm for image enhancement purpose. In the proposed scheme, vector differences between the vectors are considered as the new generation vectors or new codebook vectors. The codebook is updated by comparing the new generation vector with a threshold value having minimum error with the parent vector. The minimum error decides the fitness of each newly generated vector. Thus the codebook is generated in an adaptive manner and the fitness value is determined for the suppression of the degraded portion of the image and thereby leads to the enhancement of the image through the adaptive searching capability of the vector quantization through vector difference algorithm. Experimental results shows that the vector difference scheme efficiently modifies the vector quantization algorithm for enhancing the image with peak signal to noise ratio (PSNR), mean square error (MSE), Euclidean distance (E_dist) as the performance parameters.Keywords: codebook, image enhancement, vector difference, vector quantization
Procedia PDF Downloads 2673683 Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species
Authors: Kamel Al-Khaled
Abstract:
Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples.Keywords: fractional partial differential equations, reaction-diffusion equations, adomian decomposition, biological species
Procedia PDF Downloads 3753682 Improving 99mTc-tetrofosmin Myocardial Perfusion Images by Time Subtraction Technique
Authors: Yasuyuki Takahashi, Hayato Ishimura, Masao Miyagawa, Teruhito Mochizuki
Abstract:
Quantitative measurement of myocardium perfusion is possible with single photon emission computed tomography (SPECT) using a semiconductor detector. However, accumulation of 99mTc-tetrofosmin in the liver may make it difficult to assess that accurately in the inferior myocardium. Our idea is to reduce the high accumulation in the liver by using dynamic SPECT imaging and a technique called time subtraction. We evaluated the performance of a new SPECT system with a cadmium-zinc-telluride solid-state semi- conductor detector (Discovery NM 530c; GE Healthcare). Our system acquired list-mode raw data over 10 minutes for a typical patient. From the data, ten SPECT images were reconstructed, one for every minute of acquired data. Reconstruction with the semiconductor detector was based on an implementation of a 3-D iterative Bayesian reconstruction algorithm. We studied 20 patients with coronary artery disease (mean age 75.4 ± 12.1 years; range 42-86; 16 males and 4 females). In each subject, 259 MBq of 99mTc-tetrofosmin was injected intravenously. We performed both a phantom and a clinical study using dynamic SPECT. An approximation to a liver-only image is obtained by reconstructing an image from the early projections during which time the liver accumulation dominates (0.5~2.5 minutes SPECT image-5~10 minutes SPECT image). The extracted liver-only image is then subtracted from a later SPECT image that shows both the liver and the myocardial uptake (5~10 minutes SPECT image-liver-only image). The time subtraction of liver was possible in both a phantom and the clinical study. The visualization of the inferior myocardium was improved. In past reports, higher accumulation in the myocardium due to the overlap of the liver is un-diagnosable. Using our time subtraction method, the image quality of the 99mTc-tetorofosmin myocardial SPECT image is considerably improved.Keywords: 99mTc-tetrofosmin, dynamic SPECT, time subtraction, semiconductor detector
Procedia PDF Downloads 3353681 Pale, Firm and Non-Exudative (PFN): An Emerging Major Broiler Breast Meat Group
Authors: Cintia Midori Kaminishikawahara, Fernanda Jéssica Mendonça, Moisés Grespan, Elza Iouko Ida, Massami Shimokomaki, Adriana Lourenço Soares
Abstract:
The quality of broiler breast meat is changing as a result of continuing emphasis on genetically bird’s selection for efficiently higher meat production. The consumer is experiencing a cooked product that is drier and less juicy when consumed. Breast meat has been classified as PSE (pale, soft, exudative), DFD (dark, firm, dry) and normal color meat. However, recently variations of this color have been observed and they are not in line with the specificity of the meat functional properties. Thus, the objective of this work was to report the finding of a new pale meat color group characterized as Pale, Firm and Non-exudative (PFN) based on its pH, color, meat functional properties and micro structural evaluation. Breast meat fillets samples (n=1045) from commercial line were classified into PSE (pH ≤5.8, L* ≥ 53.0), PFN (pH > 5.8 and L* ≥ 53.0) and Normal (pH >5.8 and L* < 53.0), based on pH and L* values. In sequence, a total of 