Search results for: 2035 vision
575 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses
Authors: William Huang
Abstract:
Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization
Procedia PDF Downloads 152574 Benchmarking Electric Light versus Sunshine
Authors: Courret Gilles, Pidoux Damien
Abstract:
Considering that sunshine is the ultimate reference in lighting, we have examined the spectral correlation between a series of electric light sources and sunlight. As the latter is marked by fluctuations, we have taken two spectra of reference: on the one hand, the CIE daylight standard illuminant, and on the other hand, the global illumination by the clear sky with the sun at 30° above the horizon. We determined the coefficients of correlation between the spectra filtered by the sensitivity of the CIE standard observer for photopic vision. We also calculated the luminous efficiency of the radiation in order to compare the ideal energy performances as well as the CIE color indexes Ra, Ra14, and Rf, since the choice of a light source requires a trade-off between color rendering and luminous efficiency. The benchmarking includes the most commonly used bulbs, various white LED (Lighting Emitting Diode) of warm white or cold white types, incandescent halogen as well as two HID lamps (High-Intensity Discharge) and two plasma lamps of different types, a solar simulator and a new version of the sulfur lamp. The latter obtains the best correlation, whether in comparison with the solar spectrum or that of the standard illuminant.Keywords: electric light sources, plasma lamp, daylighting, sunlight, spectral correlation
Procedia PDF Downloads 185573 Improved Dynamic Bayesian Networks Applied to Arabic On Line Characters Recognition
Authors: Redouane Tlemsani, Abdelkader Benyettou
Abstract:
Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology. This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data. Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables. In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization. The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, computer vision
Procedia PDF Downloads 428572 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach
Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann
Abstract:
Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech
Procedia PDF Downloads 102571 Beauty Representation and Body Politic of Women Writers in Magdalene
Authors: Putri Alya Ramadhani
Abstract:
This research analysed how women writers represent their beauty in a platform called Magdalene. With the vision “Supporting diversity, empowering minds,” Magdalene is a new media that seeks to represent women's voices rarely heard in mainstream media. This research elaborates further on how women writers, through their writing, use their body politic to subvert patriarchal values. This research used a qualitative method with an explorative design by using text analysis based on the representation theory of Stuart Hall and in-dept-interview with Women Writers in Magdalene. The result illustrated that women writers represent their beauty in Magdalene to subvert body and beauty-representation in mainstream discourse. Furthermore, the authors have identified an identity negotiation as tension from inevitable oppression and power towards and from women’s bodies. In addition, Women Writers showed the power of their bodies through the redefinition of beauty practices and self. Hence, they subvert body dichotomy to redefine body values in society. In conclusion, this study shows various representations of beauty and body that are underrepresented in the mainstream media through the innovative new medium, Magdalena.Keywords: women writers, beauty-representation, body politic, new media, identity negotiation
Procedia PDF Downloads 174570 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation
Authors: Ksenia Meshkova
Abstract:
With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.Keywords: neural networks, computer vision, representation learning, autoencoders
Procedia PDF Downloads 127569 The Impact of Student-Led Entrepreneurship Education through Skill Acquisition in Federal Polytechnic, Bida, Niger State, Nigeria
Authors: Ibrahim Abubakar Mikugi
Abstract:
Nigerian graduates could only be self-employed and marketable if they acquire relevant skills and knowledge for successful establishment in various occupation and gainful employment. Research has shown that entrepreneurship education will be successful through developing individual entrepreneurial attitudes, raising awareness of career options by integrating and inculcating a positive attitude in the mind of students through skill acquisition. This paper examined the student- led entrepreneurship education through skill acquisition with specific emphasis on analysis of David Kolb experiential learning cycle. This Model allows individual to review their experience through reflection and converting ideas into action by doing. The methodology used was theoretical approach through journal, internet and Textbooks. Challenges to entrepreneurship education through skill acquisition were outlined. The paper concludes that entrepreneurship education is recognised by both policy makers and academics; entrepreneurship is more than mere encouraging business start-ups. Recommendations were given which include the need for authorities to have a clear vision towards entrepreneurship education and skill acquisition. Authorities should also emphasise a periodic and appropriate evaluation of entrepreneurship and to also integrate into schools academic curriculum to encourage practical learning by doing.Keywords: entrepreneurship, entrepreneurship education, active learning, Cefe methodology
