Search results for: traditional learning approach
16873 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC
Procedia PDF Downloads 41116872 Jointly Learning Python Programming and Analytic Geometry
Authors: Cristina-Maria Păcurar
Abstract:
The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry.Keywords: analytic geometry, conics, python, quadrics
Procedia PDF Downloads 30216871 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder
Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada
Abstract:
From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation
Procedia PDF Downloads 19116870 Comparative Therapeutic Potential of 'Green Synthesized' Antimicrobials against Scalp Infections
Authors: D. Desai, J.Dixon, N. Jain, M. Datta
Abstract:
Microbial infections of scalp consist of symptomatic appearances associated with seborrhoeic dermatitis, folliculitis, furuncles, carbuncles and ringworm. The main causative organisms in these scalp-based infections are bacteria like S. aureus, P. aeruginosa and a fungus M. Furfur. Allopathic treatment of these infections is available and efficient, but occasionally, topical applications have been found to cause side effects. India is known as the botanical garden of the world and considered as the epicentre for utilization of traditional drugs. Many treatments based on herb extracts are commonly used in India. It has been observed treatment with ethnomedicines requires a higher dosage and greater time period. Additionally, repeated applications are required to obtain the full efficacy of the treatment. An attempt has been made to imbibe the traditional knowledge with nanotechnology to generate a proficient therapeutic against scalp infections. We have imbibed metallic nanoparticles with extracts from traditional medicines and propose to formulate an antimicrobial hair massager. Four commonly used herbs for treatment against scalp disorders like Zingiber officinale (ginger), Allium sativum (garlic), Azadirachta indica (neem) leaves and Citrus limon (lemon) peel was taken. 30 gms of dried homogenized powder was obtained and processed for obtaining the aqueous and ethanolic extract by soxhlet apparatus. The extract was dried and reconstituted to obtain working solution of 1mg/ml. Phytochemical analysis for the obtained extract was done. Synthesis of nanoparticles was mediated by incubating 1mM silver nitrate with extracts of various herbs to obtain silver nanoparticles. The formation of the silver nanoparticles (AgNPs) was monitored using UV-Vis spectroscopy. The AgNPs thus obtained were centrifuged and dried. The AgNPs thus formed were characterized by X Ray Diffraction, scanning electron microscopy and transmission electron microscopy. The size of the AgNPs varied from 10-20 nm and was spherical in shape. P. aeruginosa was plated on nutrient agar and comparative antibacterial activity was tested. Comparative antimicrobial potential was calculated for the extracts and the corresponding nanoconstructs. It was found AgNPs were more efficient than their aqueous and ethanolic counterparts except in the ase of C. limon. Statistical analysis was performed to validate the results obtained.Keywords: ethnomedicine, nanoconstructs, scalp infections, Zingiber officinale
Procedia PDF Downloads 37116869 Multi-Sensor Target Tracking Using Ensemble Learning
Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana
Abstract:
Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers
Procedia PDF Downloads 27616868 The Use of Social Media Sarcasm as a Response to Media-Coverage of Iran’s Unprecedented Attack on Israel
Authors: Afif J. Arabi
Abstract:
On April 15, 2024, Iran announced its unprecedented military attack by sending waves of more than 300 drones and ballistic missiles toward Israel. The Attack lasted approximately five hours and was a widely covered, distributed, and followed media event. Iran’s military action against Israel was a long-awaited action across the Middle East since the early days of the October 7th war on Gaza and after a long history of verbal threats. While people in many Arab countries stayed up past midnight in anticipation of watching the disastrous results of this unprecedented attack, voices on traditional and social media alike started to question the timed public announcement of the attack, which gave Israel at least a two-hour notice to prepare its defenses. When live news coverage started showing that nearly all the drones and missiles were intercepted by Israel – with help from the U.S. and other countries – and no deaths were reported, the social media response to this media event turned toward sarcasm, mockery, irony, and humor. Social media users posted sarcastic pictures, jokes, and comments mocking the Iranian offensive. This research examines this unique media event and the sarcastic response it generated on social media. The study aims to investigate the causes leading to media sarcasm in militarized political conflict, the social function of such generated sarcasm, and the role of social media as a platform for consuming frustration, dissatisfaction, and outrage passively through various media products. The study