Search results for: root uptake models
2849 Racial Microaggressions: Experiences among International Students in Australia and Its Impact on Stress and Psychological Wellbeing
Authors: Hugo M. Gonzales, Ke Ni Chai, Deanne Mary King
Abstract:
International students are underrepresented in Australian health literature, and this population is especially vulnerable to the well-documented negative impacts associated with racial microaggressions in their adjustment to settling in the new society, as well as to the many challenges they already face as international students. This study investigated the prevalence of racial microaggressions among international students and their impact on stress and psychological well-being. This research was conducted during the COVID-19 pandemic, which has been documented to contribute to anti-Asian racism. Participants included 54 international students, of which 72% were Asian. The Racial and Ethnic Microaggressions Scale (REMS), Perceived Stress Scale (PSS), and the Perceived General Wellbeing Indicator (PGWBI) were used to measure the participants’ responses. All participants reported experiencing racial microaggression in the last six months, and significant correlations and regression models were found between REMS, certain elements of the PSS scale, and time in Australia. Despite the small sample size, this research corroborated outcomes from recent studies and provided insight into the prevalence and impact of racial microaggressions among such populations, highlighting the need for further exploration.Keywords: racial microaggressions, international students, racism, REMS, microaggressions in Australia, stress, psychological wellbeing
Procedia PDF Downloads 1292848 Concrete Sewer Pipe Corrosion Induced by Sulphuric Acid Environment
Authors: Anna Romanova, Mojtaba Mahmoodian, Upul Chandrasekara, Morteza A. Alani
Abstract:
Corrosion of concrete sewer pipes induced by sulphuric acid attack is a recognised problem worldwide, which is not only an attribute of countries with hot climate conditions as thought before. The significance of this problem is by far only realised when the pipe collapses causing surface flooding and other severe consequences. To change the existing post-reactive attitude of managing companies, easy to use and robust models are required to be developed which currently lack reliable data to be correctly calibrated. This paper focuses on laboratory experiments of establishing concrete pipe corrosion rate by submerging samples in to 0.5 pH sulphuric acid solution for 56 days under 10ºC, 20ºC and 30ºC temperature regimes. The result showed that at very early stage of the corrosion process the samples gained overall mass, at 30ºC the corrosion progressed quicker than for other temperature regimes, however with time the corrosion level for 10ºC and 20ºC regimes tended towards those at 30ºC. Overall, at these conditions the corrosion rates of 10 mm/year, 13,5 mm/year, and 17 mm/year were observed.Keywords: sewer pipes, concrete corrosion, sulphuric acid, concrete coupons, corrosion rate
Procedia PDF Downloads 3312847 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 652846 Multiphysic Coupling Between Hypersonc Reactive Flow and Thermal Structural Analysis with Ablation for TPS of Space Lunchers
Authors: Margarita Dufresne
Abstract:
This study devoted to development TPS for small space re-usable launchers. We have used SIRIUS design for S1 prototype. Multiphysics coupling for hypersonic reactive flow and thermos-structural analysis with and without ablation is provided by -CCM+ and COMSOL Multiphysics and FASTRAN and ACE+. Flow around hypersonic flight vehicles is the interaction of multiple shocks and the interaction of shocks with boundary layers. These interactions can have a very strong impact on the aeroheating experienced by the flight vehicle. A real gas implies the existence of a gas in equilibrium, non-equilibrium. Mach number ranged from 5 to 10 for first stage flight.The goals of this effort are to provide validation of the iterative coupling of hypersonic physics models in STAR-CCM+ and FASTRAN with COMSOL Multiphysics and ACE+. COMSOL Multiphysics and ACE+ are used for thermal structure analysis to simulate Conjugate Heat Transfer, with Conduction, Free Convection and Radiation to simulate Heat Flux from hypersonic flow. The reactive simulations involve an air chemical model of five species: N, N2, NO, O and O2. Seventeen chemical reactions, involving dissociation and recombination probabilities calculation include in the Dunn/Kang mechanism. Forward reaction rate coefficients based on a modified Arrhenius equation are computed for each reaction. The algorithms employed to solve the reactive equations used the second-order numerical scheme is obtained by a “MUSCL” (Monotone Upstream-cantered Schemes for Conservation Laws) extrapolation process in the structured case. Coupled inviscid flux: AUSM+ flux-vector splitting The MUSCL third-order scheme in STAR-CCM+ provides third-order spatial accuracy, except in the vicinity of strong shocks, where, due to limiting, the spatial accuracy is reduced to second-order and provides improved (i.e., reduced) dissipation compared to the second-order discretization scheme. initial unstructured mesh is refined