Procedia PDF Downloads 520568 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach
Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak
Abstract:
Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity
Procedia PDF Downloads 161567 A Simple Algorithm for Real-Time 3D Capturing of an Interior Scene Using a Linear Voxel Octree and a Floating Origin Camera
Authors: Vangelis Drosos, Dimitrios Tsoukalos, Dimitrios Tsolis
Abstract:
We present a simple algorithm for capturing a 3D scene (focused on the usage of mobile device cameras in the context of augmented/mixed reality) by using a floating origin camera solution and storing the resulting information in a linear voxel octree. Data is derived from cloud points captured by a mobile device camera. For the purposes of this paper, we assume a scene of fixed size (known to us or determined beforehand) and a fixed voxel resolution. The resulting data is stored in a linear voxel octree using a hashtable. We commence by briefly discussing the logic behind floating origin approaches and the usage of linear voxel octrees for efficient storage. Following that, we present the algorithm for translating captured feature points into voxel data in the context of a fixed origin world and storing them. Finally, we discuss potential applications and areas of future development and improvement to the efficiency of our solution.Keywords: voxel, octree, computer vision, XR, floating origin
Procedia PDF Downloads 133566 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 189565 The Use of Lane-Centering to Assure the Visible Light Communication Connectivity for a Platoon of Autonomous Vehicles
Authors: Mohammad Y. Abualhoul, Edgar Talavera Munoz, Fawzi Nashashibi
Abstract:
The new emerging Visible Light Communication (VLC) technology has been subjected to intensive investigation, evaluation, and lately, deployed in the context of convoy-based applications for Intelligent Transportations Systems (ITS). The technology limitations were defined and supported by different solutions proposals to enhance the crucial alignment and mobility limitations. In this paper, we propose the incorporation of VLC technology and Lane-Centering (LC) technique to assure the VLC-connectivity by keeping the autonomous vehicle aligned to the lane center using vision-based lane detection in a convoy-based formation. Such combination can ensure the optical communication connectivity with a lateral error less than 30 cm. As soon as the road lanes are detectable, the evaluated system showed stable behavior independently from the inter-vehicle distances and without the need for any exchanged information of the remote vehicles. The evaluation of the proposed system is verified using VLC prototype and an empirical result of LC running application over 60 km in Madrid M40 highway.Keywords: visible light communication, lane-centerin, platooning, intelligent transportation systems, road safety applications
Procedia PDF Downloads 171564 An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform
Authors: Mohammed S. Al-Rawi, J. Bastos, J. Rodriguez
Abstract:
Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method.Keywords: Chebyshev polynomial, fourier transform, fast algorithms, image recognition, pseudo Zernike moments, Zernike moments
Procedia PDF Downloads 265563 Environmental Sustainability: A Renewable Energy Prospect with a Biofuel Alternative
Authors: Abul Quasem Al-Amin, Md. Hasanuzzaman, Mohammad Nurul Azam, Walter Leal Filho
Abstract:
With regard to the future energy strategy and vision, this study aimed to find the drawbacks of proposed energy diversification policy for 2020. To have a clear picture of the drawback and competitive alternative, this study has explored two scenarios, namely Scenario a and Scenario b. The Scenario a indicates that in the year 2020 the GHG emissions would be 823,498.00 million tons (Mt) with a 2020 final demand and proposed fuel mix such as by the Five-Fuel Diversification Strategy. In contrast, as an alternative, the Scenario b with biofuel potentials indicates that the substitution of coal energy by 5%, 10%, and 15%, respectively, with biofuel, would reduce the GHG emissions from 374,551.00, 405,118.00, and 823,498.00 million tons to 339,964.00, 329,834.00, and 305,288.00 million tons, respectively, by the present fuel mix, business-as-usual fuel mix, and proposed fuel mix up to the year 2020. Therefore, this study has explored a healthy alternative by introducing biofuel renewable energy option instead of conventional energy utilization in the power generation with environmental aspect in minds. This study effort would lessen the gap between GHG mitigation and future sustainable development and would useful to formulate effective renewable energy strategy in Malaysia.Keywords: energy, environmental impacts, renewable energy, biofuel, energy policy