compares the serious traditional media coverage of the event with the humorous social media response among Arab countries. The research uses an eclectic theoretical approach using framing theory as a paradigm for understanding and investigating communication social functionalism theory in media studies to examine sarcasm. Social functionalism theory is a sociological perspective that views society as a complex system whose parts work together to promote solidarity and stability. In the context of media and sarcasm, this theory would suggest that sarcasm serves specific functions within society, such as reinforcing social norms, providing a means for social critique, or functioning as a safety valve for expressing social tension.; and a qualitative analysis of specific examples including responses of SM commentators to such manifestations of political criticism. The preliminary findings of this study point to a heightened dramatization of the televised event and a widespread belief that this attack was a staged show incongruent with Iran’s official enmity and death threats toward Israel. The social media sarcasm reinforces Arab’s view of Iran and Israel as mutual threats. This belief stems from the complex dynamics, historical context, and regional conflict surrounding these three nations: Iran, Israel, and Arabs.Keywords: social functionalism, social media sarcasm, Television news framing, live militarized conflict coverage, iran, israel, communication theory
Procedia PDF Downloads 5216867 Dietary Effect of Probiotic Bacteria, Bacillus amyloliquefaciens JFP-2 Isolate from Jeju Island`s Traditional Fermented Food, on Innate Immune Response of Oplegnathus fasciatus Challenged with Vibrio anguillarum
Authors: Dong Hwi Kim, Dharaneedharan Subramanian, So Hyun Park, Ha-Ri Choi, Ji-Hyung Kim, Dong-Hoon Lee, Moon Soo Heo
Abstract:
The present study was performed to evaluate the use of Bacillus amyloliquefaciens JFP-2 isolated from a traditional fermented sea food, as probiotic bacteria in the diets for Rock-bream, Oplegnathus faciatus. A total of 180 fish (187.4 ± 2.7 g) were divided into two groups, control (C) and probiotic (P) group (90 fish per group) in triplicate. C group was fed with basal diet without probiotic, while P group was fed with B. amyloliquefaciens spores at concentration of 1.4 x 106 colony forming units per gram (CFU/g) of feed. After two months of feeding experiments, P group fish showed significant improvements in body weight (BW), weight gain (WG), specific growth rate (SGR) and food conversion ratio (FCR) compared with C group. Also, bi-weekly assessment of serum protein, glucose, fatty acid profile showed a significant increase in probiotic fed fish than that of control fish group. Similar increase in serum antioxidant and lysozyme activity was found in probiotic fed fish group. Twenty days challenge experiment shows decrease mortality in probiotic fed fish group when compared with that of control group. Hence, these results indicate that the use of B. amyloliquefaciens JFP-2 as a feed supplement, is beneficial to improve the health status of Oplegnathus fasciatus challenged with Vibrio anguillarum.Keywords: Bacillus amyloliquefaciens, Oplegnathus fasciatus, probiotic feed, rock bream
Procedia PDF Downloads 26116866 An Approach on Robust Multi Inversion of a Nonlinear Model for an Omni-Directional Mobile
Authors: Fernando P. Silva, Valter J. S. Leite, Erivelton G. Nepomuceno
Abstract:
In this paper, a nonlinear controller design for an omnidirectional mobile is presented. The robot controller consists of an inner-loop controller and an outer-loop controller, the first is designed using state feedback (robust allocation) and the second controller is designed based on Robust Multi Inversion (RMI) approach. The objective of RMI controller is rendering the robust inversion of the dynamic, when the model is affected by uncertainties. A model nonlinear MIMO of an omni-directional robot (small-league of Robocup) is used to simulate the RMI approach. The parameters of linear and nonlinear model are varied to cause modelling uncertainties among the model and the real model (real system) generating an error in inner-loop controller signal that must be compensated by RMI controller. The simulation test results show that the RMI is capable of compensating the uncertainties and keep the system stable and controlled under uncertainties.Keywords: robust multi inversion, omni-directional robot, robocup, nonlinear control
Procedia PDF Downloads 59616865 Communicating Safety: A Digital Ethnography Investigating Social Media Use for Workplace Safety
Authors: Kelly Jaunzems
Abstract:
Social media is a powerful instrument of communication, enabling the presentation of information in multiple forms and modes, amplifying the interactions between people, organisations, and stakeholders, and increasing the range of communication channels available. Younger generations are highly engaged with social media and more likely to use this channel than any other to seek information. Given this, it may appear extraordinary that occupational safety and health professionals have yet to seriously engage with social media for communicating safety messages to younger audiences who, in many industries, might be statistically more likely to encounter more workplace harm or injury. Millennials, defined as those born between 1981-2000, have distinctive characteristics that also impact their interaction patterns rendering many traditional occupational safety and health communication channels sub-optimal or near obsolete. Used to immediate responses, 280-character communication, shares, likes, and visual imagery, millennials struggle to take seriously the low-tech, top-down communication channels such as safety noticeboards, toolbox meetings, and passive tick-box online inductions favoured by traditional OSH professionals. This paper draws upon well-established communication findings, which argue that it is important to know a target audience and reach them using their preferred communication pathways, particularly if the aim is to impact attitudes and behaviours. Health practitioners have adopted social media as a communication channel with great success, yet safety practitioners have failed to follow this lead. Using a digital ethnography approach, this paper examines seven organisations’ Facebook posts from two one-month periods one year apart, one in 2018 and one in 2019. Each of the years informs organisation-based case studies. Comparing, contrasting, and drawing upon these case studies, the paper discusses and evaluates the (non) use of social media communication of safety information in terms of user engagement, shareability, and overall appeal. The success of health practitioners’ use of social media provides a compelling template for the implementation of social media into organisations’ safety communication strategies. Highly visible content such as that found on social media allows an organization to become more responsive and engage in two-way conversations with their audience, creating more engaged and participatory conversations around safety. Further, using social media to address younger audiences with a range of tonal qualities (for example, the use of humour) can achieve cut through in a way that grim statistics fail to do. On the basis of 18 months of interviews, filed work, and data analysis, the paper concludes with recommendations for communicating safety information via social media. It proposes exploration of the social media communication formula that, when utilised by safety practitioners, may create an effective social media presence. It is anticipated that such social media use will increase engagement, expand the number of followers and reduce the likelihood and severity of safety-related incidents. The tools offered may provide a path for safety practitioners to reach a disengaged generation of workers to build a cohesive and inclusive conversation around ways to keep people safe at work.Keywords: social media, workplace safety, communication strategies, young workers
Procedia PDF Downloads 12316864 The Constraints of Modern Islamic Boarding School's Strategy in Addressing Physical Violence: A Case Study in Indonesia
Authors: Syauqi Asfiya R.
Abstract:
This study examines the constraints faced by Islamic boarding school (Pesantren) in Indonesia in effectively addressing physical violence within their educational institutions. The vulnerability to violence in the education sector remains pervasive, including in Pesantren, primarily due to the residential nature of the boarding school system, which necessitates round-the-clock interaction among students from diverse backgrounds. Additionally, environmental factors, parenting styles, individual characteristics, and media influences further complicate the conditions within Pesantren. Numerous cases of physical violence have been reported, underscoring the need to identify the constraints of violence prevention strategies implemented by Pesantren. Adopting a case study approach, this research focuses on a Modern Pesantren in Tangerang and utilizes interviews conducted with 20 victims of violence to explore the aspects of Pesantren's violence prevention strategies that may have been overlooked. The findings indicate that many students face a dilemma when reporting the violence they experience, as the imposed sanctions often prove excessively severe and carry the risk of exacerbating the violence perpetrated by the offenders. Consequently, numerous victims choose to remain silent, thereby enabling the perpetuation of violence. Moreover, senior students (mudabbir) are prohibited from giving punishment, but there are still many who punish other students based on their personal moods. Furthermore, violence is also perpetrated by religious teachers (ustadz), despite their responsibility for addressing such issues. The evaluation process often follows a unidirectional approach wherein the santri have limited freedom compared to the Mudabbir or ustadz when it comes to providing feedback. Additionally, sentiment within specific student generations is reinforced due to the segregation of dormitories based on cohorts. Lastly, the absence of psychologists to address the trauma experienced by victims further exacerbates the situation. This research sheds light on the constraints faced by Pesantren in effectively preventing physical violence and emphasizes the importance of implementing comprehensive measures to create safer and nurturing learning environments within these institutions.Keywords: physical violence, islam, boarding school, constraint