made using this initial pressure gradient technique for the shock/shock interaction test case. The suggested by NASA turbulence models are the K-Omega SST with a1 = 0.355 and QCR (quadratic) as the constitutive option. Specified k and omega explicitly in initial conditions and in regions – k = 1E-6 *Uinf^2 and omega = 5*Uinf/ (mean aerodynamic chord or characteristic length). We put into practice modelling tips for hypersonic flow as automatic coupled solver, adaptative mesh refinement to capture and refine shock front, using advancing Layer Mesher and larger prism layer thickness to capture shock front on blunt surfaces. The temperature range from 300K to 30 000 K and pressure between 1e-4 and 100 atm. FASTRAN and ACE+ are coupled to provide high-fidelity solution for hot hypersonic reactive flow and Conjugate Heat Transfer. The results of both approaches meet the CIRCA wind tunnel results.Keywords: hypersonic, first stage, high speed compressible flow, shock wave, aerodynamic heating, conugate heat transfer, conduction, free convection, radiation, fastran, ace+, comsol multiphysics, star-ccm+, thermal protection system (tps), space launcher, wind tunnel
Procedia PDF Downloads 712845 Developing Guidelines for Public Health Nurse Data Management and Use in Public Health Emergencies
Authors: Margaret S. Wright
Abstract:
Background/Significance: During many recent public health emergencies/disasters, public health nursing data has been missing or delayed, potentially impacting the decision-making and response. Data used as evidence for decision-making in response, planning, and mitigation has been erratic and slow, decreasing the ability to respond. Methodology: Applying best practices in data management and data use in public health settings, and guided by the concepts outlined in ‘Disaster Standards of Care’ models leads to the development of recommendations for a model of best practices in data management and use in public health disasters/emergencies by public health nurses. As the ‘patient’ in public health disasters/emergencies is the community (local, regional or national), guidelines for patient documentation are incorporated in the recommendations. Findings: Using model public health nurses could better plan how to prepare for, respond to, and mitigate disasters in their communities, and better participate in decision-making in all three phases bringing public health nursing data to the discussion as part of the evidence base for decision-making.Keywords: data management, decision making, disaster planning documentation, public health nursing
Procedia PDF Downloads 2212844 Explanation and Temporality in International Relations
Authors: Alasdair Stanton
Abstract:
What makes for a good explanation? Twenty years after Wendt’s important treatment of constitution and causation, non-causal explanations (sometimes referred to as ‘understanding’, or ‘descriptive inference’) have become, if not mainstream, at least accepted within International Relations. This article proceeds in two parts: firstly, it examines closely Wendt’s constitutional claims, and while it agrees there is a difference between causal and constitutional, rejects the view that constitutional explanations lack temporality. In fact, this author concludes that a constitutional argument is only possible if it relies upon a more foundational, causal argument. Secondly, through theoretical analysis of the constitutional argument, this research seeks to delineate temporal and non-temporal ways of explaining within International Relations. This article concludes that while the constitutional explanation, like other logical arguments, including comparative, and counter-factual, are not truly non-causal explanations, they are not bound as tightly to the ‘real world’ as temporal arguments such as cause-effect, process tracing, or even interpretivist accounts. However, like mathematical models, non-temporal arguments should aim for empirical testability as well as internal consistency. This work aims to give clear theoretical grounding to those authors using non-temporal arguments, but also to encourage them, and their positivist critics, to engage in thoroughgoing empirical tests.Keywords: causal explanation, constitutional understanding, empirical, temporality
Procedia PDF Downloads 1952843 Towards Value-Based Healthcare through a Nursing Sector Management Approach
Authors: Hadeer Hegazy, Wael Ewieda, Ranin Soliman, Samah Elway, Asmaa Tawfik, Ragaa Sayed, Sahar Mousa
Abstract:
The current healthcare system is facing major challenges in terms of cost, quality of care, and access to services. In response, the concept of value-based healthcare has emerged as a new approach to healthcare delivery. This concept puts the focus on patient values rather than on the traditional medical model of care. To achieve this, healthcare organizations must be agile and able to anticipate and respond quickly to changing needs. Agile management is essential for healthcare organizations to achieve value-based care, as it allows them to rapidly adjust their strategies to changing circumstances. Additionally, it is argued that agile management can help healthcare organizations gain a better understanding of the needs of their patients and develop better care delivery models. Besides, it can help healthcare organizations develop new services, innovate, and become more efficient. The authors provide evidence to support their argument, drawing on examples from successful value-based healthcare initiatives at children’s cancer hospital Egypt-57357. The paper offers insight into how agile management can be used to facilitate the shift towards value-based healthcare and how it can be used to maximize value in the healthcare system.Keywords: value-based healthcare, agility in healthcare, nursing department, patients outcomes