30 samples of each group were analyzed for the water holding capacity (WHC) and shear force (SF). The incidence was 9.1% for PSE meat, 85.7% for PFN and 5.2% for Normal meat. The PSE meat presented lower values of WHC (P ≤ 0.05) followed in sequence by PFN and Normal samples and also the SF values of fresh PFN was higher than PSE meat (P ≤ 0.05) and similar to Normal samples. Under optical microscopy, the cell diameter was 10% higher for PFN in relation to PSE meat and similar to Normal meat. These preliminary results indicate an emerging group of breast meat and it should be considered that the Pale, Firm and Non-exudative should be considered as an ideal broiler breast meat quality.Keywords: broiler PSE meat, light microscopy, texture, water holding capacity
Procedia PDF Downloads 3543680 A Self Organized Map Method to Classify Auditory-Color Synesthesia from Frontal Lobe Brain Blood Volume
Authors: Takashi Kaburagi, Takamasa Komura, Yosuke Kurihara
Abstract:
Absolute pitch is the ability to identify a musical note without a reference tone. Training for absolute pitch often occurs in preschool education. It is necessary to clarify how well the trainee can make use of synesthesia in order to evaluate the effect of the training. To the best of our knowledge, there are no existing methods for objectively confirming whether the subject is using synesthesia. Therefore, in this study, we present a method to distinguish the use of color-auditory synesthesia from the separate use of color and audition during absolute pitch training. This method measures blood volume in the prefrontal cortex using functional Near-infrared spectroscopy (fNIRS) and assumes that the cognitive step has two parts, a non-linear step and a linear step. For the linear step, we assume a second order ordinary differential equation. For the non-linear part, it is extremely difficult, if not impossible, to create an inverse filter of such a complex system as the brain. Therefore, we apply a method based on a self-organizing map (SOM) and are guided by the available data. The presented method was tested using 15 subjects, and the estimation accuracy is reported.Keywords: absolute pitch, functional near-infrared spectroscopy, prefrontal cortex, synesthesia
Procedia PDF Downloads 2633679 Binarized-Weight Bilateral Filter for Low Computational Cost Image Smoothing
Authors: Yu Zhang, Kohei Inoue, Kiichi Urahama
Abstract:
We propose a simplified bilateral filter with binarized coefficients for accelerating it. Its computational cost is further decreased by sampling pixels. This computationally low cost filter is useful for smoothing or denoising images by using mobile devices with limited computational power.Keywords: bilateral filter, binarized-weight bilateral filter, image smoothing, image denoising, pixel sampling
Procedia PDF Downloads 4693678 Research on Pollutant Characterization and Timing Decomposition in Beijing During the 2018-2022
Authors: Gao Fangting
Abstract:
With the accelerated pace of industrialization and urbanization, the economic level has been significantly improved, and at the same time, the air quality situation has also become a focus of attention, which not only affects people's health but also has certain impacts on the economy and ecology. As the capital city of China, the air quality situation in Beijing has attracted much attention. In this paper, based on the day-by-day PM2.5, PM10, CO, NO₂, SO₂ and O₃ conditions in Beijing from 2018 to 2022, the characterization of pollutants is launched, and the seasonal decomposition and prediction of the main pollutants, PM2.5, PM10 and O3, are performed in STL. The results of the study show that (1) the overall air quality of Beijing has significantly improved from 2018 to 2022, and the main pollutants are PM2.5, PM10, and O₃; (2) the seasonal intensities of the main pollutants are higher, and they are influenced by seasonal factors; and (3) it is predicted that the O₃ concentration will have a trend of slowly increasing from 2023 to 2026, and the PM10 and PM2.5 pollution situation slowly improves.Keywords: air pollutants, Beijing, characteristic analysis, STL
Procedia PDF Downloads 213677 Atomic Decomposition Audio Data Compression and Denoising Using Sparse Dictionary Feature Learning
Authors: T. Bryan , V. Kepuska, I. Kostnaic
Abstract:
A method of data compression and denoising is introduced that is based on atomic decomposition of audio data using “basis vectors” that are learned from the audio data itself. The basis vectors are shown to have higher data compression and better signal-to-noise enhancement than the Gabor and gammatone “seed atoms” that were used to generate them. The basis vectors are the input weights of a Sparse AutoEncoder (SAE) that is trained using “envelope samples” of windowed segments of the audio data. The envelope samples are extracted from the audio data by performing atomic decomposition with Gabor or gammatone seed atoms. This process identifies segments of audio data that are locally coherent with the seed atoms. Envelope samples are extracted by identifying locally coherent audio data segments with Gabor or gammatone seed atoms, found by matching pursuit. The envelope samples are formed by taking the kronecker products of the atomic envelopes with the locally coherent data segments. Oracle signal-to-noise ratio (SNR) verses data compression curves are generated for the seed atoms as well as the basis vectors learned from Gabor and gammatone seed atoms. SNR data compression curves are generated for speech signals as well as early American music recordings. The basis vectors are shown to have higher denoising capability for data compression rates ranging from 90% to 99.84% for speech as well as music. Envelope samples are displayed as images by folding the time series into column vectors. This display method is used to compare of the output of the SAE with the envelope samples that produced them. The basis vectors are also displayed as images. Sparsity is shown to play an important role in producing the highest denoising basis vectors.Keywords: sparse dictionary learning, autoencoder, sparse autoencoder, basis vectors, atomic decomposition, envelope sampling, envelope samples, Gabor, gammatone, matching pursuit
Procedia PDF Downloads 2523676 Review of the Software Used for 3D Volumetric Reconstruction of the Liver
Authors: P. Strakos, M. Jaros, T. Karasek, T. Kozubek, P. Vavra, T. Jonszta
Abstract:
In medical imaging, segmentation of different areas of human body like bones, organs, tissues, etc. is an important issue. Image segmentation allows isolating the object of interest for further processing that can lead for example to 3D model reconstruction of whole organs. Difficulty of this procedure varies from trivial for bones to quite difficult for organs like liver. The liver is being considered as one of the most difficult human body organ to segment. It is mainly for its complexity, shape versatility and proximity of other organs and tissues. Due to this facts usually substantial user effort has to be applied to obtain satisfactory results of the image segmentation. Process of image segmentation then deteriorates from automatic or semi-automatic to fairly manual one. In this paper, overview of selected available software applications that can handle semi-automatic image segmentation with further 3D volume reconstruction of human liver is presented. The applications are being evaluated based on the segmentation results of several consecutive DICOM images covering the abdominal area of the human body.Keywords: image segmentation, semi-automatic, software, 3D volumetric reconstruction
Procedia PDF Downloads 2903675 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video
Authors: Nidhal K. Azawi, John M. Gauch
Abstract:
Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.Keywords: colonoscopy classification, feature extraction, image alignment, machine learning
Procedia PDF Downloads 2533674 Motivations, Perceptions, and Aspirations concerning Teaching as a Career for High School Students from Racially/Ethnically Diverse Backgrounds
Authors: Mi Ok Kang
Abstract:
This study explores the factors that motivate urban high school students from racially/ethnically diverse backgrounds to choose teaching as a future career. It draws on in-depth interviews with high school students of color living in an urban downtown located in an intermountain area in the U.S. Using the factors influencing teaching choice (FIT-Choice) model, this study examines the motivations, mobility experiences, and aspirations of participating high school students who self-identified as Latino/a, Tongan, and Chinese. The study identifies influential factors -both challenges and strengthening effects- that high school students of color experience in their career decision making. The study concludes that self-perceptions of teaching abilities, parental support, social connections, job security, and prior work with children during the internship in K-12 classroom motivated them to be a teacher. Limitations such as financial struggles of parents, the low social status of teaching career, and the low salary and benefit packages in the U.S. are among the factors that cause students to waver in or doubt their career choice.Keywords: career development, diversifying teaching force, FIT-Choice, high school students of color