Procedia PDF Downloads 8216863 Assisting Dating of Greek Papyri Images with Deep Learning
Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou
Abstract:
Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.Keywords: image classification, papyri images, dating
Procedia PDF Downloads 8216862 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: calibration model, monitoring, quality improvement, feature selection
Procedia PDF Downloads 36016861 A Sustainable Training and Feedback Model for Developing the Teaching Capabilities of Sessional Academic Staff
Authors: Nirmani Wijenayake, Louise Lutze-Mann, Lucy Jo, John Wilson, Vivian Yeung, Dean Lovett, Kim Snepvangers
Abstract:
Sessional academic staff at universities have the most influence and impact on student learning, engagement, and experience as they have the most direct contact with undergraduate students. A blended technology-enhanced program was created for the development and support of sessional staff to ensure adequate training is provided to deliver quality educational outcomes for the students. This program combines innovative mixed media educational modules, a peer-driven support forum, and face-to-face workshops to provide a comprehensive training and support package for staff. Additionally, the program encourages the development of learning communities and peer mentoring among the sessional staff to enhance their support system. In 2018, the program was piloted on 100 sessional staff in the School of Biotechnology and Biomolecular Sciences to evaluate the effectiveness of this model. As part of the program, rotoscope animations were developed to showcase ‘typical’ interactions between staff and students. These were designed around communication, confidence building, consistency in grading, feedback, diversity awareness, and mental health and wellbeing. When surveyed, 86% of sessional staff found these animations to be helpful in their teaching. An online platform (Moodle) was set up to disseminate educational resources and teaching tips, to host a discussion forum for peer-to-peer communication and to increase critical thinking and problem-solving skills through scenario-based lessons. The learning analytics from these lessons were essential in identifying difficulties faced by sessional staff to further develop supporting workshops to improve outcomes related to teaching. The face-to-face professional development workshops were run by expert guest speakers on topics such as cultural diversity, stress and anxiety, LGBTIQ and student engagement. All the attendees of the workshops found them to be useful and 88% said they felt these workshops increase interaction with their peers and built a sense of community. The final component of the program was to use an adaptive e-learning platform to gather feedback from the students on sessional staff teaching twice during the semester. The initial feedback provides sessional staff with enough time to reflect on their teaching and adjust their performance if necessary, to improve the student experience. The feedback from students and the sessional staff on this model has been extremely positive. The training equips the sessional staff with knowledge and insights which can provide students with an exceptional learning environment. This program is designed in a flexible and scalable manner so that other faculties or institutions could adapt components for their own training. It is anticipated that the training and support would help to build the next generation of educators who will directly impact the educational experience of students.Keywords: designing effective instruction, enhancing student learning, implementing effective strategies, professional development
Procedia PDF Downloads 13116860 Anomaly Detection in Financial Markets Using Tucker Decomposition
Authors: Salma Krafessi
Abstract:
The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models
Procedia PDF Downloads 7516859 Voting Representation in Social Networks Using Rough Set Techniques
Authors: Yasser F. Hassan
Abstract:
Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices
Procedia PDF Downloads 39816858 Utilization Of Medical Plants Tetrastigma glabratum (Blume) Planch from Mount Prau in the Blumah, Central Java
Authors: A. Lianah, B. Peter Sopade, C. Krisantini
Abstract:
Walikadep/Tetrastigma glabratum (Blume) Planch is a traditional herb that has been used by people of Blumah village; it is believed to have a stimulant effect and ailments for many illnesses. Our survey demonstrated that the people of Blumah village has exploited walikadep from Protected Forest of Mount Prau. More than 10% of 448 households at Blumah village have used walikadep as traditional herb or jamu. Part of the walikadep plants used is the liquid extract of the stem. The population of walikadep is getting scarce and it is rarely found now. The objectives of this study are to examine the stimulant effect of walikadep, to measure growth and exploitation rate of walikadep, and to find ways to effectively propagate the plants, as well as identifying the impact on the environment through field experiments and explorative survey. Stimulant effect was tested using open-field and hole-board test. Data were collected through field observation and experiment, and data were analysed using lab test and Anova. Rate of exploitation and plant growth was measured using Regression analysis; comparison of plant growth in-situ and ex-situ used descriptive analysis. The environmental impact was measured by population structure vegetation analysis method by Shannon Weinner. The study revealed that the walikadep exudates did not have a stimulant effect. Exploitation of walikadep and the long time required to reach harvestable size resulted in the scarcity of the plant in the natural habitat. Plant growth was faster in-situ than ex-situ; and fast growth was obtained from middle part cuttings treated with vermicompost. Biodiversity index after exploitation was higher than before exploitation, possibly due to the toxic and allellopathic effect (phenolics) of the plant. Based on these findings, further research is needed to examine the toxic effects of the leave and stem extract of walikadep and their allelopathic effects. We recommend that people of Blumah village to stop using walikadep as the stimulant. The local people, village government in the regional and central levels, and perhutani should do an integrated efforts to conserve walikadep through Pengamanan Terpadu Konservasi Walikadep Lestari (PTKWL) program, so this population of this plant in the natural habitat can be maintained.Keywords: utilization, medical plants, traditional, Tetastigma glabratum
Procedia PDF Downloads 28516857 Web 2.0 in Higher Education: The Instructors’ Acceptance in Higher Educational Institutes in Kingdom of Bahrain
Authors: Amal M. Alrayes, Hayat M. Ali
Abstract:
Since the beginning of distance education with the rapid evolution of technology, the social network plays a vital role in the educational process to enforce the interaction been the learners and teachers. There are many Web 2.0 technologies, services and tools designed for educational purposes. This research aims to investigate instructors’ acceptance towards web-based learning systems in higher educational institutes in Kingdom of Bahrain. Questionnaire is used to investigate the instructors’ usage of Web 2.0 and the factors affecting their acceptance. The results confirm that instructors had high accessibility to such technologies. However, patterns of use were complex. Whilst most expressed interest in using online technologies to support learning activities, learners seemed cautious about other values associated with web-based system, such as the shared construction of knowledge in a public format. The research concludes that there are main factors that affect instructors’ adoption which are security, performance expectation, perceived benefits, subjective norm, and perceived usefulness.Keywords: Web 2.0, higher education, acceptance, students' perception
Procedia PDF Downloads 34316856 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System
Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi
Abstract:
Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.Keywords: channel estimation, OFDM, pilot-assist, VLC
Procedia PDF Downloads 18516855 The Impact of Critical Thinking on Educational Management for the Professional Development of English Language Teachers
Authors: Simin Baneshi
Abstract:
Critical thinking, as one of the essential skills of the 21st century, plays a fundamental role in improving teaching and learning processes. In the field of educational management, strengthening this skill among teachers can contribute to designing more effective educational programs, enhancing teaching quality, and improving learning outcomes. English language teachers, by utilizing critical thinking, can analyze educational challenges and find innovative solutions for them. The aim of this research is to examine the role of critical thinking in educational management and its impact on the professional development of English language teachers. Additionally, identifying optimal methods to enhance this skill among teachers and educational managers is another objective of this study. This research was conducted using a mixed-methods approach with a sample population of 200 teachers and 20 educational managers from schools and English language teaching institutions across three provinces in Iran. Sampling was carried out through stratified random sampling for teachers and purposive sampling for managers. In the quantitative section, a standardized critical thinking questionnaire with 30 closed-ended questions and a Likert scale was employed, and the data were analyzed using independent t-tests, multivariate analysis of variance (MANOVA), and regression analysis. In the qualitative section, semi-structured interviews were conducted with 15 managers and 10 experienced teachers. Qualitative