Procedia PDF Downloads 7682842 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios
Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya
Abstract:
A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.Keywords: bistatic radar cross section, passive radar, propagation losses, radar coverage
Procedia PDF Downloads 3362841 Assessing Artificial Neural Network Models on Forecasting the Return of Stock Market Index
Authors: Hamid Rostami Jaz, Kamran Ameri Siahooei
Abstract:
Up to now different methods have been used to forecast the index returns and the index rate. Artificial intelligence and artificial neural networks have been one of the methods of index returns forecasting. This study attempts to carry out a comparative study on the performance of different Radial Base Neural Network and Feed-Forward Perceptron Neural Network to forecast investment returns on the index. To achieve this goal, the return on investment in Tehran Stock Exchange index is evaluated and the performance of Radial Base Neural Network and Feed-Forward Perceptron Neural Network are compared. Neural networks performance test is applied based on the least square error in two approaches of in-sample and out-of-sample. The research results show the superiority of the radial base neural network in the in-sample approach and the superiority of perceptron neural network in the out-of-sample approach.Keywords: exchange index, forecasting, perceptron neural network, Tehran stock exchange
Procedia PDF Downloads 4642840 A Greener Approach for the Recovery of Proteins from Meat Industries
Authors: Jesus Hernandez, Zead Elzoeiry, Md. S. Islam, Abel E. Navarro
Abstract:
The adsorption of bovine serum albumin (BSA) and human hemoglobin (Hb) on naturally-occurring adsorbents was studied to evaluate the potential recovery of proteins from meat industry residues. Spent peppermint tea (PM), powdered purple corn cob (PC), natural clay (NC) and chemically-modified clay (MC) were investigated to elucidate the effects of pH, adsorbent dose, initial protein concentration, presence of salts and heavy metals. Equilibrium data were fitted according to isotherm models, reporting a maximum adsorption capacity at pH 8 of 318 and 344 mg BSA/g of PM and NC, respectively. Moreover, Hb displayed maximum adsorption capacity at pH 5 of 125 and 143 mg/g of PM and PC, respectively. Hofmeister salt effect was only observed for PM/Hb system. Salts tend to decrease protein adsorption, and the presence of Cu(II) ions had negligible impacts on the adsorption onto NC and PC. Desorption experiments confirmed that more than 85% of both proteins can be recovered with diluted acids and bases. SEM, EDX, and TGA analyses demonstrated that the adsorbents have favorable morphological and mechanical properties. The long-term goal of this study aims to recover soluble proteins from industrial wastewaters to produce animal food or any protein-based product.Keywords: adsorption, albumin, clay, hemoglobin, spent peppermint leaf
Procedia PDF Downloads 1032839 Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems
Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo
Abstract:
Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.Keywords: electrodeposition, kinetics diagrams, modeling, voltammetry
Procedia PDF Downloads 1412838 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device
Authors: Muthana A. M. Jameel Al-Jaboori
Abstract:
In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.Keywords: water wave, models, Wells turbine, MATLAB program
Procedia PDF Downloads 3632837 Machine Learning Invariants to Detect Anomalies in Secure Water Treatment
Authors: Jonathan Heng, Yoong Cheah Huei
Abstract:
A strategic model that does not trigger any false alarms to detect anomalies in Secure Water Treatment (SWaT) test bed is presented. This model uses machine learning invariants formulated from streamlining the general form of Auto-Regressive models with eXogenous input. A creative generalized CUSUM algorithm to integrate the invariants and the detection strategy technique is successfully developed and tested in the SWaT Programmable Logic Controllers (PLCs). Three steps to fine-tune parameters, b and τ in the generalized algorithm are stated and an example used to demonstrate the tuning process is discussed. This approach can swiftly and effectively detect various scopes of cyber-attacks such as multiple points single stage and multiple points multiple stages in SWaT. This technique can be applied in water treatment plants and other cyber physical systems like power and gas plants too.Keywords: machine learning invariants, generalized CUSUM algorithm with invariants and detection strategy, scope of cyber attacks, strategic model, tuning parameters