Procedia PDF Downloads 2843673 The Research of Culture Heritage Tourism Loyalty in Taiwan
Authors: Chih-Wen Wu
Abstract:
This study examines the antecedents of heritage tourism loyalty and its relation to destination image, consumer travel experience, and destination satisfaction in the tourism context. In this respect, a number of important questions concerning how destination image, consumer travel experience, and destination satisfaction impact destination loyalty are raised. This study attempts to identify three key antecedents of loyalty in the heritage context. The author empirically tests predicted relationships by using personal interview data from 475 foreign tourists. The conceptual model investigated the relevant relationships among the constructs by using confirmatory factor analysis(CFA) and structural equation modeling (SEM) approach. Findings from the research sample support the argument that destination image, consumer travel experience, destination satisfaction are the key determinants of destination loyalty. Destination image and consumer travel experience influence destination satisfaction. The author also discusses theoretical and managerial implications of research findings for marketing the heritage globally.Keywords: heritage, destination loyalty, destination image, consumer travel experience, destination satisfaction, tourism
Procedia PDF Downloads 4443672 Colour Recognition Pen Technology in Dental Technique and Dental Laboratories
Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad
Abstract:
Recognition of the color spectrum of the teeth plays a significant role in the dental laboratories to produce dentures. Since there are various types and colours of teeth for each patient, there is a need to specify the exact and the most suitable colour to produce a denture. Usually, dentists utilize pallets to identify the color that suits a patient based on the color of the adjacent teeth. Consistent with this, there can be human errors by dentists to recognize the optimum colour for the patient, and it can be annoying for the patient. According to the statistics, there are some claims from the patients that they are not satisfied by the colour of their dentures after the installation of the denture in their mouths. This problem emanates from the lack of sufficient accuracy during the colour recognition process of denture production. The colour recognition pen (CRP) is a technology to distinguish the colour spectrum of the intended teeth with the highest accuracy. CRP is equipped with a sensor that is capable to read and analyse a wide range of spectrums. It is also connected to a database that contains all the spectrum ranges, which exist in the market. The database is editable and updatable based on market requirements. Another advantage of this invention can be mentioned as saving time for the patients since there is no need to redo the denture production in case of failure on the first try.Keywords: colour recognition pen, colour spectrum, dental laboratory, denture
Procedia PDF Downloads 1983671 Dyeing with Natural Dye from Pterocarpus indicus Extract Using Eco-Friendly Mordants
Authors: Ploysai Ohama, Nuttawadee Hanchengchai, Thiva Saksri
Abstract:
Natural dye extracted from Pterocarpus indicus was applied to a cotton fabric and silk yarn by dyeing processing different eco-friendly mordants. Analytical studies such as UV–VIS spectrophotometry and gravimetric analysis were performed on the extracts. The color of each dyed material was investigated in terms of the CIELAB (L*, a* and b*) and K/S values. Cotton fabric dyed without mordants had a shade of greenish-brown, while those post-mordanted with selected eco-friendly mordants such as alum, lemon juice and limewater result in a variety of brown and darker color shade of fabric.Keywords: natural dyes, plant materials, dyeing, mordant
Procedia PDF Downloads 4153670 Texture-Based Image Forensics from Video Frame
Authors: Li Zhou, Yanmei Fang
Abstract:
With current technology, images and videos can be obtained more easily than ever. It is so easy to manipulate these digital multimedia information when obtained, and that the content or source of the image and video could be easily tampered. In this paper, we propose to identify the image and video frame by the texture-based approach, e.g. Markov Transition Probability (MTP), which is in space domain, DCT domain and DWT domain, respectively. In the experiment, image and video frame database is constructed, and is used to train and test the classifier Support Vector Machine (SVM). Experiment results show that the texture-based approach has good performance. In order to verify the experiment result, and testify the universality and robustness of algorithm, we build a random testing dataset, the random testing result is in keeping with above experiment.Keywords: multimedia forensics, video frame, LBP, MTP, SVM
