Search results for: dual phase lag model
15473 Calculation Of Energy Gap Of (Ga,Mn)As Diluted Magnetic Semiconductor From The Eight-Band k.p Model
Authors: Khawlh A. Alzubaidi, Khadijah B. Alziyadi, Amor M. Alsayari
Abstract:
Now a days (Ga, Mn) is one of the most extensively studied and best understood diluted magnetic semiconductors. Also, the study of (Ga, Mn)As is a fervent research area since it allows to explore of a variety of novel functionalities and spintronics concepts that could be implemented in the future. In this work, we will calculate the energy gap of (Ga, Mn)As using the eight-band model. In the Hamiltonian, the effects of spin-orbit, spin-splitting, and strain will be considered. The dependence of the energy gap on Mn content, and the effect of the strain, which is varied continuously from tensile to compressive, will be studied. Finally, analytical expressions for the (Ga, Mn)As energy band gap, taking into account both parameters (Mn concentration and strain), will be provided.Keywords: energy gap, diluted magnetic semiconductors, k.p method, strain
Procedia PDF Downloads 12915472 A Grey-Box Text Attack Framework Using Explainable AI
Authors: Esther Chiramal, Kelvin Soh Boon Kai
Abstract:
Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human-interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques, and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally white-box in nature and not practical as they can be easily detected by humans e.g., Changing the word from “Poor” to “Rich”. We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.Keywords: BERT, explainable AI, Grey-box text attack, transformer
Procedia PDF Downloads 14115471 Tracking Maximum Power Point Utilizing Artificial Immunity System
Authors: Marwa Ahmed Abd El Hamied
Abstract:
In this paper In this paper, a new technique based on Artificial Immunity System (AIS) technique has been developed to track Maximum Power Point (MPP). AIS system is implemented in a photovoltaic system that is subjected to variable temperature and insulation condition. The proposed novel is simulated using Mat Lab program. The results of simulation have been compared to those who are generated from Observation Controller. The proposed model shows promising results as it provide better accuracy comparing to classical model.Keywords: component, artificial immunity technique, solar energy, perturbation and observation, power based methods
Procedia PDF Downloads 43115470 Frequent-Flyer Program: The Connection between Commercial Partners and Spin-off
Authors: Changmin Jiang
Abstract:
In this paper, we build a theoretical model to investigate the relationship between two recent trends in airline frequent-flyer programs (FFPs): the adoption of the “coalition” business model with other commercial partners, and the separation from airlines’ operations. We show that commercial partners benefit from teaming up with FFP, while increasing the number of commercial partners will increase the total profit; it reduces the average profit of the parties involved. Furthermore, we show that the number of commercial partners of an FFP is negatively related with the benefit to keep the FFP in-house.Keywords: frequent flyer program, coalition, commercial partners, spin-off
Procedia PDF Downloads 30715469 Cognitive Behaviour Drama: Playful Method to Address Fears in Children on the Higher-End of the Autism Spectrum
Authors: H.Karnezi, K. Tierney
Abstract:
Childhood fears that persist over time and interfere with the children’s normal functioning may have detrimental effects on their social and emotional development. Cognitive behavior therapy is considered highly effective in treating fears and anxieties. However, given that many childhood fears are based on fantasy, the applicability of CBT may be hindered by cognitive immaturity. Furthermore, a lack of motivation to engage in therapy is another commonly encountered obstacle. The purpose of this study was to introduce and evaluate a more developmentally appropriate intervention model, specifically designed to provide phobic children with the motivation to overcome their fears. To this end, principles and techniques from cognitive and behavior therapies are incorporated into the ‘Drama in Education’ model. The Cognitive Behaviour Drama (CBD) method involves using the phobic children’s creativity to involve them in the therapeutic process. The children are invited to engage in exciting fictional scenarios tailored around their strengths and special interests. Once their commitment to the drama is established, a problem that they will feel motivated to solve is introduced. To resolve it, the children will have to overcome a number of obstacles culminating in an in vivo confrontation with the fear stimulus. The study examined the application of the CBD model in three single cases. Results in all three cases shown complete elimination of all fear-related symptoms. Preliminary results justify further evaluation of the Cognitive Behaviour Drama model. It is time and cost-effective, ensuring the clients' immediate engagement in the therapeutic process.Keywords: phobias, autism, intervention, drama
Procedia PDF Downloads 13315468 An Educational Program Based on Health Belief Model to Prevent Non-Alcoholic Fatty Liver Disease among Iranian Women
Authors: Babak Nemat
Abstract:
Background and Purpose: Non-alcoholic fatty liver is one of the most common liver disorders, which, as the most important cause of death from liver disease, has unpleasant consequences and complications. The aim of this study was to investigate the effect of an educational intervention based on a health belief model to prevent non-alcoholic fatty liver among women. Materials and Methods: This experimental study was performed among 110 women referring to comprehensive health service centers in Malayer City, west of Iran, in 2023. Using the available sampling method, 110 participants were divided into experimental and control groups. The data collection tool included demographic characteristics and a questionnaire based on the health belief model. In the experimental group, three one-hour training sessions were conducted in the form of pamphlets, lectures, and group discussions. Data were analyzed using SPSS software version 21, by correlation tests, paired t-tests, and independent t-tests. Results: The mean age of participants was 38.07±6.28 years, and most of the participants were middle-aged, married, housewives with academic education, middle-income, and overweight. After the educational intervention, the mean scores of the constructs include perceived sensitivity (p=0.01), perceived severity (p=0.01), perceived benefits (p=0.01), guidance for internal (p=0.01), and external action (p=0.01), and perceived self-efficacy (p=0.01) in the experimental group were significantly higher than the control group. The score of perceived barriers in the experimental group decreased after training. The perceived obstacles score in the test group decreased after the training (15.2 ± 3.9 v.s 11.2 ± 3.3, (p<0.01). Conclusion: The findings of the study showed that the design and implementation of educational programs based on the constructs of the health belief model can be effective in preventing women from developing higher levels of non-alcoholic fatty liver.Keywords: non-alcoholic fatty liver, health belief model, education, women
Procedia PDF Downloads 6415467 Dosimetric Comparison of Conventional Plans versus Three Dimensional Conformal Simultaneously Integrated Boost Plans
Authors: Shoukat Ali, Amjad Hussain, Latif-ur-Rehman, Sehrish Inam
Abstract:
Radiotherapy plays an important role in the management of cancer patients. Approximately 50% of the cancer patients receive radiotherapy at one point or another during the course of treatment. The entire radiotherapy treatment of curative intent is divided into different phases, depending on the histology of the tumor. The established protocols are useful in deciding the total dose, fraction size, and numbers of phases. The objective of this study was to evaluate the dosimetric differences between the conventional treatment protocols and the three-dimensional conformal simultaneously integrated boost (SIB) plans for three different tumors sites (i.e. bladder, breast, and brain). A total of 30 patients with brain, breast and bladder cancers were selected in this retrospective study. All the patients were CT simulated initially. The primary physician contoured PTV1 and PTV2 in the axial slices. The conventional doses prescribed for brain and breast is 60Gy/30 fractions, and 64.8Gy/36 fractions for bladder treatment. For the SIB plans biological effective doses (BED) were calculated for 25 fractions. The two conventional (Phase I and Phase II) and a single SIB plan for each patient were generated on Eclipse™ treatment planning system. Treatment plans were compared and analyzed for coverage index, conformity index, homogeneity index, dose gradient and organs at risk doses.In both plans 95% of PTV volume received a minimum of 95% of the prescribe dose. Dose deviation in the optic chiasm was found to be less than 0.5%. There is no significant difference in lung V20 and heart V30 in the breast plans. In the rectum plans V75%, V50% and V25% were found to be less than 1.2% different. Deviation in the tumor coverage, conformity and homogeneity indices were found to be less than 1%. SIB plans with three dimensional conformal radiotherapy technique reduce the overall treatment time without compromising the target coverage and without increasing dose to the organs at risk. The higher dose per fraction may increase the late effects to some extent. Further studies are required to evaluate the late effects with the intention of standardizing the SIB technique for practical implementation.Keywords: coverage index, conformity index, dose gradient, homogeneity index, simultaneously integrated boost
Procedia PDF Downloads 47915466 Optical Properties of TlInSe₂<AU> Si̇ngle Crystals
Authors: Gulshan Mammadova
Abstract:
This paper presents the results of studying the surface microrelief in 2D and 3D models and analyzing the spectroscopy of a three-junction TlInSe₂Keywords: optical properties, dielectric permittivity, real and imaginary dielectric permittivity, optical electrical conductivity
Procedia PDF Downloads 6515465 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 14315464 Using Speech Emotion Recognition as a Longitudinal Biomarker for Alzheimer’s Diseases
Authors: Yishu Gong, Liangliang Yang, Jianyu Zhang, Zhengyu Chen, Sihong He, Xusheng Zhang, Wei Zhang
Abstract:
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide and is characterized by cognitive decline and behavioral changes. People living with Alzheimer’s disease often find it hard to complete routine tasks. However, there are limited objective assessments that aim to quantify the difficulty of certain tasks for AD patients compared to non-AD people. In this study, we propose to use speech emotion recognition (SER), especially the frustration level, as a potential biomarker for quantifying the difficulty patients experience when describing a picture. We build an SER model using data from the IEMOCAP dataset and apply the model to the DementiaBank data to detect the AD/non-AD group difference and perform longitudinal analysis to track the AD disease progression. Our results show that the frustration level detected from the SER model can possibly be used as a cost-effective tool for objective tracking of AD progression in addition to the Mini-Mental State Examination (MMSE) score.Keywords: Alzheimer’s disease, speech emotion recognition, longitudinal biomarker, machine learning
Procedia PDF Downloads 11715463 Human Resources and Business Result: An Empirical Approach Based on RBV Theory
Authors: Xhevrie Mamaqi
Abstract:
Organization capacity learning is a process referring to the sum total of individual and collective learning through training programs, experience and experimentation, among others. Today, in-business ongoing training is one of the most important strategies for human capital development and it is crucial to sustain and improve workers’ knowledge and skills. Many organizations, firms and business are adopting a strategy of continuous learning, encouraging employees to learn new skills continually to be innovative and to try new processes and work in order to achieve a competitive advantage and superior business results. This paper uses the Resource Based View and Capacities (RBV) approach to construct a hypothetical relationships model between training and business results. The test of the model is applied on transversal data. A sample of 266 business of Spanish sector service has been selected. A Structural Equation Model (SEM) is used to estimate the relationship between ongoing training, represented by two latent dimension denominated Human and Social Capital resources and economic business results. The coefficients estimated have shown the efficient of some training aspects explaining the variation in business results.Keywords: business results, human and social capital resources, training, RBV theory, SEM
Procedia PDF Downloads 30415462 Assimilating Multi-Mission Satellites Data into a Hydrological Model
Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn
Abstract:
Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF
Procedia PDF Downloads 29315461 Poly (3,4-Ethylenedioxythiophene) Prepared by Vapor Phase Polymerization for Stimuli-Responsive Ion-Exchange Drug Delivery
Authors: M. Naveed Yasin, Robert Brooke, Andrew Chan, Geoffrey I. N. Waterhouse, Drew Evans, Darren Svirskis, Ilva D. Rupenthal
Abstract:
Poly(3,4-ethylenedioxythiophene) (PEDOT) is a robust conducting polymer (CP) exhibiting high conductivity and environmental stability. It can be synthesized by either chemical, electrochemical or vapour phase polymerization (VPP). Dexamethasone sodium phosphate (dexP) is an anionic drug molecule which has previously been loaded onto PEDOT as a dopant via electrochemical polymerisation; however this technique requires conductive surfaces from which polymerization is initiated. On the other hand, VPP produces highly organized biocompatible CP structures while polymerization can be achieved onto a range of surfaces with a relatively straight forward scale-up process. Following VPP of PEDOT, dexP can be loaded and subsequently released via ion-exchange. This study aimed at preparing and characterising both non-porous and porous VPP PEDOT structures including examining drug loading and release via ion-exchange. Porous PEDOT structures were prepared by first depositing a sacrificial polystyrene (PS) colloidal template on a substrate, heat curing this deposition and then spin coating it with the oxidant solution (iron tosylate) at 1500 rpm for 20 sec. VPP of both porous and non-porous PEDOT was achieved by exposing to monomer vapours in a vacuum oven at 40 mbar and 40 °C for 3 hrs. Non-porous structures were prepared similarly on the same substrate but without any sacrificial template. Surface morphology, compositions and behaviour were then characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) respectively. Drug loading was achieved by 50 CV cycles in a 0.1 M dexP aqueous solution. For drug release, each sample was exposed to 20 mL of phosphate buffer saline (PBS) placed in a water bath operating at 37 °C and 100 rpm. Film was stimulated (continuous pulse of ± 1 V at 0.5 Hz for 17 mins) while immersed into PBS. Samples were collected at 1, 2, 6, 23, 24, 26 and 27 hrs and were analysed for dexP by high performance liquid chromatography (HPLC Agilent 1200 series). AFM and SEM revealed the honey comb nature of prepared porous structures. XPS data showed the elemental composition of the dexP loaded film surface, which related well with that of PEDOT and also showed that one dexP molecule was present per almost three EDOT monomer units. The reproducible electroactive nature was shown by several cycles of reduction and oxidation via CV. Drug release revealed success in drug loading via ion-exchange, with stimulated porous and non-porous structures exhibiting a proof of concept burst release upon application of an electrical stimulus. A similar drug release pattern was observed for porous and non-porous structures without any significant statistical difference, possibly due to the thin nature of these structures. To our knowledge, this is the first report to explore the potential of VPP prepared PEDOT for stimuli-responsive drug delivery via ion-exchange. The produced porous structures were ordered and highly porous as indicated by AFM and SEM. These porous structures exhibited good electroactivity as shown by CV. Future work will investigate porous structures as nano-reservoirs to increase drug loading while sealing these structures to minimize spontaneous drug leakage.Keywords: PEDOT for ion-exchange drug delivery, stimuli-responsive drug delivery, template based porous PEDOT structures, vapour phase polymerization of PEDOT
Procedia PDF Downloads 23515460 Feasibility Study of Particle Image Velocimetry in the Muzzle Flow Fields during the Intermediate Ballistic Phase
Authors: Moumen Abdelhafidh, Stribu Bogdan, Laboureur Delphine, Gallant Johan, Hendrick Patrick
Abstract:
This study is part of an ongoing effort to improve the understanding of phenomena occurring during the intermediate ballistic phase, such as muzzle flows. A thorough comprehension of muzzle flow fields is essential for optimizing muzzle device and projectile design. This flow characterization has heretofore been almost entirely limited to local and intrusive measurement techniques such as pressure measurements using pencil probes. Consequently, the body of quantitative experimental data is limited, so is the number of numerical codes validated in this field. The objective of the work presented here is to demonstrate the applicability of the Particle Image Velocimetry (PIV) technique in the challenging environment of the propellant flow of a .300 blackout weapon to provide accurate velocity measurements. The key points of a successful PIV measurement are the selection of the particle tracer, their seeding technique, and their tracking characteristics. We have experimentally investigated the aforementioned points by evaluating the resistance, gas dispersion, laser light reflection as well as the response to a step change across the Mach disk for five different solid tracers using two seeding methods. To this end, an experimental setup has been performed and consisted of a PIV system, the combustion chamber pressure measurement, classical high-speed schlieren visualization, and an aerosol spectrometer. The latter is used to determine the particle size distribution in the muzzle flow. The experimental results demonstrated the ability of PIV to accurately resolve the salient features of the propellant flow, such as the under the expanded jet and vortex rings, as well as the instantaneous velocity field with maximum centreline velocities of more than 1000 m/s. Besides, naturally present unburned particles in the gas and solid ZrO₂ particles with a nominal size of 100 nm, when coated on the propellant powder, are suitable as tracers. However, the TiO₂ particles intended to act as a tracer, surprisingly not only melted but also functioned as a combustion accelerator and decreased the number of particles in the propellant gas.Keywords: intermediate ballistic, muzzle flow fields, particle image velocimetry, propellant gas, particle size distribution, under expanded jet, solid particle tracers
Procedia PDF Downloads 16615459 Estimate of Maximum Expected Intensity of One-Half-Wave Lines Dancing
Authors: A. Bekbaev, M. Dzhamanbaev, R. Abitaeva, A. Karbozova, G. Nabyeva
Abstract:
In this paper, the regression dependence of dancing intensity from wind speed and length of span was established due to the statistic data obtained from multi-year observations on line wires dancing accumulated by power systems of Kazakhstan and the Russian Federation. The lower and upper limitations of the equations parameters were estimated, as well as the adequacy of the regression model. The constructed model will be used in research of dancing phenomena for the development of methods and means of protection against dancing and for zoning plan of the territories of line wire dancing.Keywords: power lines, line wire dancing, dancing intensity, regression equation, dancing area intensity
Procedia PDF Downloads 31715458 Propolis as Antioxidant Formulated in Nanoemulsion
Authors: Rachmat Mauludin, Irda Fidrianny, Dita Sasri Primaviri, Okti Alifiana
Abstract:
Natural products such as propolis, green tea and corncob are containing several compounds called antioxidant. Antioxidant can be used in topical application to protect skin against free radical, prevent skin cancer and skin aging. Previous study showed that the extract of propolis that has the highest antioxidant activity was ethanolic extract of propolis (EEP). It is important to make a dosage form that could keep the stability and could protect the effectiveness of antioxidant activity of the extracts. In this research, nanoemulsion (NE) was chosen to formulate those natural products. NE is a dispersion system between oil phase and water phase that formed by mechanical force with a lot amount of surfactants and has globule size below 100 nm. In pharmaceutical industries, NE was preferable for its stability, biodegradability, biocompatibility, its ease to be absorbed and eliminated, and for its use as carrier for lipophilic drugs. First, all of the natural products were extracted using reflux methods. Green tea and corncob were extracted using 96% ethanol while propolis using 70% ethanol. Then, the extracts were concentrated using rotavapor to obtain viscous extracts. The yield of EEP was 11.12%; green tea extract (GTE) was 23.37%; and corncob extract (CCE) was 17.23%. EEP contained steroid/triterpenoid, flavonoid and saponin. GTE contained flavonoid, tannin, and quinone while CCE contained flavonoid, phenol and tannin. The antioxidant activities of the extracts were then measured using DPPH scavenging capacity methods. The values of DPPH scavenging capacity were 61.14% for EEP; 97.16% for GTE; and 78.28% for CCE. The value of IC50 for EEP was 0.41629 ppm. After the extracts were evaluated, NE was prepared. Several surfactants and co-surfactants were used in many combinations and ratios in order to form a NE. Tween 80 and Kolliphor RH40 were used as surfactants while glycerin and propylene glycol were used as co-surfactants. The best NE consists of 26.25% of Kolliphor RH40; 8.75% of glycerin; 5% of rice bran oil; 3% of extracts; and 57% of water. EEP NE had globule size around 23.72 nm; polydispersity index below 0.5; and did not cause any irritation on rabbits. EEP NE was proven to be stable after passing stability test within 63 days at room temperature and 6 cycles of Freeze and Thaw test without separated. Based on TEM (Transmission Electron Microscopy) test, EEP NE had spherical structure with most of its size below 50 nm. The antioxidant activity of EEP NE was monitored for 6 weeks and showed no significant difference. The value of DPPH scavenging capacity for EEP NE was around 58%; for GTE NE was 96.75%; and for CCE NE was 55.69%.Keywords: propolis, green tea, corncob, antioxidant, nanoemulsion
Procedia PDF Downloads 32315457 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 15215456 Train Timetable Rescheduling Using Sensitivity Analysis: Application of Sobol, Based on Dynamic Multiphysics Simulation of Railway Systems
Authors: Soha Saad, Jean Bigeon, Florence Ossart, Etienne Sourdille
Abstract:
Developing better solutions for train rescheduling problems has been drawing the attention of researchers for decades. Most researches in this field deal with minor incidents that affect a large number of trains due to cascading effects. They focus on timetables, rolling stock and crew duties, but do not take into account infrastructure limits. The present work addresses electric infrastructure incidents that limit the power available for train traction, and hence the transportation capacity of the railway system. Rescheduling is needed in order to optimally share the available power among the different trains. We propose a rescheduling process based on dynamic multiphysics railway simulations that include the mechanical and electrical properties of all the system components and calculate physical quantities such as the train speed profiles, voltage along the catenary lines, temperatures, etc. The optimization problem to solve has a large number of continuous and discrete variables, several output constraints due to physical limitations of the system, and a high computation cost. Our approach includes a phase of sensitivity analysis in order to analyze the behavior of the system and help the decision making process and/or more precise optimization. This approach is a quantitative method based on simulation statistics of the dynamic railway system, considering a predefined range of variation of the input parameters. Three important settings are defined. Factor prioritization detects the input variables that contribute the most to the outputs variation. Then, factor fixing allows calibrating the input variables which do not influence the outputs. Lastly, factor mapping is used to study which ranges of input values lead to model realizations that correspond to feasible solutions according to defined criteria or objectives. Generalized Sobol indexes are used for factor prioritization and factor fixing. The approach is tested in the case of a simple railway system, with a nominal traffic running on a single track line. The considered incident is the loss of a feeding power substation, which limits the power available and the train speed. Rescheduling is needed and the variables to be adjusted are the trains departure times, train speed reduction at a given position and the number of trains (cancellation of some trains if needed). The results show that the spacing between train departure times is the most critical variable, contributing to more than 50% of the variation of the model outputs. In addition, we identify the reduced range of variation of this variable which guarantees that the output constraints are respected. Optimal solutions are extracted, according to different potential objectives: minimizing the traveling time, the train delays, the traction energy, etc. Pareto front is also built.Keywords: optimization, rescheduling, railway system, sensitivity analysis, train timetable
Procedia PDF Downloads 40015455 Meaning beyond Pleasure in Leisure: Comparison between Korea and France
Authors: Joane Adeclas, Yoonyoung Kim, Taekyun Hur
Abstract:
This study investigates individual’s intrinsic motivation to practice their leisure activities, as well as, how the cultural environment may influence their motivation to practice their activities. Focused on the positive psychology, the present study proposed redefinition of leisure activities considering two factors. First, leisure activities could be as any activities that provide pleasure or meaning to individuals. Second, they can be practiced alone or in groups. In fact, based on this definition, a four-dimensional model of leisure activities was developed, to measure individual’s perception of their leisure experience, based on four factors that are: personal pleasure, social pleasure, personal meaning and social meaning. Furthermore, recent studies have argued that leisure activities can be interpreted and understood differently across cultures. Therefore, the present study proposed to examine the possible role of the cultural context of individual’s leisure practices. To do so, two cultural groups (Koreans vs. French) were compared in terms of the four-dimensional model of leisure activities. Three hundred Koreans and three hundred French participants were asked to answer an online survey about their leisure activities. Participants had to respond to questions related to several aspects of leisure practices as followed: the reason why their practice their leisure activities, the reason why they fail to practice their leisure, and their obsession relate to their leisure activities. Factor analyses based on participant’s responses proposed a moderate fit of the four-dimensional model of leisure activities. Furthermore, significant cultural differences were also found. As a result, the cultural context seems to influence the reason why individuals practice their leisure activities based on our model. In fact, Koreans explained more than French, the practice of their leisure activities with social-pleasurable reasons. At a contrary, French explained more than Koreans, the practice of their leisure activities with social-meaningful reasons. The two cultural groups also significantly differ on their perception of failure. The results showed that French participants used more meaningful social factors to explain why they failed to practice their leisure activities than did Koreans participants. Finally, Koreans and French significantly differed regarding their obsession on their leisure activities. In general, French tend to have more obsession than Koreans about their leisure activities. Those results validated the four-dimensional model of leisure, as well as, the cultural differences in leisure practices. However, further studies are needed to validate this model at an individual and cultural level.Keywords: culture, leisure, meaning, pleasure
Procedia PDF Downloads 26815454 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy
Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie
Abstract:
In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.Keywords: data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data
Procedia PDF Downloads 32715453 A Game-Based Product Modelling Environment for Non-Engineer
Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige
Abstract:
In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.Keywords: game-based learning, knowledge based engineering, product modelling, design automation