Procedia PDF Downloads 1812836 The Effects of Transformational Leadership on Process Innovation through Knowledge Sharing
Authors: Sawsan J. Al-Husseini, Talib A. Dosa
Abstract:
Transformational leadership has been identified as the most important factor affecting innovation and knowledge sharing; it leads to increased goal-directed behavior exhibited by followers and thus to enhanced performance and innovation for the organization. However, there is a lack of models linking transformational leadership, knowledge sharing, and process innovation within higher education (HE) institutions in general within developing countries, particularly in Iraq. This research aims to examine the mediating role of knowledge sharing in the transformational leadership and process innovation relationship. A quantitative approach was taken and 254 usable questionnaires were collected from public HE institutions in Iraq. Structural equation modelling with AMOS 22 was used to analyze the causal relationships among factors. The research found that knowledge sharing plays a pivotal role in the relationship between transformational leadership and process innovation, and that transformational leadership would be ideal in an educational context, promoting knowledge sharing activities and influencing process innovation in the public HE in Iraq. The research has developed some guidelines for researchers as well as leaders and provided evidence to support the use of TL to increase process innovation within HE environment in developing countries, particularly in Iraq.Keywords: transformational leadership, knowledge sharing, process innovation, structural equation modelling, developing countries
Procedia PDF Downloads 3362835 The Impact of Organizational Justice on Organizational Loyalty Considering the Role of Spirituality and Organizational Trust Variable: Case Study of South Pars Gas Complex
Authors: Sima Radmanesh, Nahid Radmanesh, Mohsen Yaghmoor
Abstract:
The presence of large number of active rival gas companies on Persian Gulf border necessitates the adaptation and implementation of effective employee retention strategies as well as implementation of promoting loyalty and belonging strategies of specialized staffs in the South Pars gas company. Hence, this study aims at assessing the amount of organizational loyalty and explaining the effect of institutional justice on organizational justice with regard to the role of mediator variables of spirituality in the work place and organizational trust. Therefore, through reviewing the related literature, the researchers achieve a conceptual model for the effect of these factors on organizational loyalty. To this end, this model was assessed and tested through questionnaires in South Pars gas company. The research method was descriptive and correlation-structural equation modeling. The findings of the study indicated a significant relationship between the concepts addressed in the research and conceptual models were confirmed. Finally, according to the results to improve effectiveness factors affecting organizational loyalty, recommendations are provided.Keywords: organizational loyalty, organizational trust, organizational justice, organizational spirit, oil and gas company
Procedia PDF Downloads 4722834 Classroom Incivility Behaviours among Medical Students: A Comparative Study in Pakistan
Authors: Manal Rauf
Abstract:
Trained medical practitioners are produced from medical colleges serving in public and private sectors. Prime responsibility of teaching faculty is to inculcate required work ethic among the students by serving as role models for them. It is an observed fact that classroom incivility behaviours are providing a friction in achieving these targets. Present study aimed at identification of classroom incivility behaviours observed by teachers and students of public and private medical colleges as per Glasser’s Choice Theory, making a comparison and investigating the strategies being adopted by teachers of both sectors to control undesired class room behaviours. Findings revealed that a significant difference occurs between teacher and student incivility behaviours. Public sector teacher focussed on survival as a strong factor behind in civil behaviours whereas private sector teachers considered power as the precedent for incivility. Teachers of both sectors are required to use verbal as well as non-verbal immediacy to reach a healthy leaning environment.Keywords: classroom incivility behaviour, glasser choice theory, Mehrabian immediacy theory
Procedia PDF Downloads 2392833 The School Based Support Program: An Evaluation of a Comprehensive School Reform Initiative in the State of Qatar
Authors: Abdullah Abu-Tineh, Youmen Chaaban
Abstract:
This study examines the development of a professional development (PD) model for teacher growth and learning that is embedded into the school context. The School based Support Program (SBSP), designed for the Qatari context, targets the practices, knowledge and skills of both school leadership and teachers in an attempt to improve student learning outcomes. Key aspects of the model include the development of learning communities among teachers, strong leadership that supports school improvement activities, and the use of research-based PD to improve teacher practices and student achievement. This paper further presents findings from an evaluation of this PD program. Based on an adaptation of Guskey’s evaluation of PD models, 100 teachers at the participating schools were selected for classroom observations and 40 took part in in-depth interviews to examine changed classroom practices. The impact of the PD program on student learning was also examined. Teachers’ practices and their students’ achievement in English, Arabic, mathematics and science were measured at the beginning and at the end of the intervention.Keywords: initiative, professional development, school based support Program (SBSP), school reform
Procedia PDF Downloads 4962832 Technical Determinants of the Success of the Quality Management Systems Implementation in Automotive Industry
Authors: Agnieszka Misztal
Abstract:
The popularity of the quality management system models continues to grow despite the transitional crisis in 2008. Their development is associated with the demands of the new requirements for entrepreneurs, such as risk analysis projects and more emphasis on supervision of outsourced processes. In parallel appropriate to focus attention on the selection of companies aspiring to quality management system. This is particularly important in the automotive supplier industry, where requirements transferred to the levels in the supply chain should be clear, transparent and fairly satisfied. The author has carried out series of researches aimed at finding the factors that allow for the effective implementation of the quality management system in automotive companies. The research was focused on four groups of companies: 1) manufacturing (parts and assemblies for the purpose of sale or for vehicle manufacturers), 2) service (repair and maintenance of the car), 3) services for the transport of goods or people, 4) commercial (auto parts and vehicles). Identified determinants were divided in two types of criteria into: internal and external, as well as: hard and soft. The article presents hard - technical factors that automotive company must meet in order to achieve the goal of the quality management system implementation.Keywords: automotive industry, quality management system, automotive technology, automotive company
Procedia PDF Downloads 4012831 Unveiling the Dynamics of Preservice Teachers’ Engagement with Mathematical Modeling through Model Eliciting Activities: A Comprehensive Exploration of Acceptance and Resistance Towards Modeling and Its Pedagogy
Authors: Ozgul Kartal, Wade Tillett, Lyn D. English
Abstract:
Despite its global significance in curricula, mathematical modeling encounters persistent disparities in recognition and emphasis within regular mathematics classrooms and teacher education across countries with diverse educational and cultural traditions, including variations in the perceived role of mathematical modeling. Over the past two decades, increased attention has been given to the integration of mathematical modeling into national curriculum standards in the U.S. and other countries. Therefore, the mathematics education research community has dedicated significant efforts to investigate various aspects associated with the teaching and learning of mathematical modeling, primarily focusing on exploring the applicability of modeling in schools and assessing students', teachers', and preservice teachers' (PTs) competencies and engagement in modeling cycles and processes. However, limited attention has been directed toward examining potential resistance hindering teachers and PTs from effectively implementing mathematical modeling. This study focuses on how PTs, without prior modeling experience, resist and/or embrace mathematical modeling and its pedagogy as they learn about models and modeling perspectives, navigate the modeling process, design and implement their modeling activities and lesson plans, and experience the pedagogy enabling modeling. Model eliciting activities (MEAs) were employed due to their high potential to support the development of mathematical modeling pedagogy. The mathematical modeling module was integrated into a mathematics methods course to explore how PTs embraced or resisted mathematical modeling and its pedagogy. The module design included reading, reflecting, engaging in modeling, assessing models, creating a modeling task (MEA), and designing a modeling lesson employing an MEA. Twelve senior undergraduate students participated, and data collection involved video recordings, written prompts, lesson plans, and reflections. An open coding analysis revealed acceptance and resistance toward teaching mathematical modeling. The study identified four overarching themes, including both acceptance and resistance: pedagogy, affordance of modeling (tasks), modeling actions, and adjusting modeling. In the category of pedagogy, PTs displayed acceptance based on potential pedagogical benefits and resistance due to various concerns. The affordance of modeling (tasks) category emerged from instances when PTs showed acceptance or resistance while discussing the nature and quality of modeling tasks, often debating whether modeling is considered mathematics. PTs demonstrated both acceptance and resistance in their modeling