Procedia PDF Downloads 4273669 Information System for Early Diabetic Retinopathy Diagnostics Based on Multiscale Texture Gradient Method
Authors: L. S. Godlevsky, N. V. Kresyun, V. P. Martsenyuk, K. S. Shakun, T. V. Tatarchuk, K. O. Prybolovets, L. F. Kalinichenko, M. Karpinski, T. Gancarczyk
Abstract:
Structures of eye bottom were extracted using multiscale texture gradient method and color characteristics of macular zone and vessels were verified in CIELAB scale. The difference of average values of L*, a* and b* coordinates of CIE (International Commision of Illumination) scale in patients with diabetes and healthy volunteers was compared. The average value of L* in diabetic patients exceeded such one in the group of practically healthy persons by 2.71 times (P < 0.05), while the value of a* index was reduced by 3.8 times when compared with control one (P < 0.05). b* index exceeded such one in the control group by 12.4 times (P < 0.05). The integrated index on color difference (ΔE) exceeded control value by 2.87 times (P < 0.05). More pronounced differences with ΔE were followed by a shorter period of MA appearance with a correlation level at -0.56 (P < 0.05). The specificity of diagnostics raised by 2.17 times (P < 0.05) and negative prognostic index exceeded such one determined with the expert method by 2.26 times (P < 0.05).Keywords: diabetic retinopathy, multiscale texture gradient, color spectrum analysis, medical diagnostics
Procedia PDF Downloads 1153668 Virtual 3D Environments for Image-Based Navigation Algorithms
Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka
Abstract:
This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.Keywords: simulation, visual navigation, mobile robot, data visualization
Procedia PDF Downloads 2553667 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 203666 Review of Ultrasound Image Processing Techniques for Speckle Noise Reduction
Authors: Kwazikwenkosi Sikhakhane, Suvendi Rimer, Mpho Gololo, Khmaies Oahada, Adnan Abu-Mahfouz
Abstract:
Medical ultrasound imaging is a crucial diagnostic technique due to its affordability and non-invasiveness compared to other imaging methods. However, the presence of speckle noise, which is a form of multiplicative noise, poses a significant obstacle to obtaining clear and accurate images in ultrasound imaging. Speckle noise reduces image quality by decreasing contrast, resolution, and signal-to-noise ratio (SNR). This makes it difficult for medical professionals to interpret ultrasound images accurately. To address this issue, various techniques have been developed to reduce speckle noise in ultrasound images, which improves image quality. This paper aims to review some of these techniques, highlighting the advantages and disadvantages of each algorithm and identifying the scenarios in which they work most effectively.Keywords: image processing, noise, speckle, ultrasound
Procedia PDF Downloads 1103665 Comparative Study of Skeletonization and Radial Distance Methods for Automated Finger Enumeration
Authors: Mohammad Hossain Mohammadi, Saif Al Ameri, Sana Ziaei, Jinane Mounsef
Abstract:
Automated enumeration of the number of hand fingers is widely used in several motion gaming and distance control applications, and is discussed in several published papers as a starting block for hand recognition systems. The automated finger enumeration technique should not only be accurate, but also must have a fast response for a moving-picture input. The high performance of video in motion games or distance control will inhibit the program’s overall speed, for image processing software such as Matlab need to produce results at high computation speeds. Since an automated finger enumeration with minimum error and processing time is desired, a comparative study between two finger enumeration techniques is presented and analyzed in this paper. In the pre-processing stage, various image processing functions were applied on a real-time video input to obtain the final cleaned auto-cropped image of the hand to be used for the two techniques. The first technique uses the known morphological tool of skeletonization to count the number of skeleton’s endpoints for fingers. The second technique uses a radial distance method to enumerate the number of fingers in order to obtain a one dimensional hand representation. For both discussed methods, the different steps of the algorithms are explained. Then, a comparative study analyzes the accuracy and speed of both techniques. Through experimental testing in different background conditions, it was observed that the radial distance method was more accurate and responsive to a real-time video input compared to the skeletonization method. All test results were generated in Matlab and were based on displaying a human hand for three different orientations on top of a plain color background. Finally, the limitations surrounding the enumeration techniques are presented.Keywords: comparative study, hand recognition, fingertip detection, skeletonization, radial distance, Matlab
