Search results for: seismic isolator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 908

Search results for: seismic isolator

398 Building Exoskeletons for Seismic Retrofitting

Authors: Giuliana Scuderi, Patrick Teuffel

Abstract:

The proven vulnerability of the existing social housing building heritage to natural or induced earthquakes requires the development of new design concepts and conceptual method to preserve materials and object, at the same time providing new performances. An integrate intervention between civil engineering, building physics and architecture can convert the social housing districts from a critical part of the city to a strategic resource of revitalization. Referring to bio-mimicry principles the present research proposes a taxonomy with the exoskeleton of the insect, an external, light and resistant armour whose role is to protect the internal organs from external potentially dangerous inputs. In the same way, a “building exoskeleton”, acting from the outside of the building as an enclosing cage, can restore, protect and support the existing building, assuming a complex set of roles, from the structural to the thermal, from the aesthetical to the functional. This study evaluates the structural efficiency of shape memory alloys devices (SMADs) connecting the “building exoskeleton” with the existing structure to rehabilitate, in order to prevent the out-of-plane collapse of walls and for the passive dissipation of the seismic energy, with a calibrated operability in relation to the intensity of the horizontal loads. The two case studies of a masonry structure and of a masonry structure with concrete frame are considered, and for each case, a theoretical social housing building is exposed to earthquake forces, to evaluate its structural response with or without SMADs. The two typologies are modelled with the finite element program SAP2000, and they are respectively defined through a “frame model” and a “diagonal strut model”. In the same software two types of SMADs, called the 00-10 SMAD and the 05-10 SMAD are defined, and non-linear static and dynamic analyses, namely push over analysis and time history analysis, are performed to evaluate the seismic response of the building. The effectiveness of the devices in limiting the control joint displacements resulted higher in one direction, leading to the consideration of a possible calibrated use of the devices in the different walls of the building. The results show also a higher efficiency of the 00-10 SMADs in controlling the interstory drift, but at the same time the necessity to improve the hysteretic behaviour, to maximise the passive dissipation of the seismic energy.

Keywords: adaptive structure, biomimetic design, building exoskeleton, social housing, structural envelope, structural retrofitting

Procedia PDF Downloads 401
397 An Analysis of Relation Between Soil Radon Anomalies and Geological Environment Change

Authors: Mengdi Zhang, Xufeng Liu, Zhenji Gao, Ying Li, Zhu Rao, Yi Huang

Abstract:

As an open system, the earth is constantly undergoing the transformation and release of matter and energy. Fault zones are relatively discontinuous and fragile geological structures, and the release of material and energy inside the Earth is strongest in relatively weak fault zones. Earthquake events frequently occur in fault zones and are closely related to tectonic activity in these zones. In earthquake precursor observation, monitoring the spatiotemporal changes in the release of related gases near fault zones (such as radon gas, hydrogen, carbon dioxide, helium), and analyzing earthquake precursor anomalies, can be effective means to forecast the occurrence of earthquake events. Radon gas, as an inert radioactive gas generated during the decay of uranium and thorium, is not only a indicator for monitoring tectonic and seismic activity, but also an important topic for ecological and environmental health, playing a crucial role in uranium exploration. At present, research on soil radon gas mainly focuses on the measurement of soil gas concentration and flux in fault zone profiles, while research on the correlation between spatiotemporal concentration changes in the same region and its geological background is relatively little. In this paper, Tangshan area in north China is chosen as research area. An analysis was conducted on the seismic geological background of Tangshan area firstly. Then based on quantitative analysis and comparison of measurement radon concentrations of 2023 and 2010, combined with the study of seismic activity and environmental changes during the time period, the spatiotemporal distribution characteristics and influencing factors were explored, in order to analyze the gas emission characteristics of the Tangshan fault zone and its relationship with fault activity, which aimed to be useful for the future work in earthquake monitor of Tangshan area.

Keywords: radon, Northern China, soil gas, earthquake

Procedia PDF Downloads 51
396 Fiber Based Pushover Analysis of Reinforced Concrete Frame

Authors: Shewangizaw Tesfaye Wolde

Abstract:

The current engineering community has developed a method called performance based seismic design in which we design structures based on predefined performance levels set by the parties. Since we design our structures economically for the maximum actions expected in the life of structures they go beyond their elastic limit, in need of nonlinear analysis. In this paper conventional pushover analysis (nonlinear static analysis) is used for the performance assessment of the case study Reinforced Concrete (RC) Frame building located in Addis Ababa City, Ethiopia where proposed peak ground acceleration value by RADIUS 1999 project and others is more than twice as of EBCS-8:1995 (RADIUS 1999 project) by taking critical planar frame. Fiber beam-column model is used to control material nonlinearity with tension stiffening effect. The reliability of the fiber model and validation of software outputs are checked under verification chapter. Therefore, the aim of this paper is to propose a way for structural performance assessment of existing reinforced concrete frame buildings as well as design check.