actions, engaging in modeling cycles as students and designing/implementing MEAs as teachers. The adjusting modeling category captured instances where PTs accepted or resisted maintaining the qualities and nature of the modeling experience or converted modeling into a typical structured mathematics experience for students. While PTs displayed a mix of acceptance and resistance in their modeling actions, limitations were observed in embracing complexity and adhering to model principles. The study provides valuable insights into the challenges and opportunities of integrating mathematical modeling into teacher education, emphasizing the importance of addressing pedagogical concerns and providing support for effective implementation. In conclusion, this research offers a comprehensive understanding of PTs' engagement with modeling, advocating for a more focused discussion on the distinct nature and significance of mathematical modeling in the broader curriculum to establish a foundation for effective teacher education programs.Keywords: mathematical modeling, model eliciting activities, modeling pedagogy, secondary teacher education
Procedia PDF Downloads 652830 A Data Mining Approach for Analysing and Predicting the Bank's Asset Liability Management Based on Basel III Norms
Authors: Nidhin Dani Abraham, T. K. Sri Shilpa
Abstract:
Asset liability management is an important aspect in banking business. Moreover, the today’s banking is based on BASEL III which strictly regulates on the counterparty default. This paper focuses on prediction and analysis of counter party default risk, which is a type of risk occurs when the customers fail to repay the amount back to the lender (bank or any financial institutions). This paper proposes an approach to reduce the counterparty risk occurring in the financial institutions using an appropriate data mining technique and thus predicts the occurrence of NPA. It also helps in asset building and restructuring quality. Liability management is very important to carry out banking business. To know and analyze the depth of liability of bank, a suitable technique is required. For that a data mining technique is being used to predict the dormant behaviour of various deposit bank customers. Various models are implemented and the results are analyzed of saving bank deposit customers. All these data are cleaned using data cleansing approach from the bank data warehouse.Keywords: data mining, asset liability management, BASEL III, banking
Procedia PDF Downloads 5522829 Investigations in Machining of Hot Work Tool Steel with Mixed Ceramic Tool
Authors: B. Varaprasad, C. Srinivasa Rao
Abstract:
Hard turning has been explored as an alternative to the conventional one used for manufacture of Parts using tool steels. In the present study, the effects of cutting speed, feed rate and Depth of Cut (DOC) on cutting forces, specific cutting force, power and surface roughness in the hard turning are experimentally investigated. Experiments are carried out using mixed ceramic(Al2O3+TiC) cutting tool of corner radius 0.8mm, in turning operations on AISI H13 tool steel, heat treated to a hardness of 62 HRC. Based on Design of Experiments (DOE), a total of 20 tests are carried out. The range of each one of the three parameters is set at three different levels, viz, low, medium and high. The validity of the model is checked by Analysis of variance (ANOVA). Predicted models are derived from regression analysis. Comparison of experimental and predicted values of specific cutting force, power and surface roughness shows that good agreement has been achieved between them. Therefore, the developed model may be recommended to be used for predicting specific cutting force, power and surface roughness in hard turning of tool steel that is AISI H13 steel.Keywords: hard turning, specific cutting force, power, surface roughness, AISI H13, mixed ceramic
Procedia PDF Downloads 7002828 Building Energy Modeling for Networks of Data Centers
Authors: Eric Kumar, Erica Cochran, Zhiang Zhang, Wei Liang, Ronak Mody
Abstract:
The objective of this article was to create a modelling framework that exposes the marginal costs of shifting workloads across geographically distributed data-centers. Geographical distribution of internet services helps to optimize their performance for localized end users with lowered communications times and increased availability. However, due to the geographical and temporal effects, the physical embodiments of a service's data center infrastructure can vary greatly. In this work, we first identify that the sources of variances in the physical infrastructure primarily stem from local weather conditions, specific user traffic profiles, energy sources, and the types of IT hardware available at the time of deployment. Second, we create a traffic simulator that indicates the IT load at each data-center in the set as an approximator for user traffic profiles. Third, we implement a framework that quantifies the global level energy demands using building energy models and the traffic profiles. The results of the model provide a time series of energy demands that can be used for further life cycle analysis of internet services.Keywords: data-centers, energy, life cycle, network simulation