data were analyzed using thematic analysis. The validity of the instruments was confirmed by five experts in the field of education, and the reliability of the questionnaire was evaluated with a Cronbach’s alpha coefficient of 0.89. The findings revealed that teachers with high critical thinking skills are more successful in designing innovative educational programs, managing classrooms, and solving educational issues. Additionally, managers who adopt critical management approaches create a more dynamic educational environment for fostering these skills. Regular training programs and critical thinking workshops had a positive impact on the professional development of teachers. Critical thinking is a key element in educational management and the professional development of English language teachers. Providing targeted educational opportunities, specialized workshops, and constructive feedback can strengthen this skill among teachers and lead to improved teaching quality. The results of this study can assist educational policymakers in designing professional development programs for teachers and serve as a model for other educational domains.Keywords: critical thinking, educational management, professional development, teachers
Procedia PDF Downloads 016854 A Bayesian Approach for Analyzing Academic Article Structure
Authors: Jia-Lien Hsu, Chiung-Wen Chang
Abstract:
Research articles may follow a simple and succinct structure of organizational patterns, called move. For example, considering extended abstracts, we observe that an extended abstract usually consists of five moves, including Background, Aim, Method, Results, and Conclusion. As another example, when publishing articles in PubMed, authors are encouraged to provide a structured abstract, which is an abstract with distinct and labeled sections (e.g., Introduction, Methods, Results, Discussions) for rapid comprehension. This paper introduces a method for computational analysis of move structures (i.e., Background-Purpose-Method-Result-Conclusion) in abstracts and introductions of research documents, instead of manually time-consuming and labor-intensive analysis process. In our approach, sentences in a given abstract and introduction are automatically analyzed and labeled with a specific move (i.e., B-P-M-R-C in this paper) to reveal various rhetorical status. As a result, it is expected that the automatic analytical tool for move structures will facilitate non-native speakers or novice writers to be aware of appropriate move structures and internalize relevant knowledge to improve their writing. In this paper, we propose a Bayesian approach to determine move tags for research articles. The approach consists of two phases, training phase and testing phase. In the training phase, we build a Bayesian model based on a couple of given initial patterns and the corpus, a subset of CiteSeerX. In the beginning, the priori probability of Bayesian model solely relies on initial patterns. Subsequently, with respect to the corpus, we process each document one by one: extract features, determine tags, and update the Bayesian model iteratively. In the testing phase, we compare our results with tags which are manually assigned by the experts. In our experiments, the promising accuracy of the proposed approach reaches 56%.Keywords: academic English writing, assisted writing, move tag analysis, Bayesian approach
Procedia PDF Downloads 33416853 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario
Authors: Sarita Agarwal, Deepika Delsa Dean
Abstract:
Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation
Procedia PDF Downloads 13416852 Process Driven Architecture For The ‘Lessons Learnt’ Knowledge Sharing Framework: The Case Of A ‘Lessons Learnt’ Framework For KOC
Authors: Rima Al-Awadhi, Abdul Jaleel Tharayil
Abstract:
On a regular basis, KOC engages into various types of Projects. However, due to very nature and complexity involved, each project experience generates a lot of ‘learnings’ that need to be factored into while drafting a new contract and thus avoid repeating the same mistakes. But, many a time these learnings are localized and remain as tacit leading to scope re-work, larger cycle time, schedule overrun, adjustment orders and claims. Also, these experiences are not readily available to new employees leading to steep learning curve and longer time to competency. This is to share our experience in designing and implementing a process driven architecture for the ‘lessons learnt’ knowledge sharing framework in KOC. It high-lights the ‘lessons learnt’ sharing process adopted, integration with the organizational processes, governance framework, the challenges faced and learning from our experience in implementing a ‘lessons learnt’ framework.Keywords: lessons learnt, knowledge transfer, knowledge sharing, successful practices, Lessons Learnt Workshop, governance framework
Procedia PDF Downloads 57916851 Proximate Composition, Colour and Sensory Properties of Akara egbe Prepared from Bambara Groundnut (Vigna subterranea)
Authors: Samson A. Oyeyinka, Taiwo Tijani, Adewumi T. Oyeyinka, Mutiat A. Balogun, Fausat L. Kolawole, John K. Joseph