Keywords: seismic, performance, fiber model, tension stiffening, reinforced concrete

Procedia PDF Downloads 47
395 Measurement of Intermediate Slip Rate of Sabzpushan Fault Zone in Southwestern Iran, Using Optically Stimulated Luminescence (OSL) Dating

Authors: Iman Nezamzadeh, Ali Faghih, Behnam Oveisi

Abstract:

In order to reduce earthquake hazards in urban areas, it is necessary to perform comprehensive studies to understand the dynamics of the active faults and identify potentially high risk areas. The fault slip-rates in Late Quaternary sediment are critical indicators of seismic hazard and also provide valuable data to recognize young crustal deformations. To measure slip-rates accurately, is needed to displacement of geomorphic markers and ages of quaternary sediment samples of alluvial deposit that deformed by movements on fault. In this study we produced information about Intermediate term slip rate of Sabzpushan Fault Zone (SPF) within the central part of the Zagros Mountains of Iran using OSL dating technique to make better analysis of seismic hazard and seismic risk reduction for Shiraz city. For this purpose identifiable geomorphic fluvial surfaces help us to provide a reference frame to determine differential or absolute horizontal and vertical deformation. Optically stimulated luminescence (OSL) is an alternative and independent method of determining the burial age of mineral grains in Quaternary sediments. Field observation and satellite imagery show geomorphic markers that deformed horizontally along the Sabzpoushan Fault. Here, drag folds is forming because of evaporites material of Miocen Formation. We estimate 2.8±0.5 mm/yr (mm/y) horizontal slip rate along the Sabzpushan fault zone, where ongoing deformation is involve with drug folding. The Soltan synclinal structure, close to the Sabzpushan fault, shows slight uplift rate due to active core-extrousion.

Keywords: slip rate, active tectonics, OSL, geomorphic markers, Sabzpushan Fault Zone, Zagros, Iran

Procedia PDF Downloads 329
394 A Comprehensive Comparative Study on Seasonal Variation of Parameters Involved in Site Characterization and Site Response Analysis by Using Microtremor Data

Authors: Yehya Rasool, Mohit Agrawal

Abstract:

The site characterization and site response analysis are the crucial steps for reliable seismic microzonation of an area. So, the basic parameters involved in these fundamental steps are required to be chosen properly in order to efficiently characterize the vulnerable sites of the study region. In this study, efforts are made to delineate the variations in the physical parameter of the soil for the summer and monsoon seasons of the year (2021) by using Horizontal-to-Vertical Spectral Ratios (HVSRs) recorded at five sites of the Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India. The data recording at each site was done in such a way that less amount of anthropogenic noise was recorded at each site. The analysis has been done for five seismic parameters like predominant frequency, H/V ratio, the phase velocity of Rayleigh waves, shear wave velocity (Vs), compressional wave velocity (Vp), and Poisson’s ratio for both the seasons of the year. From the results, it is observed that these parameters majorly vary drastically for the upper layers of soil, which in turn may affect the amplification ratios and probability of exceedance obtained from seismic hazard studies. The HVSR peak comes out to be higher in monsoon, with a shift in predominant frequency as compared to the summer season of the year 2021. Also, the drastic reduction in shear wave velocity (up to ~10 m) of approximately 7%-15% is also perceived during the monsoon period with a slight decrease in compressional wave velocity. Generally, the increase in the Poisson ratios is found to have higher values during monsoon in comparison to the summer period. Our study may be very beneficial to various agricultural and geotechnical engineering projects.

Keywords: HVSR, shear wave velocity profile, Poisson ratio, microtremor data

Procedia PDF Downloads 66
393 Seismic Performance of Highway Bridges with Partially Self-Centering Isolation Bearings against Near-Fault Ground Motions

Authors: Shengxin Yu

Abstract:

Earthquakes can cause varying degrees of damage to building and bridge structures. Traditional laminated natural rubber bearings (NRB) exhibit inadequate energy dissipation and restraint, particularly under near-fault ground motions, resulting in excessive displacements in the superstructure. This paper presents a composite natural rubber bearing (NFUD-NRB) incorporating two types of shape memory alloy (SMA) U-shaped dampers (UD). The bearing exhibits adjustable features, predominantly characterized by partial self-centering and multi-level energy dissipation, facilitated by nickel-titanium-based SMA (NiTi-SMA) and iron-based SMA (Fe-SMA) UDs. The hysteresis characteristics of NFUD-NRB can be tailored by manipulating the configuration of NiTi-SMA and Fe-SMA UDs. Firstly, the proposed bearing's geometric configuration and working principle are introduced. The rationality of the modeling strategy for the bearing is validated through existing experimental results. Parameterized numerical simulations are subsequently performed to investigate the partially self-centering behavior of NFUD-NRB. The findings indicate that NFUD-NRB can attain the anticipated nonlinear behavior and deliver adequate energy dissipation. Finally, the impact of NFUD-NRB on improving the seismic resilience of highway bridges is examined using the OpenSees software, with particular emphasis on the seismic performance of NFUD-NRB under near-fault ground motions. System-level analysis reveals that bridge systems equipped with NFUD-NRBs exhibit satisfactory residual deformations and higher energy dissipation than those equipped with traditional NRBs. Moreover, NFUD-NRB markedly mitigates the detrimental impacts of near-fault ground motions on the main structure of bridges.