Procedia PDF Downloads 486562 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 25561 Optimization of Commercial Gray Space along the Street from the Perspective of Vitality Construction
Authors: Mengjiao Hu
Abstract:
Nowadays, China's consumption pattern is entering the "experience era"; people's consumption behavior is no longer simply "buy, buy, buy" but the transition from "consumption in space" to "consumption of space". The street is a basic public product and an important public space in the city, and commerce along the street is an important space for people to consume in the "experience era". Therefore, in this way, it is particularly important to create the vitality of the gray space along the street. From the perspective of vitality construction, this paper takes Sha Zheng Street in Chongqing as the empirical object, combined with the theoretical knowledge of behavioral architecture, and based on the current situation of the commercial gray space along Sha Zheng Street, this paper explores the influence factors and the constraints behind the spatial vitality and then puts forward a general strategy to improve the spatial vitality of the commercial gray space along the street. The author hopes that through the exploration of the vitality of commercial gray space along the street, environmental design can be introduced into the integrated design vision of the urban public environment, and the urban designers can be inspired to create a street environment with a living atmosphere with a small start.Keywords: vitality creation, gray space, street commerce, sha zheng street
Procedia PDF Downloads 100560 A Monocular Measurement for 3D Objects Based on Distance Area Number and New Minimize Projection Error Optimization Algorithms
Authors: Feixiang Zhao, Shuangcheng Jia, Qian Li
Abstract:
High-precision measurement of the target’s position and size is one of the hotspots in the field of vision inspection. This paper proposes a three-dimensional object positioning and measurement method using a monocular camera and GPS, namely the Distance Area Number-New Minimize Projection Error (DAN-NMPE). Our algorithm contains two parts: DAN and NMPE; specifically, DAN is a picture sequence algorithm, NMPE is a relatively positive optimization algorithm, which greatly improves the measurement accuracy of the target’s position and size. Comprehensive experiments validate the effectiveness of our proposed method on a self-made traffic sign dataset. The results show that with the laser point cloud as the ground truth, the size and position errors of the traffic sign measured by this method are ± 5% and 0.48 ± 0.3m, respectively. In addition, we also compared it with the current mainstream method, which uses a monocular camera to locate and measure traffic signs. DAN-NMPE attains significant improvements compared to existing state-of-the-art methods, which improves the measurement accuracy of size and position by 50% and 15.8%, respectively.Keywords: monocular camera, GPS, positioning, measurement
Procedia PDF Downloads 144559 Image Segmentation: New Methods
Authors: Flaurence Benjamain, Michel Casperance
Abstract:
We present in this paper, first, a comparative study of three mathematical theories to achieve the fusion of information sources. This study aims to identify the characteristics inherent in theories of possibilities, belief functions (DST) and plausible and paradoxical reasoning to establish a strategy of choice that allows us to adopt the most appropriate theory to solve a problem of fusion in order, taking into account the acquired information and imperfections that accompany them. Using the new theory of plausible and paradoxical reasoning, also called Dezert-Smarandache Theory (DSmT), to fuse information multi-sources needs, at first step, the generation of the composites events witch is, in general, difficult. Thus, we present in this paper a new approach to construct pertinent paradoxical classes based on gray levels histograms, which also allows to reduce the cardinality of the hyper-powerset. Secondly, we developed a new technique for order and coding generalized focal elements. This method is exploited, in particular, to calculate the cardinality of Dezert and Smarandache. Then, we give an experimentation of classification of a remote sensing image that illustrates the given methods and we compared the result obtained by the DSmT with that resulting from the use of the DST and theory of possibilities.Keywords: segmentation, image, approach, vision computing
Procedia PDF Downloads 273558 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network
Authors: Pawan Kumar Mishra, Ganesh Singh Bisht
Abstract:
Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.Keywords: resolution, deep-learning, neural network, de-blurring