Abstract:
Bambara groundnut is an underutilised leguminous crop that has a similar composition to cowpea. Hence, it could be used in making traditional snack usually produced from cowpea paste. In this study, akara egbe, a traditional snack was prepared from Bambara groundnut flour or paste. Cowpea was included as the reference sample. The proximate composition and functional properties of the flours were studies as well as the proximate composition and sensory properties of the resulting akara egbe. Protein and carbohydrate were the main components of Bambara groundnut and cowpea grains. Ash, fat and fiber contents were low. Bambara groundnut flour had higher protein content (23.71%) than cowpea (19.47%). In terms of functional properties, the oil absorption capacity (0.75 g oil/g flour) of Bambara groundnut flour was significantly (p ≤ 0.05) lower than that of the cowpea (0.92 g oil/g flour), whereas, Cowpea flour absorbed more water (1.59 g water/g flour) than Bambara groundnut flour (1.12 g/g). The packed bulk density (0.92 g/mL) of Bambara groundnut was significantly (p ≤ 0.05) higher than cowpea flour (0.82 g/mL). Akara egbe prepared from Bambara groundnut flour showed significantly (p ≤ 0.05) higher protein content (23.41%) than the sample made from Bambara groundnut paste (19.35%). Akara egbe prepared from cowpea paste had higher ratings in aroma, colour, taste, crunchiness and overall acceptability than those made from cowpea flour or Bambara groundnut paste or flour. Bambara groundnut can produce akara egbe with comparable nutritional and sensory properties to that made from cowpea.Keywords: Bambara groundnut, Cowpea, Snack, Sensory properties
Procedia PDF Downloads 27116850 The Control of Wall Thickness Tolerance during Pipe Purchase Stage Based on Reliability Approach
Authors: Weichao Yu, Kai Wen, Weihe Huang, Yang Yang, Jing Gong
Abstract:
Metal-loss corrosion is a major threat to the safety and integrity of gas pipelines as it may result in the burst failures which can cause severe consequences that may include enormous economic losses as well as the personnel casualties. Therefore, it is important to ensure the corroding pipeline integrity and efficiency, considering the value of wall thickness, which plays an important role in the failure probability of corroding pipeline. Actually, the wall thickness is controlled during pipe purchase stage. For example, the API_SPEC_5L standard regulates the allowable tolerance of the wall thickness from the specified value during the pipe purchase. The allowable wall thickness tolerance will be used to determine the wall thickness distribution characteristic such as the mean value, standard deviation and distribution. Taking the uncertainties of the input variables in the burst limit-state function into account, the reliability approach rather than the deterministic approach will be used to evaluate the failure probability. Moreover, the cost of pipe purchase will be influenced by the allowable wall thickness tolerance. More strict control of the wall thickness usually corresponds to a higher pipe purchase cost. Therefore changing the wall thickness tolerance will vary both the probability of a burst failure and the cost of the pipe. This paper describes an approach to optimize the wall thickness tolerance considering both the safety and economy of corroding pipelines. In this paper, the corrosion burst limit-state function in Annex O of CSAZ662-7 is employed to evaluate the failure probability using the Monte Carlo simulation technique. By changing the allowable wall thickness tolerance, the parameters of the wall thickness distribution in the limit-state function will be changed. Using the reliability approach, the corresponding variations in the burst failure probability will be shown. On the other hand, changing the wall thickness tolerance will lead to a change in cost in pipe purchase. Using the variation of the failure probability and pipe cost caused by changing wall thickness tolerance specification, the optimal allowable tolerance can be obtained, and used to define pipe purchase specifications.Keywords: allowable tolerance, corroding pipeline segment, operation cost, production cost, reliability approach
Procedia PDF Downloads 40016849 Language Teachers Exercising Agency Amid Educational Constraints: An Overview of the Literature
Authors: Anna Sanczyk
Abstract:
Teacher agency plays a crucial role in effective teaching, supporting diverse students, and providing an enriching learning environment; therefore, it is significant to gain a deeper understanding of language teachers’ sense of agency in teaching linguistically and culturally diverse students. This paper presents an overview of qualitative research on how language teachers exercise their agency in diverse classrooms. The analysis of the literature reveals that language teachers strive for addressing students’ needs and challenging educational inequalities, but experience educational constraints in enacting their agency. The examination of the research on language teacher agency identifies four major areas where language teachers experience challenges in enacting their agency: (1) implementing curriculum; (2) adopting school reforms and policies; (3) engaging in professional learning; (4) and negotiating various identities as professionals. The practical contribution of this literature review is that it provides a much-needed compilation of the studies on how language teachers exercise agency amid educational constraints. The discussion of the overview points to the importance of teacher identity, learner advocacy, and continuous professional learning and the critical need of promoting empowerment, activism, and transformation in language teacher education. The findings of the overview indicate that language teacher education programs should prepare teachers to be active advocates for English language learners and guide teachers to become more conscious of complexities of teaching in constrained educational settings so that they can become agentic professionals. This literature overview illustrates agency work in English language teaching contexts and contributes to understanding of the important link between experiencing educational constraints and development of teacher agency.Keywords: advocacy, educational constraints, language teacher agency, language teacher education
Procedia PDF Downloads 18116848 Heart Ailment Prediction Using Machine Learning Methods
Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula
Abstract:
The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting
Procedia PDF Downloads 5816847 Social Discourses on Lone Motherhood in South Korea: Social Prejudice and Process of Resistance, Adaptation and Negotiation
Authors: Thi Thu Van Nguyen
Abstract:
In South Korea, Confucianism has not only played a crucial position in Korean traditional culture but also deeply rooted in people’s mind. Confucianism bears a special emphasis on the traditional family pattern characterized by paternalism. Therefore, non-paternity families are barely recognized and unwed mothers are faced with numerous prejudices in their life. Prejudice to unwed mothers in Korea is believed to stem from social discourses against lone motherhood which is the way how people look and talk about unwed mothers and from the early time these social discourses have big impacts on their daily lives. However, after the 1990s, along with the rapid transformation of family pattern and support from social welfare organizations, unwed mothers have gradually got to escape from the social prejudice then established themselves as a new family form. This study is aimed at researching social discourses on lone motherhood in Korea and the process of resistance, adaptation and negotiation of unwed mothers in three different stages: the antenatal, postnatal stages and social inclusion. The anthropological method is employed. Twenty single young mothers of the Korean Unwed Mothers Families' Association were engaged in the author’s detailed interviews. The study’s frame analysis is based on the theoretical framework on social discourses on lone motherhood by Simon Duncan and Rosalind Edwards (1999). This study is an effort to comprehend and investigate the difficulties experienced by unwed mothers living in negative social discourses and the way they overcome the difficulties.Keywords: unwed mothers, gender, social discourses, social prejudice, Confucianism
Procedia PDF Downloads 27416846 Geostatistical and Geochemical Study of the Aquifer System Waters Complex Terminal in the Valley of Oued Righ-Arid Area Algeria
Authors: Asma Bettahar, Imed Eddine Nezli, Sameh Habes
Abstract:
Groundwater resources in the Oued Righ valley are represented like the parts of the eastern basin of the Algerian Sahara, superposed by two major aquifers: the Intercalary Continental (IC) and the Terminal Complex (TC). From a qualitative point of view, various studies have highlighted that the waters of this region showed excessive mineralization, including the waters of the terminal complex (EC Avg equal 5854.61 S/cm) .The present article is a statistical approach by two multi methods various complementary (ACP, CAH), applied to the analytical data of multilayered aquifer waters Terminal Complex of the Oued Righ valley. The approach is to establish a correlation between the chemical composition of water and the lithological nature of different aquifer levels formations, and predict possible connection between groundwater’s layers. The results show that the mineralization of water is from geological origin. They concern the composition of the layers that make up the complex terminal.Keywords: complex terminal, mineralization, oued righ, statistical approach
Procedia PDF Downloads 39516845 StockTwits Sentiment Analysis on Stock Price Prediction
Authors: Min Chen, Rubi Gupta
Abstract:
Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing
Procedia PDF Downloads 16016844 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions
Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant
Abstract:
The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.Keywords: complex terrain, cross-ventilation, wind driven ventilation, wind resource, computational fluid dynamics, CFD
Procedia PDF Downloads 398