Keywords: partially self-centering behavior, energy dissipation, natural rubber bearing, shape memory alloy, U-shaped damper, numerical investigation, near-fault ground motion

Procedia PDF Downloads 29
392 Estimation of Seismic Drift Demands for Inelastic Shear Frame Structures

Authors: Ali Etemadi, Polat H. Gulkan

Abstract:

The drift spectrum derived through the continuous shear-beam and wave propagation theory is known to be useful appliance to measure of the demand of pulse like near field ground motions on building structures. As regards, many of old frame buildings with poor or non-ductile column elements, pass the elastic limits and blurt the post yielding hysteresis degradation responses when subjected to such impulsive ground motions. The drift spectrum which, is based on a linear system cannot be predicted the overestimate drift demands arising from inelasticity in an elastic plastic systems. A simple procedure to estimate the drift demands in shear-type frames which, respond over the elastic limits is described and effect of hysteresis degradation behavior on seismic demands is clarified. Whereupon the modification factors are proposed to incorporate the hysteresis degradation effects parametrically. These factors are defined with respected to the linear systems. The method can be applicable for rapid assessment of existing poor detailed, non-ductile buildings.

Keywords: drift spectrum, shear-type frame, stiffness and strength degradation, pinching, smooth hysteretic model, quasi static analysis

Procedia PDF Downloads 501
391 Mitigation of Electromagnetic Interference Generated by GPIB Control-Network in AC-DC Transfer Measurement System

Authors: M. M. Hlakola, E. Golovins, D. V. Nicolae

Abstract:

The field of instrumentation electronics is undergoing an explosive growth, due to its wide range of applications. The proliferation of electrical devices in a close working proximity can negatively influence each other’s performance. The degradation in the performance is due to electromagnetic interference (EMI). This paper investigates the negative effects of electromagnetic interference originating in the General Purpose Interface Bus (GPIB) control-network of the ac-dc transfer measurement system. Remedial measures of reducing measurement errors and failure of range of industrial devices due to EMI have been explored. The ac-dc transfer measurement system was analyzed for the common-mode (CM) EMI effects. Further investigation of coupling path as well as more accurate identification of noise propagation mechanism has been outlined. To prevent the occurrence of common-mode (ground loops) which was identified between the GPIB system control circuit and the measurement circuit, a microcontroller-driven GPIB switching isolator device was designed, prototyped, programmed and validated. This mitigation technique has been explored to reduce EMI effectively.

Keywords: CM, EMI, GPIB, ground loops

Procedia PDF Downloads 273
390 System Identification of Building Structures with Continuous Modeling

Authors: Ruichong Zhang, Fadi Sawaged, Lotfi Gargab

Abstract:

This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification.

Keywords: wave-based approach, seismic responses of buildings, wave propagation in structures, construction

Procedia PDF Downloads 211
389 Observation on the Performance of Heritage Structures in Kathmandu Valley, Nepal during the 2015 Gorkha Earthquake

Authors: K. C. Apil, Keshab Sharma, Bigul Pokharel

Abstract:

Kathmandu Valley, capital city of Nepal houses numerous historical monuments as well as religious structures which are as old as from the 4th century A.D. The city alone is home to seven UNESCO’s world heritage sites including various public squares and religious sanctums which are often regarded as living heritages by various historians and archeological explorers. Recently on April 25, 2015, the capital city including other nearby locations was struck with Gorkha earthquake of moment magnitude (Mw) 7.8, followed by the strongest aftershock of moment magnitude (Mw) 7.3 on May 12. This study reports structural failures and collapse of heritage structures in Kathmandu Valley during the earthquake and presents preliminary findings as to the causes of failures and collapses. Field reconnaissance was carried immediately after the main shock and the aftershock, in major heritage sites: UNESCO world heritage sites, a number of temples and historic buildings in Kathmandu Durbar Square, Patan Durbar Square, and Bhaktapur Durbar Square. Despite such catastrophe, a significant number of heritage structures stood high, performing very well during the earthquake. Preliminary reports from archeological department suggest that 721 of such structures were severely affected, whereas numbers within the valley only were 444 including 76 structures which were completely collapsed. This study presents recorded accelerograms and geology of Kathmandu Valley. Structural typology and architecture of the heritage structures in Kathmandu Valley are briefly described. Case histories of damaged heritage structures, the patterns, and the failure mechanisms are also discussed in this paper. It was observed that performance of heritage structures was influenced by the multiple factors such as structural and architecture typology, configuration, and structural deficiency, local ground site effects and ground motion characteristics, age and maintenance level, material quality etc. Most of such heritage structures are of masonry type using bricks and earth-mortar as a bonding agent. The walls' resistance is mainly compressive, thus capable of withstanding vertical static gravitational load but not horizontal dynamic seismic load. There was no definitive pattern of damage to heritage structures as most of them behaved as a composite structure. Some structures were extensively damaged in some locations, while structures with similar configuration at nearby location had little or no damage. Out of major heritage structures, Dome, Pagoda (2, 3 or 5 tiered temples) and Shikhara structures were studied with similar variables. Studying varying degrees of damages in such structures, it was found that Shikhara structures were most vulnerable one where Dome structures were found to be the most stable one, followed by Pagoda structures. The seismic performance of the masonry-timber and stone masonry structures were slightly better than that of the masonry structures. Regular maintenance and periodic seismic retrofitting seems to have played pivotal role in strengthening seismic performance of the structure. The study also recommends some key functions to strengthen the seismic performance of such structures through study based on structural analysis, building material behavior and retrofitting details. The result also recognises the importance of documentation of traditional knowledge and its revised transformation in modern technology.

Keywords: Gorkha earthquake, field observation, heritage structure, seismic performance, masonry building

Procedia PDF Downloads 127
388 Seismic Performance of Reinforced Concrete Frames Infilled by Masonry Walls with Different Heights

Authors: Ji-Wook Mauk, Yu-Suk Kim, Hyung-Joon Kim

Abstract:

This study carried out comparative seismic performance of reinforced concrete frames infilled by masonry walls with different heights. Partial and fully infilled RC frames were modeled for the research objectives and the analysis model for a bare reinforced concrete frame was established for comparison. Non-linear static analyses for the studied frames were performed to investigate their structural behavior under extreme loading conditions and to find out their collapse mechanism. It was observed from analysis results that the strengths of the partial infilled RC frames are increased and their ductility is reduced, as infilled masonry walls are higher. Especially, Reinforced concrete frames with a higher partial infilled masonry wall would experience shear failures. Non-linear dynamic analyses using 10 earthquake records show that the bare and fully infilled reinforced concrete frames present stable collapse mechanism while the reinforced concrete frames with a partially infilled masonry wall collapse in more brittle manner due to short-column effects.

Keywords: fully infilled RC frame, partially infilled RC frame, masonry wall, short-column effect

Procedia PDF Downloads 393
387 Response Analysis of a Steel Reinforced Concrete High-Rise Building during the 2011 Tohoku Earthquake

Authors: Naohiro Nakamura, Takuya Kinoshita, Hiroshi Fukuyama

Abstract:

The 2011 off The Pacific Coast of Tohoku Earthquake caused considerable damage to wide areas of eastern Japan. A large number of earthquake observation records were obtained at various places. To design more earthquake-resistant buildings and improve earthquake disaster prevention, it is necessary to utilize these data to analyze and evaluate the behavior of a building during an earthquake. This paper presents an earthquake response simulation analysis (hereafter a seismic response analysis) that was conducted using data recorded during the main earthquake (hereafter the main shock) as well as the earthquakes before and after it. The data were obtained at a high-rise steel-reinforced concrete (SRC) building in the bay area of Tokyo. We first give an overview of the building, along with the characteristics of the earthquake motion and the building during the main shock. The data indicate that there was a change in the natural period before and after the earthquake. Next, we present the results of our seismic response analysis. First, the analysis model and conditions are shown, and then, the analysis result is compared with the observational records. Using the analysis result, we then study the effect of soil-structure interaction on the response of the building. By identifying the characteristics of the building during the earthquake (i.e., the 1st natural period and the 1st damping ratio) by the Auto-Regressive eXogenous (ARX) model, we compare the analysis result with the observational records so as to evaluate the accuracy of the response analysis. In this study, a lumped-mass system SR model was used to conduct a seismic response analysis using observational data as input waves. The main results of this study are as follows: 1) The observational records of the 3/11 main shock put it between a level 1 and level 2 earthquake. The result of the ground response analysis showed that the maximum shear strain in the ground was about 0.1% and that the possibility of liquefaction occurring was low. 2) During the 3/11 main shock, the observed wave showed that the eigenperiod of the building became longer; this behavior could be generally reproduced in the response analysis. This prolonged eigenperiod was due to the nonlinearity of the superstructure, and the effect of the nonlinearity of the ground seems to have been small. 3) As for the 4/11 aftershock, a continuous analysis in which the subject seismic wave was input after the 3/11 main shock was input was conducted. The analyzed values generally corresponded well with the observed values. This means that the effect of the nonlinearity of the main shock was retained by the building. It is important to consider this when conducting the response evaluation. 4) The first period and the damping ratio during a vibration were evaluated by an ARX model. Our results show that the response analysis model in this study is generally good at estimating a change in the response of the building during a vibration.