Procedia PDF Downloads 15815452 Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM
Authors: Fazli Rahim Shinwari, Ulrich Dittmer
Abstract:
Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city.Keywords: urban hydrology, storm water management, modeling, SWMM, GEO-SWMM, GIS, identification of flood vulnerable areas, urban flooding analysis, sustainable urban drainage
Procedia PDF Downloads 15815451 The Forms of Representation in Architectural Design Teaching: The Cases of Politecnico Di Milano and Faculty of Architecture of the University of Porto
Authors: Rafael Sousa Santos, Clara Pimena Do Vale, Barbara Bogoni, Poul Henning Kirkegaard
Abstract:
The representative component, a determining aspect of the architect's training, has been marked by an exponential and unprecedented development. However, the multiplication of possibilities has also multiplied uncertainties about architectural design teaching, and by extension, about the very principles of architectural education. In this paper, it is intended to present the results of a research developed on the following problem: the relation between the forms of representation and the architectural design teaching-learning processes. The research had as its object the educational model of two schools – the Politecnico di Milano (POLIMI) and the Faculty of Architecture of the University of Porto (FAUP) – and was led by three main objectives: to characterize the educational model followed in both schools focused on the representative component and its role; to interpret the relation between forms of representation and the architectural design teaching-learning processes; to consider their possibilities of valorisation. Methodologically, the research was conducted according to a qualitative embedded multiple-case study design. The object – i.e., the educational model – was approached in both POLIMI and FAUP cases considering its Context and three embedded unities of analysis: the educational Purposes, Principles, and Practices. In order to guide the procedures of data collection and analysis, a Matrix for the Characterization (MCC) was developed. As a methodological tool, the MCC allowed to relate the three embedded unities of analysis with the three main sources of evidence where the object manifests itself: the professors, expressing how the model is assumed; the architectural design classes, expressing how the model is achieved; and the students, expressing how the model is acquired. The main research methods used were the naturalistic and participatory observation, in-person-interview and documentary and bibliographic review. The results reveal the importance of the representative component in the educational model of both cases, despite the differences in its role. In POLIMI's model, representation is particularly relevant in the teaching of architectural design, while in FAUP’s model, it plays a transversal role – according to an idea of 'general training through hand drawing'. In fact, the difference between models relative to representation can be partially understood by the level of importance that each gives to hand drawing. Regarding the teaching of architectural design, the two cases are distinguished in the relation with the representative component: while in POLIMI the forms of representation serve essentially an instrumental purpose, in FAUP they tend to be considered also for their methodological dimension. It seems that the possibilities for valuing these models reside precisely in the relation between forms of representation and architectural design teaching. It is expected that the knowledge base developed in this research may have three main contributions: to contribute to the maintenance of the educational model of POLIMI and FAUP; through the precise description of the methodological procedures, to contribute by transferability to similar studies; through the critical and objective framework of the problem underlying the forms of representation and its relation with architectural design teaching, to contribute to the broader discussion concerning the contemporary challenges on architectural education.Keywords: architectural design teaching, architectural education, educational models, forms of representation
Procedia PDF Downloads 12715450 Design of Microwave Building Block by Using Numerical Search Algorithm
Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Qing Fang, Mingbin Yu, Guoqiang Lo
Abstract:
With the development of technology, countries gradually allocated more and more frequency spectrums for civilization and commercial usage, especially those high radio frequency bands indicating high information capacity. The field effect becomes more and more prominent in microwave components as frequency increases, which invalidates the transmission line theory and complicate the design of microwave components. Here a modeling approach based on numerical search algorithm is proposed to design various building blocks for microwave circuits to avoid complicated impedance matching and equivalent electrical circuit approximation. Concretely, a microwave component is discretized to a set of segments along the microwave propagation path. Each of the segment is initialized with random dimensions, which constructs a multiple-dimension parameter space. Then numerical searching algorithms (e.g. Pattern search algorithm) are used to find out the ideal geometrical parameters. The optimal parameter set is achieved by evaluating the fitness of S parameters after a number of iterations. We had adopted this approach in our current projects and designed many microwave components including sharp bends, T-branches, Y-branches, microstrip-to-stripline converters and etc. For example, a stripline 90° bend was designed in 2.54 mm x 2.54 mm space for dual-band operation (Ka band and Ku band) with < 0.18 dB insertion loss and < -55 dB reflection. We expect that this approach can enrich the tool kits for microwave designers.Keywords: microwave component, microstrip and stripline, bend, power division, the numerical search algorithm.