Procedia PDF Downloads 517557 Exploring the Relationship between Mediolateral Center of Pressure and Galvanic Skin Response during Balance Tasks
Authors: Karlee J. Hall, Mark Laylor, Jessy Varghese, Paula Polastri, Karen Van Ooteghem, William McIlroy
Abstract:
Balance training is a common part of physiotherapy treatment and often involves a set of proprioceptive exercises which the patient carries out in the clinic and as part of their exercise program. Understanding all contributing factors to altered balance is of utmost importance to the clinical success of treatment of balance dysfunctions. A critical role for the autonomic nervous system (ANS) in the control of balance reactions has been proposed previously, with evidence for potential involvement being inferred from the observation of phasic galvanic skin responses (GSR) evoked by external balance perturbations. The current study explored whether the coupling between ANS reactivity and balance reactions would be observed during spontaneously occurring instability while standing, including standard positions typical of physiotherapy balance assessments. It was hypothesized that time-varying changes in GSR (ANS reactivity) would be associated with time-varying changes in the mediolateral center of pressure (ML-COP) (somatomotor reactivity). Nine individuals (5 females, 4 males, aged 19-37 years) were recruited. To induce varying balance demands during standing, the study compared ML-COP and GSR data across different task conditions varying the availability of vision and width of the base of support. Subjects completed 3, 30-second trials for each of the following stance conditions: standard, narrow, and tandem eyes closed, tandem eyes open, tandem eyes open with dome to shield visual input, and restricted peripheral visual field. ANS activity was evaluated by measures of GSR recorded from Ag-AgCl electrodes on the middle phalanges of digits 2 and 4 on the left hand; balance measures include ML-COP excursion frequency and amplitude recorded from two force plates embedded in the floor underneath each foot. Subjects were instructed to stand as still as possible with arms crossed in front of their chest. When comparing mean task differences across subjects, there was an expected increase in postural sway from tasks with a wide stance and no sensory restrictions (least challenging) to those with a narrow stance and no vision (most challenging). The correlation analysis revealed a significant positive relationship between ML-COP variability and GSR variability when comparing across tasks (r=0.94, df=5, p < 0.05). In addition, correlations coincided within each subject and revealed a significant positive correlation in 7 participants (r= 0.47, 0.57, 0.62, 0.62, 0.81, 0.64, 0.69 respectively, df=19, p < 0.05) and no significant relationship in 2 participants (r=0.36, 0.29 respectively, df=19, p > 0.05). The current study revealed a significant relationship between ML-COP and GSR during balance tasks, revealing the ANS reactivity associated with naturally occurring instability when standing still, which is proportional to the degree of instability. Understanding the link between ANS activity and control of COP is an important step forward in the enhancement of assessment of contributing factors to poor balance and treatment of balance dysfunctions. The next steps will explore the temporal association between the time-varying changes in COP and GSR to establish if the ANS reactivity phase leads or lags the evoked motor reactions, as well as exploration of potential biomarkers for use in screening of ANS activity as a contributing factor to altered balance control clinically.Keywords: autonomic nervous system, balance control, center of pressure, somatic nervous system
Procedia PDF Downloads 168556 On the Use of Reliability Factors to Reduce Conflict between Information Sources in Dempster-Shafer Theory
Authors: A. Alem, Y. Dahmani, A. Hadjali, A. Boualem
Abstract:
Managing the problem of the conflict, either by using the Dempster-Shafer theory, or by the application of the fusion process to push researchers in recent years to find ways to get to make best decisions especially; for information systems, vision, robotic and wireless sensor networks. In this paper we are interested to take account of the conflict in the combination step that took the conflict into account and tries to manage such a way that it does not influence the decision step, the conflict what from reliable sources. According to [1], the conflict lead to erroneous decisions in cases where was with strong degrees between sources of information, if the conflict is more than the maximum of the functions of belief mass K > max1...n (mi (A)), then the decision becomes impossible. We will demonstrate in this paper that the multiplication of mass functions by coefficients of reliability is a decreasing function; it leads to the reduction of conflict and a good decision. The definition of reliability coefficients accurately and multiply them by the mass functions of each information source to resolve the conflict and allow deciding whether the degree of conflict. The evaluation of this technique is done by a use case; a comparison of the combination of springs with a maximum conflict without, and with reliability coefficients.Keywords: Dempster-Shafer theory, fusion process, conflict managing, reliability factors, decision