Keywords: ARX model, response analysis, SRC building, the 2011 off the Pacific Coast of Tohoku Earthquake

Procedia PDF Downloads 143
386 Sustainable Design of Coastal Bridge Networks in the Presence of Multiple Flood and Earthquake Risks

Authors: Riyadh Alsultani, Ali Majdi

Abstract:

It is necessary to develop a design methodology that includes the possibility of seismic events occurring in a region, the vulnerability of the civil hydraulic structure, and the effects of the occurrence hazard on society, environment, and economy in order to evaluate the flood and earthquake risks of coastal bridge networks. This paper presents a design approach for the assessment of the risk and sustainability of coastal bridge networks under time-variant flood-earthquake conditions. The social, environmental, and economic indicators of the network are used to measure its sustainability. These consist of anticipated loss, downtime, energy waste, and carbon dioxide emissions. The design process takes into account the possibility of happening in a set of flood and earthquake scenarios that represent the local seismic activity. Based on the performance of each bridge as determined by fragility assessments, network linkages are measured. The network's connections and bridges' damage statuses after an earthquake scenario determine the network's sustainability and danger. The sustainability measures' temporal volatility and the danger of structural degradation are both highlighted. The method is shown using a transportation network in Baghdad, Iraq.

Keywords: sustainability, Coastal bridge networks, flood-earthquake risk, structural design

Procedia PDF Downloads 64
385 Adapting an Accurate Reverse-time Migration Method to USCT Imaging

Authors: Brayden Mi

Abstract:

Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.

Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation

Procedia PDF Downloads 51
384 Empirical Green’s Function Technique for Accelerogram Synthesis: The Problem of the Use for Marine Seismic Hazard Assessment

Authors: Artem A. Krylov

Abstract:

Instrumental seismological researches in water areas are complicated and expensive, that leads to the lack of strong motion records in most offshore regions. In the same time the number of offshore industrial infrastructure objects, such as oil rigs, subsea pipelines, is constantly increasing. The empirical Green’s function technique proved to be very effective for accelerograms synthesis under the conditions of poorly described seismic wave propagation medium. But the selection of suitable small earthquake record in offshore regions as an empirical Green’s function is a problem because of short seafloor instrumental seismological investigation results usually with weak micro-earthquakes recordings. An approach based on moving average smoothing in the frequency domain is presented for preliminary processing of weak micro-earthquake records before using it as empirical Green’s function. The method results in significant waveform correction for modeled event. The case study for 2009 L’Aquila earthquake was used to demonstrate the suitability of the method. This work was supported by the Russian Foundation of Basic Research (project № 18-35-00474 mol_a).

Keywords: accelerogram synthesis, empirical Green's function, marine seismology, microearthquakes

Procedia PDF Downloads 303
383 Mecano-Reliability Coupled of Reinforced Concrete Structure and Vulnerability Analysis: Case Study

Authors: Kernou Nassim

Abstract:

The current study presents a vulnerability and a reliability-mechanical approach that focuses on evaluating the seismic performance of reinforced concrete structures to determine the probability of failure. In this case, the performance function reflecting the non-linear behavior of the structure is modeled by a response surface to establish an analytical relationship between the random variables (strength of concrete and yield strength of steel) and mechanical responses of the structure (inter-floor displacement) obtained by the pushover results of finite element simulations. The push over-analysis is executed by software SAP2000. The results acquired prove that properly designed frames will perform well under seismic loads. It is a comparative study of the behavior of the existing structure before and after reinforcement using the pushover method. The coupling indirect mechanical reliability by response surface avoids prohibitive calculation times. Finally, the results of the proposed approach are compared with Monte Carlo Simulation. The comparative study shows that the structure is more reliable after the introduction of new shear walls.