Procedia PDF Downloads 1472827 Modeling of Steady State Creep in Thick-Walled Cylinders under Internal Pressure
Authors: Tejeet Singh, Ishavneet Singh
Abstract:
The present study focused on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminum matrix reinforced with silicon-carbide in particulate form. The creep behavior of the composite material has been described by the threshold stress based creep law. The values of stress exponent appearing in the creep law were selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stress and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius.Keywords: steady state creep, composite, cylinder, pressure
Procedia PDF Downloads 4192826 Learning from Dendrites: Improving the Point Neuron Model
Authors: Alexander Vandesompele, Joni Dambre
Abstract:
The diversity in dendritic arborization, as first illustrated by Santiago Ramon y Cajal, has always suggested a role for dendrites in the functionality of neurons. In the past decades, thanks to new recording techniques and optical stimulation methods, it has become clear that dendrites are not merely passive electrical components. They are observed to integrate inputs in a non-linear fashion and actively participate in computations. Regardless, in simulations of neural networks dendritic structure and functionality are often overlooked. Especially in a machine learning context, when designing artificial neural networks, point neuron models such as the leaky-integrate-and-fire (LIF) model are dominant. These models mimic the integration of inputs at the neuron soma, and ignore the existence of dendrites. In this work, the LIF point neuron model is extended with a simple form of dendritic computation. This gives the LIF neuron increased capacity to discriminate spatiotemporal input sequences, a dendritic functionality as observed in another study. Simulations of the spiking neurons are performed using the Bindsnet framework. In the common LIF model, incoming synapses are independent. Here, we introduce a dependency between incoming synapses such that the post-synaptic impact of a spike is not only determined by the weight of the synapse, but also by the activity of other synapses. This is a form of short term plasticity where synapses are potentiated or depressed by the preceding activity of neighbouring synapses. This is a straightforward way to prevent inputs from simply summing linearly at the soma. To implement this, each pair of synapses on a neuron is assigned a variable,representing the synaptic relation. This variable determines the magnitude ofthe short term plasticity. These variables can be chosen randomly or, more interestingly, can be learned using a form of Hebbian learning. We use Spike-Time-Dependent-Plasticity (STDP), commonly used to learn synaptic strength magnitudes. If all neurons in a layer receive the same input, they tend to learn the same through STDP. Adding inhibitory connections between the neurons creates a winner-take-all (WTA) network. This causes the different neurons to learn different input sequences. To illustrate the impact of the proposed dendritic mechanism, even without learning, we attach five input neurons to two output neurons. One output neuron isa regular LIF neuron, the other output neuron is a LIF neuron with dendritic relationships. Then, the five input neurons are allowed to fire in a particular order. The membrane potentials are reset and subsequently the five input neurons are fired in the reversed order. As the regular LIF neuron linearly integrates its inputs at the soma, the membrane potential response to both sequences is similar in magnitude. In the other output neuron, due to the dendritic mechanism, the membrane potential response is different for both sequences. Hence, the dendritic mechanism improves the neuron’s capacity for discriminating spa-tiotemporal sequences. Dendritic computations improve LIF neurons even if the relationships between synapses are established randomly. Ideally however, a learning rule is used to improve the dendritic relationships based on input data. It is possible to learn synaptic strength with STDP, to make a neuron more sensitive to its input. Similarly, it is possible to learn dendritic relationships with STDP, to make the neuron more sensitive to spatiotemporal input sequences. Feeding structured data to a WTA network with dendritic computation leads to a significantly higher number of discriminated input patterns. Without the dendritic computation, output neurons are less specific and may, for instance, be activated by a sequence in reverse order.Keywords: dendritic computation, spiking neural networks, point neuron model
Procedia PDF Downloads 1332825 The Role of NAD+ and Nicotinamide (Vitamin B3) in Glaucoma: A Literature Review
Authors: James Pietris
Abstract:
Glaucoma is a collection of irreversible optic neuropathies which, if left untreated, lead to severe visual field loss. These diseases are a leading cause of blindness across the globe and are estimated to affect approximately 80 million people, particularly women and people of Asian descent.1This represents a major burden on healthcare systems worldwide. Recently, there has been increasing interest in the potential of nicotinamide (vitamin B3) as a novel option in the management of glaucoma. This review aims to analyse the currently available literature to determine whether there is evidence of an association between nicotinamide adenine dinucleotide (NAD+) and glaucomatous optic neuropathy and whether nicotinamide has the potential to prevent or reverse these effects. The literature showed a strong connection between reduced NAD+ levels and retinal ganglion cell dysfunction through multiple different studies. There is also evidence of the positive effect of nicotinamide supplementation on retinal ganglion cell function in models of mouse glaucoma and in a study involving humans. Based on the literature findings, a recommendation has been made that more research into the efficacy, appropriate dosing, and potential side effects of nicotinamide supplementation is needed before it can be definitively determined whether it is appropriate for widespread prophylactic and therapeutic use against glaucoma in humans.Keywords: glaucoma, nicotinamide, vitamin B3, optic neuropathy
Procedia PDF Downloads 1062824 Hypercomplex Dynamics and Turbulent Flows in Sobolev and Besov Functional Spaces
Authors: Romulo Damasclin Chaves dos Santos, Jorge Henrique de Oliveira Sales
Abstract:
This paper presents a rigorous study of advanced functional spaces, with a focus on Sobolev and Besov spaces, to investigate key aspects of fluid dynamics, including the regularity of solutions to the Navier-Stokes equations, hypercomplex bifurcations, and turbulence. We offer a comprehensive analysis of Sobolev embedding theorems in fractional spaces and apply bifurcation theory within quaternionic dynamical systems to better understand the complex behaviors in fluid systems. Additionally, the research delves into energy dissipation mechanisms in turbulent flows through the framework of Besov spaces. Key mathematical tools, such as interpolation theory, Littlewood-Paley decomposition, and energy cascade models, are integrated to develop a robust theoretical approach to these problems. By addressing challenges related to the existence and smoothness of solutions, this work contributes to the ongoing exploration of the open Navier-Stokes problem, providing new insights into the intricate relationship between fluid dynamics and functional spaces.Keywords: navier-stokes equations, hypercomplex bifurcations, turbulence, sobolev and besov space
Procedia PDF Downloads 142823 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach
Procedia PDF Downloads 972822 A Hybrid Model of Goal, Integer and Constraint Programming for Single Machine Scheduling Problem with Sequence Dependent Setup Times: A Case Study in Aerospace Industry
Authors: Didem Can
Abstract:
Scheduling problems are one of the most fundamental issues of production systems. Many different approaches and models have been developed according to the production processes of the parts and the main purpose of the problem. In this study, one of the bottleneck stations of a company serving in the aerospace industry is analyzed and considered as a single machine scheduling problem with sequence-dependent setup times. The objective of the problem is assigning a large number of similar parts to the same shift -to reduce chemical waste- while minimizing the number of tardy jobs. The goal programming method will be used to achieve two different objectives simultaneously. The assignment of parts to the shift will be expressed using the integer programming method. Finally, the constraint programming method will be used as it provides a way to find a result in a short time by avoiding worse resulting feasible solutions with the defined variables set. The model to be established will be tested and evaluated with real data in the application part.Keywords: constraint programming, goal programming, integer programming, sequence-dependent setup, single machine scheduling
Procedia PDF Downloads 2372821 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 862820 A Literature Review on Development of a Forecast Supported Approach for the Continuous Pre-Planning of Required Transport Capacity for the Design of Sustainable Transport Chains
Authors: Georg Brunnthaller, Sandra Stein, Wilfried Sihn
Abstract:
Logistics service providers are facing increasing volatility concerning future transport demand. Short-term planning horizons and planning uncertainties lead to reduced capacity utilisation and increasing empty mileage. To overcome these challenges, a model is proposed to continuously pre-plan future transport capacity in order to redesign and adjust the intermodal fleet accordingly. It is expected that the model will enable logistics service providers to organise more economically and ecologically sustainable transport chains in a more flexible way. To further describe such planning aspects, this paper gives a structured literature review on transport planning problems. The focus is on strategic and tactical planning levels, comprising relevant fleet-sizing-, network-design- and choice-of-carriers-problems. Models and their developed solution techniques are presented and the literature review is concluded with an outlook to our future research objectivesKeywords: choice of transport mode, fleet-sizing, freight transport planning, multimodal, review, service network design
Procedia PDF Downloads 364