Procedia PDF Downloads 426555 Latency-Based Motion Detection in Spiking Neural Networks
Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang
Abstract:
Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.Keywords: neural network, motion detection, signature detection, convolutional neural network
Procedia PDF Downloads 87554 Health Assessment and Disorders of External Respiration Function among Physicians
Authors: A. G. Margaryan
Abstract:
Aims and Objectives: Assessment of health status and detection disorders of external respiration functions (ERF) during preventative medical examination among physicians of Armenia. Subjects and Methods: Overall, fifty-nine physicians (17 men and 42 women) were examined and spirometry was carried out. The average age of the physicians was 50 years old. The studies were conducted on the Micromedical MicroLab 3500 Spirometer. Results: 25.4% among 59 examined physicians are overweight; 22.0% of them suffer from obesity. Two physicians are currently smokers. About half of the examined physicians (50.8%) at the time of examination were diagnosed with some diseases and had different health-related problems (excluding the problems related to vision and hearing). FVC was 2.94±0.1, FEV1 – 2.64±0.1, PEF – 329.7±19.9, and FEV1%/FVC – 89.7±1.3. Pathological changes of ERF are identified in 23 (39.0%) cases. 28.8% of physicians had first degree of restrictive disorders, 3.4% – first degree of combined obstructive/ restrictive disorders, 6.8% – second degree of combined obstructive/ restrictive disorders. Only three physicians with disorders of the ERF were diagnosed with chronic bronchitis and bronchial asthma. There were no statistically significant changes in ERF depending on the severity of obesity (P> 0.05). Conclusion: The study showed the prevalence of ERF among physicians, observing mainly mild and moderate changes in ERF parameters.Keywords: Armenia, external respiration function, health status, physicians
Procedia PDF Downloads 201553 The Simplicity of the Future: Plain Methods of Setting up a Company under the Freedom of Enterprise
Authors: Renata Hrecska
Abstract:
This research aims to present today's corporate law reforms in the micro, small and medium-sized enterprise sector. The UN Commission on International Trade Law (UNCITRAL) currently deals with emerging issues in the sector in its Working Group I that has specifically focused on possible company law simplifications, including the creation of a fully unique company, the UNCITRAL Limited Liability Organization. However, beyond the work at the UN, the different states has also been focusing on simplification efforts and demands in the sphere of commercial law. We can observe that e.g. Slovakia, Serbia, Poland, Croatia, Hungary, Romania and France are undergoing legal reforms aimed at restructuring the sector through simplification of registration or operation. An important objective of the research is to examine where the boundary is for the legal entity to be more transparent and accountable, while the legislator wants to bring the possibility of establishing a company closer to the citizen. The research material presents the advantages and disadvantages of different initiatives with comparative legal instruments and draws conclusions on the possible future vision. The researcher herself attended some of the meetings of the relevant UNCITRAL working group as a national delegated expert, giving her a personal insight into the UNLLO discourse.Keywords: commercial law, company formation, MSME, UNCITRAL
Procedia PDF Downloads 117552 Toward a Methodology of Visual Rhetoric with Constant Reference to Mikhail Bakhtin’s Concept of “Chronotope”: A Theoretical Proposal and Taiwan Case Study
Authors: Hsiao-Yung Wang
Abstract:
This paper aims to elaborate methodology of visual rhetoric with constant reference to Mikhail Bakhtin’s concept of “chronotope”. First, it attempts to outline Ronald Barthes, the most representative scholar of visual rhetoric and structuralism, perspective on visual rhetoric and its time-space category by referring to the concurrent word-image, the symbolic systematicity, the outer dialogicity. Second, an alternative approach is explored for grasping the dynamics and functions of visual rhetoric by articulating Mikhail Bakhtin’s concept of “chronotope.” Furthermore, that visual rhetorical consciousness could be identified as “the meaning parabola which projects from word to image,” “the symbolic system which proceeds from sequence to disorder,” “the ideological environment which struggles from the local to the global.” Last but not least, primary vision of the 2014 Taipei LGBT parade would be analyzed preliminarily to evaluate the effectiveness and persuasiveness embodied by specific visual rhetorical strategies. How Bakhtin’s concept of “chronotope” to explain the potential or possible ideological struggle deployed by visual rhetoric might be interpreted empirically and extensively.Keywords: barthes, chronotope, Mikhail Bakhtin, Taipei LGBT parade, visual rhetoric