Keywords: finite element method, surface response, reliability, reliability mechanical coupling, vulnerability

Procedia PDF Downloads 100
382 Site Specific Ground Response Estimations for the Vulnerability Assessment of the Buildings of the Third Biggest Mosque in the World, Algeria’s Mosque

Authors: S. Mohamadi, T. Boudina, A. Rouabeh, A. Seridi

Abstract:

Equivalent linear and non-linear ground response analyses are conducted at many representative sites at the mosque of Algeria, to compare the free field acceleration spectra with local code of practice. Spectral Analysis of Surface Waves (SASW) technique was adopted to measure the in-situ shear wave velocity profile at the representative sites. The seismic movement imposed on the rock is the NS component of Keddara station recorded during the earthquake in Boumerdes 21 May 2003. The site-specific elastic design spectra for each site are determined to further obtain site specific non-linear acceleration spectra. As a case study, the results of site-specific evaluations are presented for two building sites (site of minaret and site of the prayer hall) to demonstrate the influence of local geological conditions on ground response at Algerian sites. A comparison of computed response with the standard code of practice being used currently in Algeria for the seismic zone of Algiers indicated that the design spectra is not able to capture site amplification due to local geological conditions.

Keywords: equivalent linear, non-linear, ground response analysis, design response spectrum

Procedia PDF Downloads 421
381 Use of PET Fibers for Enhancing the Ductility of Exterior RC Beam-Column Connections Subjected to Reversed Cyclic Loading

Authors: Comingstarful Marthong, Shembiang Marthong

Abstract:

Application of Polyethylene terephthalate (PET) fiber for enhancing the seismic performance of exterior RC beam-column connections in substitution of steel fibers is experimentally investigated. The study involves the addition of Polyethylene terephthalate (PET) fiber-reinforced concrete, i.e., PFRC at the joint region of the connection. The PET fiber of 0.5% volume fraction used in the PFRC mix is obtained by hand cutting of post-consumer PET bottles. Specimens design as per relevant codes was casted and tested to reverse cyclic loading. PFRC specimen was also casted and subjected to similar loading sequence. Test results established that addition of PET fibers in the joint region is effective in enhancing the displacement ductility and energy dissipation capacity. The improvement of damage indices and principal tensile stresses of PFRC specimens gave experimental evidence of the suitability of PET fibers as a discrete reinforcement in the substitution of steel fiber for structural use.

Keywords: beam-column connections, polyethylene terephthalate fibers reinforced concrete, joint region, ductility, seismic capacity

Procedia PDF Downloads 261
380 Probabilistic Model for Evaluating Seismic Soil Liquefaction Based on Energy Approach

Authors: Hamid Rostami, Ali Fallah Yeznabad, Mohammad H. Baziar

Abstract:

The energy-based method for evaluating seismic soil liquefaction has two main sections. First is the demand energy, which is dissipated energy of earthquake at a site, and second is the capacity energy as a representation of soil resistance against liquefaction hazard. In this study, using a statistical analysis of recorded data by 14 down-hole array sites in California, an empirical equation was developed to estimate the demand energy at sites. Because determination of capacity energy at a site needs to calculate several site calibration factors, which are obtained by experimental tests, in this study the standard penetration test (SPT) N-value was assumed as an alternative to the capacity energy at a site. Based on this assumption, the empirical equation was employed to calculate the demand energy for 193 liquefied and no-liquefied sites and then these amounts were plotted versus the corresponding SPT numbers for all sites. Subsequently, a discrimination analysis was employed to determine the equations of several boundary curves for various liquefaction likelihoods. Finally, a comparison was made between the probabilistic model and the commonly used stress method. As a conclusion, the results clearly showed that energy-based method can be more reliable than conventional stress-based method in evaluation of liquefaction occurrence.

Keywords: energy demand, liquefaction, probabilistic analysis, SPT number

Procedia PDF Downloads 345
379 Identifying the Structural Components of Old Buildings from Floor Plans

Authors: Shi-Yu Xu

Abstract:

The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes.

Keywords: structural vulnerability detection, object recognition, seismic capacity assessment, old buildings, artificial intelligence

Procedia PDF Downloads 59
378 Study on the Seismic Response of Slope under Pulse-Like Ground Motion

Authors: Peter Antwi Buah, Yingbin Zhang, Jianxian He, Chenlin Xiang, Delali Atsu Y. Bakah

Abstract:

Near-fault ground motions with velocity pulses are considered to cause significant damage to structures or slopes compared to ordinary ground motions without velocity pulses. The double pulsed pulse-like ground motion is as well known to be stronger than the single pulse. This study has numerically justified this perspective by studying the dynamic response of a homogeneous rock slope subjected to four pulse-like and two non-pulse-like ground motions using the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) software. Two of the pulse-like ground motions just have a single pulse. The results show that near-fault ground motions with velocity pulses can cause a higher dynamic response than regular ground motions. The amplification of the peak ground acceleration (PGA) in horizontal direction increases with the increase of the slope elevation. The seismic response of the slope under double pulse ground motion is stronger than that of the single pulse ground motion. The PGV amplification factor under the effect of the non-pulse-like records is also smaller than those under the pulse-like records. The velocity pulse strengthens the earthquake damage to the slope, which results in producing a more strong dynamic response.