Procedia PDF Downloads 38615449 Experimental Implementation of Model Predictive Control for Permanent Magnet Synchronous Motor
Authors: Abdelsalam A. Ahmed
Abstract:
Fast speed drives for Permanent Magnet Synchronous Motor (PMSM) is a crucial performance for the electric traction systems. In this paper, PMSM is drived with a Model-based Predictive Control (MPC) technique. Fast speed tracking is achieved through optimization of the DC source utilization using MPC. The technique is based on predicting the optimum voltage vector applied to the driver. Control technique is investigated by comparing to the cascaded PI control based on Space Vector Pulse Width Modulation (SVPWM). MPC and SVPWM-based FOC are implemented with the TMS320F2812 DSP and its power driver circuits. The designed MPC for a PMSM drive is experimentally validated on a laboratory test bench. The performances are compared with those obtained by a conventional PI-based system in order to highlight the improvements, especially regarding speed tracking response.Keywords: permanent magnet synchronous motor, model-based predictive control, DC source utilization, cascaded PI control, space vector pulse width modulation, TMS320F2812 DSP
Procedia PDF Downloads 64915448 Effect of Wettability Alteration on Production Performance in Unconventional Tight Oil Reservoirs
Authors: Rashid S. Mohammad, Shicheng Zhang, Xinzhe Zhao
Abstract:
In tight oil reservoirs, wettability alteration has generally been considered as an effective way to remove fracturing fluid retention on the surface of the fracture and consequently improved oil production. However, there is a lack of a reliable productivity prediction model to show the relationship between the wettability and oil production in tight oil well. In this paper, a new oil productivity prediction model of immiscible oil-water flow and miscible CO₂-oil flow accounting for wettability is developed. This mathematical model is established by considering two different length scales: nonporous network and propped fractures. CO₂ flow diffuses in the nonporous network and high velocity non-Darcy flow in propped fractures are considered by taking into account the effect of wettability alteration on capillary pressure and relative permeability. A laboratory experiment is also conducted here to validate this model. Laboratory experiments have been designed to compare the water saturation profiles for different contact angle, revealing the fluid retention in rock pores that affects capillary force and relative permeability. Four kinds of brines with different concentrations are selected here to create different contact angles. In water-wet porous media, as the system becomes more oil-wet, water saturation decreases. As a result, oil relative permeability increases. On the other hand, capillary pressure which is the resistance for the oil flow increases as well. The oil production change due to wettability alteration is the result of the comprehensive changes of oil relative permeability and capillary pressure. The results indicate that wettability is a key factor for fracturing fluid retention removal and oil enhancement in tight reservoirs. By incorporating laboratory test into a mathematical model, this work shows the relationship between wettability and oil production is not a simple linear pattern but a parabolic one. Additionally, it can be used for a better understanding of optimization design of fracturing fluids.Keywords: wettability, relative permeability, fluid retention, oil production, unconventional and tight reservoirs
Procedia PDF Downloads 23615447 Unseen Classes: The Paradigm Shift in Machine Learning
Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan
Abstract:
Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery
Procedia PDF Downloads 17815446 Companies’ Internationalization: Multi-Criteria-Based Prioritization Using Fuzzy Logic
Authors: Jorge Anibal Restrepo Morales, Sonia Martín Gómez
Abstract:
A model based on a logical framework was developed to quantify SMEs' internationalization capacity. To do so, linguistic variables, such as human talent, infrastructure, innovation strategies, FTAs, marketing strategies, finance, etc. were integrated. It is argued that a company’s management of international markets depends on internal factors, especially capabilities and resources available. This study considers internal factors as the biggest business challenge because they force companies to develop an adequate set of capabilities. At this stage, importance and strategic relevance have to be defined in order to build competitive advantages. A fuzzy inference system is proposed to model the resources, skills, and capabilities that determine the success of internationalization. Data: 157 linguistic variables were used. These variables were defined by international trade entrepreneurs, experts, consultants, and researchers. Using expert judgment, the variables were condensed into18 factors that explain SMEs’ export capacity. The proposed model is applied by means of a case study of the textile and clothing cluster in Medellin, Colombia. In the model implementation, a general index of 28.2 was obtained for internationalization capabilities. The result confirms that the sector’s current capabilities and resources are not sufficient for a successful integration into the international market. The model specifies the factors and variables, which need to be worked on in order to improve export capability. In the case of textile companies, the lack of a continuous recording of information stands out. Likewise, there are very few studies directed towards developing long-term plans, and., there is little consistency in exports criteria. This method emerges as an innovative management tool linked to internal organizational spheres and their different abilities.Keywords: business strategy, exports, internationalization, fuzzy set methods