Procedia PDF Downloads 474551 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography
Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz
Abstract:
Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology
Procedia PDF Downloads 220550 Evaluating the Influence of Road Markings Retroreflectivity on Road Safety in Low Visibility Conditions
Authors: Darko Babic, Maja Modric, Dario Babic, Mario Fiolic
Abstract:
For road markings as a part of traffic control plan, it is considered to have a positive impact on road safety. Their importance is particularly evident in low visibility conditions when the field of vision and the driver's visual acuity are significantly reduced. The aim of this article is to analyze how road marking retroreflectivity affects the frequency of traffic accidents in low visibility conditions. For this purpose, 10,417.4 km single carriageway roads were analysed across Croatia in the period from 2012 to 2016. The research included accidents that may be significantly affected by marking retroreflectivity: head-on collisions, running off the road, hitting a stationary object on the road and hitting a stationary roadside object. The results have shown that the retroreflectivity level is negatively correlated to the total number of accidents and the number of casualties and injuries, which ultimately means that the risk of traffic accidents and deaths and/or injuries of participants will be lower with the increase of road markings retroreflectivity. These results may assist in defining minimum values of retroreflectivity that the markings must meet at any time as well as the suitable technologies and materials for their implementation.Keywords: retroreflectivity, road markings, traffic accidents, traffic safety
Procedia PDF Downloads 153549 Engagement Analysis Using DAiSEE Dataset
Authors: Naman Solanki, Souraj Mondal
Abstract:
With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.Keywords: computer vision, engagement prediction, deep learning, multi-level classification
Procedia PDF Downloads 114548 A Platform for Managing Residents' Carbon Trajectories Based on the City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xuerui, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
Climate change is a global problem facing humanity and this is now the consensus of the mainstream scientific community. In accordance with the carbon peak and carbon neutral targets and visions set out in the United Nations Framework Convention on Climate Change, the Kyoto Protocol and the Paris Agreement, this project uses the City Intelligent Model (CIM) and Artificial Intelligence Machine Vision (ICR) as the core technologies to accurately quantify low carbon behaviour into green corn, which is a means of guiding ecologically sustainable living patterns. Using individual communities as management units and blockchain as a guarantee of fairness in the whole cycle of green currency circulation, the project will form a modern resident carbon track management system based on the principle of enhancing the ecological resilience of communities and the cohesiveness of community residents, ultimately forming an ecologically sustainable smart village that can be self-organised and managed.Keywords: urban planning, urban governance, CIM, artificial Intelligence, sustainable development
Procedia PDF Downloads 83547 Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie
Abstract:
Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images.Keywords: image segmentation, stuck particles separation, Sobel operator, thresholding
Procedia PDF Downloads 129546 Shifted Window Based Self-Attention via Swin Transformer for Zero-Shot Learning
Authors: Yasaswi Palagummi, Sareh Rowlands
Abstract:
Generalised Zero-Shot Learning, often known as GZSL, is an advanced variant of zero-shot learning in which the samples in the unseen category may be either seen or unseen. GZSL methods typically have a bias towards the seen classes because they learn a model to perform recognition for both the seen and unseen classes using data samples from the seen classes. This frequently leads to the misclassification of data from the unseen classes into the seen classes, making the task of GZSL more challenging. In this work of ours, to solve the GZSL problem, we propose an approach leveraging the Shifted Window based Self-Attention in the Swin Transformer (Swin-GZSL) to work in the inductive GSZL problem setting. We run experiments on three popular benchmark datasets: CUB, SUN, and AWA2, which are specifically used for ZSL and its other variants. The results show that our model based on Swin Transformer has achieved state-of-the-art harmonic mean for two datasets -AWA2 and SUN and near-state-of-the-art for the other dataset - CUB. More importantly, this technique has a linear computational complexity, which reduces training time significantly. We have also observed less bias than most of the existing GZSL models.Keywords: generalised, zero-shot learning, inductive learning, shifted-window attention, Swin transformer, vision transformer
Procedia PDF Downloads 71