Keywords: velocity pulses, dynamic response, PGV magnification effect, elevation effect, double pulse

Procedia PDF Downloads 135
377 Parameters Adjustment of the Modified UBCSand Constitutive Model for the Potentially Liquefiable Sands of Santiago de Cali-Colombia

Authors: Daniel Rosero, Johan S. Arana, Sebastian Arango, Alejandro Cruz, Isabel Gomez-Gutierrez, Peter Thomson

Abstract:

Santiago de Cali is located in the southwestern Colombia in a high seismic hazard zone. About 50% of the city is on the banks of the Cauca River, which is the second most important hydric affluent in the country and whose alluvial deposits contain potentially liquefiable sands. Among the methods used to study a site's liquefaction potential is the finite elements method which use constitutive models to simulate the soil response for different load types. Among the different constitutive models, the Modified UBCSand stands out to study the seismic behavior of sands, and especially the liquefaction phenomenon. In this paper, the dynamic behavior of a potentially liquefiable sand of Santiago de Cali is studied by cyclic triaxial and CPTu tests. Subsequently, the behavior of the sand is simulated using the Modified UBCSand constitutive model, whose parameters are calibrated using the results of cyclic triaxial and CPTu tests. The above with the aim of analyze the constitutive model applicability for studying the geotechnical problems associated to liquefaction in the city.

Keywords: constitutive model, cyclic triaxial test, dynamic behavior, liquefiable sand, modified ubcsand

Procedia PDF Downloads 247
376 Analytical Study of the Structural Response to Near-Field Earthquakes

Authors: Isidro Perez, Maryam Nazari

Abstract:

Numerous earthquakes, which have taken place across the world, led to catastrophic damage and collapse of structures (e.g., 1971 San Fernando; 1995 Kobe-Japan; and 2010 Chile earthquakes). Engineers are constantly studying methods to moderate the effect this phenomenon has on structures to further reduce damage, costs, and ultimately to provide life safety to occupants. However, there are regions where structures, cities, or water reservoirs are built near fault lines. When an earthquake occurs near the fault lines, they can be categorized as near-field earthquakes. In contrary, a far-field earthquake occurs when the region is further away from the seismic source. A near-field earthquake generally has a higher initial peak resulting in a larger seismic response, when compared to a far-field earthquake ground motion. These larger responses may result in serious consequences in terms of structural damage which can result in a high risk for the public’s safety. Unfortunately, the response of structures subjected to near-field records are not properly reflected in the current building design specifications. For example, in ASCE 7-10, the design response spectrum is mostly based on the far-field design-level earthquakes. This may result in the catastrophic damage of structures that are not properly designed for near-field earthquakes. This research investigates the knowledge that the effect of near-field earthquakes has on the response of structures. To fully examine this topic, a structure was designed following the current seismic building design specifications, e.g. ASCE 7-10 and ACI 318-14, being analytically modeled, utilizing the SAP2000 software. Next, utilizing the FEMA P695 report, several near-field and far-field earthquakes were selected, and the near-field earthquake records were scaled to represent the design-level ground motions. Upon doing this, the prototype structural model, created using SAP2000, was subjected to the scaled ground motions. A Linear Time History Analysis and Pushover analysis were conducted on SAP2000 for evaluation of the structural seismic responses. On average, the structure experienced an 8% and 1% increase in story drift and absolute acceleration, respectively, when subjected to the near-field earthquake ground motions. The pushover analysis was ran to find and aid in properly defining the hinge formation in the structure when conducting the nonlinear time history analysis. A near-field ground motion is characterized by a high-energy pulse, making it unique to other earthquake ground motions. Therefore, pulse extraction methods were used in this research to estimate the maximum response of structures subjected to near-field motions. The results will be utilized in the generation of a design spectrum for the estimation of design forces for buildings subjected to NF ground motions.

Keywords: near-field, pulse, pushover, time-history

Procedia PDF Downloads 119
375 Studying on Pile Seismic Operation with Numerical Method by Using FLAC 3D Software

Authors: Hossein Motaghedi, Kaveh Arkani, Siavash Salamatpoor

Abstract:

Usually the piles are important tools for safety and economical design of high and heavy structures. For this aim the response of single pile under dynamic load is so effective. Also, the agents which have influence on single pile response are properties of pile geometrical, soil and subjected loads. In this study the finite difference numerical method and by using FLAC 3D software is used for evaluation of single pile behavior under peak ground acceleration (PGA) of El Centro earthquake record in California (1940). The results of this models compared by experimental results of other researchers and it will be seen that the results of this models are approximately coincide by experimental data's. For example the maximum moment and displacement in top of the pile is corresponding to the other experimental results of pervious researchers. Furthermore, in this paper is tried to evaluate the effective properties between soil and pile. The results is shown that by increasing the pile diagonal, the pile top displacement will be decreased. As well as, by increasing the length of pile, the top displacement will be increased. Also, by increasing the stiffness ratio of pile to soil, the produced moment in pile body will be increased and the taller piles have more interaction by soils and have high inertia. So, these results can help directly to optimization design of pile dimensions.