Procedia PDF Downloads 29915445 Entrepreneurial Leadership in a Startup Context: A Comparative Study on Two Egyptian Startup Businesses
Authors: Nada Basset
Abstract:
Problem Statement: The study examines the important role of leading change inside start-ups and highlights the challenges faced by an entrepreneur during the startup phase of the business. Research Methods/Procedures/Approaches: A qualitative research approach is taken, using the case study analysis method. A comparative study was made between two day care nurseries in Greater Cairo. Non-probability purposive sampling was used and a triangulation of semi-structured interviews, document analysis and participant-observation were applied simultaneously. The in-depth case study analysis took place over a longitudinal study of four calendar months. Results/Findings: Findings demonstrated that leading change in an entrepreneurial setup must be initiated by the entrepreneur, who must also be the owner of the change process. Another important finding showed that the culture of change, although created by the entrepreneur, needs the support and engagement of followers, who should be sharing the same value system and vision of the entrepreneur. Conclusions and Implications: An important implication suggests that during the first year of a start-up lifecycle, special emphasis must be made to the recruitment and selection of personnel, who should play a role into setting the new start-up culture and help it grow or shrink. Another drawn conclusion is that the success of the change must be measured in both quantitative and qualitative terms. Increasing revenues and customer attrition rates -as quantitative KPIs- must be aligned with other qualitative KPIs like customer satisfaction, employee satisfaction, and organizational commitment and business reputation. Originality of Paper: The paper addresses change management in an entrepreneurial concept, with an empirical application on an Egyptian start-up model providing a service to both adults and children. This privileges the research as the constructs measured merged together the level of satisfaction of employees, decision-makers (parents of children), and the users (children).Keywords: leadership, change management, entrepreneurship, startup business
Procedia PDF Downloads 18815444 Time Lag Analysis for Readiness Potential by a Firing Pattern Controller Model of a Motor Nerve System Considered Innervation and Jitter
Authors: Yuko Ishiwaka, Tomohiro Yoshida, Tadateru Itoh
Abstract:
Human makes preparation called readiness potential unconsciously (RP) before awareness of their own decision. For example, when recognizing a button and pressing the button, the RP peaks are observed 200 ms before the initiation of the movement. It has been known that the preparatory movements are acquired before actual movements, but it has not been still well understood how humans can obtain the RP during their growth. On the proposition of why the brain must respond earlier, we assume that humans have to adopt the dangerous environment to survive and then obtain the behavior to cover the various time lags distributed in the body. Without RP, humans cannot take action quickly to avoid dangerous situations. In taking action, the brain makes decisions, and signals are transmitted through the Spinal Cord to the muscles to the body moves according to the laws of physics. Our research focuses on the time lag of the neuron signal transmitting from a brain to muscle via a spinal cord. This time lag is one of the essential factors for readiness potential. We propose a firing pattern controller model of a motor nerve system considered innervation and jitter, which produces time lag. In our simulation, we adopt innervation and jitter in our proposed muscle-skeleton model, because these two factors can create infinitesimal time lag. Q10 Hodgkin Huxley model to calculate action potentials is also adopted because the refractory period produces a more significant time lag for continuous firing. Keeping constant power of muscle requires cooperation firing of motor neurons because a refractory period stifles the continuous firing of a neuron. One more factor in producing time lag is slow or fast-twitch. The Expanded Hill Type model is adopted to calculate power and time lag. We will simulate our model of muscle skeleton model by controlling the firing pattern and discuss the relationship between the time lag of physics and neurons. For our discussion, we analyze the time lag with our simulation for knee bending. The law of inertia caused the most influential time lag. The next most crucial time lag was the time to generate the action potential induced by innervation and jitter. In our simulation, the time lag at the beginning of the knee movement is 202ms to 203.5ms. It means that readiness potential should be prepared more than 200ms before decision making.Keywords: firing patterns, innervation, jitter, motor nerve system, readiness potential
Procedia PDF Downloads 832