Procedia PDF Downloads 3823664 The Effects of Yield and Yield Components of Some Quality Increase Applications on Razakı Grape Variety
Authors: Şehri Çınar, Aydın Akın
Abstract:
This study was conducted Razakı grape variety (Vitis vinifera L.) and its vine which was aged 19 was grown on 5 BB rootstock in a vegetation period of 2014 in Afyon province in Turkey. In this research, it was investigated whether the applications of Control (C), 1/3 Cluster Tip Reduction (1/3 CTR), Shoot Tip Reduction (STR), 1/3 CTR + STR, Boric Acid (BA), 1/3 CTR + BA, STR + BA, 1/3 CTR + STR + BA on yield and yield components of Razakı grape variety. The results were obtained as the highest fresh grape yield (7.74 kg/vine) with C application, as the highest cluster weight (244.62 g) with STR application, as the highest 100 berry weight (504.08 g) with C application, as the highest maturity index (36.89) with BA application, as the highest must yield (695.00 ml) with BA and (695.00 ml) with 1/3 CTR + STR + BA applications, as the highest intensity of L* color (46.93) with STR and (46.10) with 1/3 CTR + STR + BA applications, as the highest intensity of a* color (-5.37) with 1/3 CTR + STR and (-5.01) with STR, as the highest intensity of b* color (12.59) with STR application. The shoot tip reduction to increase cluster weight and boric acid application to increase maturity index of Razakı grape variety can be recommended.Keywords: razakı, 1/3 cluster tip reduction, shoot tip reduction, boric acid, yield and yield components
Procedia PDF Downloads 4733663 Large-Capacity Image Information Reduction Based on Single-Cue Saliency Map for Retinal Prosthesis System
Authors: Yili Chen, Xiaokun Liang, Zhicheng Zhang, Yaoqin Xie
Abstract:
In an effort to restore visual perception in retinal diseases, an electronic retinal prosthesis with thousands of electrodes has been developed. The image processing strategies of retinal prosthesis system converts the original images from the camera to the stimulus pattern which can be interpreted by the brain. Practically, the original images are with more high resolution (256x256) than that of the stimulus pattern (such as 25x25), which causes a technical image processing challenge to do large-capacity image information reduction. In this paper, we focus on developing an efficient image processing stimulus pattern extraction algorithm by using a single cue saliency map for extracting salient objects in the image with an optimal trimming threshold. Experimental results showed that the proposed stimulus pattern extraction algorithm performs quite well for different scenes in terms of the stimulus pattern. In the algorithm performance experiment, our proposed SCSPE algorithm have almost five times of the score compared with Boyle’s algorithm. Through experiment s we suggested that when there are salient objects in the scene (such as the blind meet people or talking with people), the trimming threshold should be set around 0.4max, in other situations, the trimming threshold values can be set between 0.2max-0.4max to give the satisfied stimulus pattern.Keywords: retinal prosthesis, image processing, region of interest, saliency map, trimming threshold selection
Procedia PDF Downloads 2463662 Analysis of the Significance of Multimedia Channels Using Sparse PCA and Regularized SVD
Authors: Kourosh Modarresi
Abstract:
The abundance of media channels and devices has given users a variety of options to extract, discover, and explore information in the digital world. Since, often, there is a long and complicated path that a typical user may venture before taking any (significant) action (such as purchasing goods and services), it is critical to know how each node (media channel) in the path of user has contributed to the final action. In this work, the significance of each media channel is computed using statistical analysis and machine learning techniques. More specifically, “Regularized Singular Value Decomposition”, and “Sparse Principal Component” has been used to compute the significance of each channel toward the final action. The results of this work are a considerable improvement compared to the present approaches.Keywords: multimedia attribution, sparse principal component, regularization, singular value decomposition, feature significance, machine learning, linear systems, variable shrinkage