Keywords: pile seismic response, interaction between soil and pile, numerical analysis, FLAC 3D

Procedia PDF Downloads 365
374 Design of Raw Water Reservoir on Sandy Soil

Authors: Venkata Ramana Pamu

Abstract:

This paper is a case study of a 5310 ML capacity Raw Water Reservoir (RWR), situated in Indian state Rajasthan, which is a part of Rajasthan Rural Water Supply & Fluorosis Mitigation Project. This RWR embankment was constructed by locally available material on natural ground profile. Height of the embankment was varying from 2m to 10m.This is due to existing ground level was varying. Reservoir depth 9m including 1.5m free board and 1V:3H slopes were provided both upstream and downstream side. Proper soil investigation, tests were done and it was confirmed that the existing soil is sandy silt. The existing excavated earth was used as filling material for embankment construction, due to this controlling seepage from upstream to downstream be a challenging task. Slope stability and Seismic analysis of the embankment done by Conventional method for both full reservoir condition and rapid drawdown. Horizontal filter at toe level was provided along with upstream side PCC (Plain Cement Concrete) block and HDPE (High Density poly ethylene) lining as a remedy to control seepage. HDPE lining was also provided at storage area of the reservoir bed level. Mulching was done for downstream side slope protection.

Keywords: raw water reservoir, seepage, seismic analysis, slope stability

Procedia PDF Downloads 479
373 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation

Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril

Abstract:

This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.

Keywords: cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper

Procedia PDF Downloads 176
372 Performance of On-site Earthquake Early Warning Systems for Different Sensor Locations

Authors: Ting-Yu Hsu, Shyu-Yu Wu, Shieh-Kung Huang, Hung-Wei Chiang, Kung-Chun Lu, Pei-Yang Lin, Kuo-Liang Wen

Abstract:

Regional earthquake early warning (EEW) systems are not suitable for Taiwan, as most destructive seismic hazards arise due to in-land earthquakes. These likely cause the lead-time provided by regional EEW systems before a destructive earthquake wave arrives to become null. On the other hand, an on-site EEW system can provide more lead-time at a region closer to an epicenter, since only seismic information of the target site is required. Instead of leveraging the information of several stations, the on-site system extracts some P-wave features from the first few seconds of vertical ground acceleration of a single station and performs a prediction of the oncoming earthquake intensity at the same station according to these features. Since seismometers could be triggered by non-earthquake events such as a passing of a truck or other human activities, to reduce the likelihood of false alarms, a seismometer was installed at three different locations on the same site and the performance of the EEW system for these three sensor locations were discussed. The results show that the location on the ground of the first floor of a school building maybe a good choice, since the false alarms could be reduced and the cost for installation and maintenance is the lowest.

Keywords: earthquake early warning, on-site, seismometer location, support vector machine

Procedia PDF Downloads 224
371 Lessons from Vernacular Architecture for Lightweight Construction

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

With the gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.

Keywords: gravity load, light-weighting structural system, load bearing geometry, seismic behavior

Procedia PDF Downloads 512
370 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates

Authors: David Boyajian, Tadeh Zirakian

Abstract:

Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.

Keywords: buckling, low yield point steel, plates, steel plate shear walls, yielding

Procedia PDF Downloads 380
369 Building an Interactive Web-Based GIS System for Planning of Geological Survey Works

Authors: Wu Defu, Kiefer Chiam, Yang Kin Seng

Abstract:

The planning of geological survey works is an iterative process which involves planner, geologist, civil engineer and other stakeholders, who perform different roles and have different points of view. Traditionally, the team used paper maps or CAD drawings to present the proposal which is not an efficient way to present and share idea on the site investigation proposal such as sitting of borehole location or seismic survey lines. This paper focuses on how a GIS approach can be utilised to develop a web-based system to support decision making process in the planning of geological survey works and also to plan site activities carried out by Singapore Geological Office (SGO). The authors design a framework of building an interactive web-based GIS system, and develop a prototype, which enables the users to obtain rapidly existing geological information and also to plan interactively borehole locations and seismic survey lines via a web browser. This prototype system is used daily by SGO and has shown to be effective in increasing efficiency and productivity as the time taken in the planning of geological survey works is shortened. The prototype system has been developed using the ESRI ArcGIS API 3.7 for Flex which is based on the ArcGIS 10.2.1 platform.

Keywords: engineering geology, flex, geological survey planning, geoscience, GIS, site investigation, WebGIS

Procedia PDF Downloads 287