Procedia PDF Downloads 3093661 The Impact of Upward Social Media Comparisons on Body Image and the Role of Physical Appearance Perfectionism and Cognitive Coping
Authors: Lauren Currell, Gemma Hurst
Abstract:
Introduction: The present study experimentally investigated the impact of attractive Instagram images on female’s body image. It also examined whether physical appearance perfectionism and cognitive coping predicted body image following upward comparisons to idealised bodies on Instagram. Methods: One-hundred and fifty-eight females (mean age 24.35 years) were randomly assigned to an experimental (where they compared their bodies to those of Instagram models) or control condition (where they critiqued landscape painting). All participants completed measures on physical appearance perfectionism, cognitive coping, and pre- and post-measures of body image. Results: Comparing one’s body to idealised bodies on Instagram resulted in increased appearance and weight dissatisfaction and decreased confidence, compared to the control condition. Physical appearance perfectionism and cognitive coping both predicted body image outcomes for the experimental condition. Discussion: Clinical implications, such as the prevention and treatment of body dissatisfaction, are discussed. Strengths and limitations of the current study are also noted, and suggestions for future research are provided.Keywords: perfectionism, cognitive coping, body image, social media
Procedia PDF Downloads 953660 Colored Image Classification Using Quantum Convolutional Neural Networks Approach
Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins
Abstract:
Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning
Procedia PDF Downloads 1293659 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator
Procedia PDF Downloads 2503658 A Calibration Method for Temperature Distribution Measurement of Thermochromic Liquid Crystal Based on Mathematical Morphology of Hue Image
Authors: Risti Suryantari, Flaviana
Abstract:
The aim of this research is to design calibration method of Thermochromic Liquid Crystal for temperature distribution measurement based on mathematical morphology of hue image A glass of water is placed on the surface of sample TLC R25C5W at certain temperature. We use scanner for image acquisition. The true images in RGB format is converted to HSV (hue, saturation, value) by taking of hue without saturation and value. Then the hue images is processed based on mathematical morphology using Matlab2013a software to get better images. There are differences on the final images after processing at each temperature variation based on visualization observation and the statistic value. The value of maximum and mean increase with rising temperature. It could be parameter to identify the temperature of the human body surface like hand or foot surface.Keywords: thermochromic liquid crystal, TLC, mathematical morphology, hue image
Procedia PDF Downloads 4723657 Evaluation of Condyle Alterations after Orthognathic Surgery with a Digital Image Processing Technique
Authors: Livia Eisler, Cristiane C. B. Alves, Cristina L. F. Ortolani, Kurt Faltin Jr.
Abstract:
Purpose: This paper proposes a technically simple diagnosis method among orthodontists and maxillofacial surgeons in order to evaluate discrete bone alterations. The methodology consists of a protocol to optimize the diagnosis and minimize the possibility for orthodontic and ortho-surgical retreatment. Materials and Methods: A protocol of image processing and analysis, through ImageJ software and its plugins, was applied to 20 pairs of lateral cephalometric images obtained from cone beam computerized tomographies, before and 1 year after undergoing orthognathic surgery. The optical density of the images was analyzed in the condylar region to determine possible bone alteration after surgical correction. Results: Image density was shown to be altered in all image pairs, especially regarding the condyle contours. According to measures, condyle had a gender-related density reduction for p=0.05 and condylar contours had their alterations registered in mm. Conclusion: A simple, viable and cost-effective technique can be applied to achieve the more detailed image-based diagnosis, not depending on the human eye and therefore, offering more reliable, quantitative results.Keywords: bone resorption, computer-assisted image processing, orthodontics, orthognathic surgery
Procedia PDF Downloads 160