Search results for: rounding error
1394 An Adaptive Oversampling Technique for Imbalanced Datasets
Authors: Shaukat Ali Shahee, Usha Ananthakumar
Abstract:
A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling
Procedia PDF Downloads 4181393 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture
Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko
Abstract:
Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.Keywords: classification, feature selection, texture analysis, tree algorithms
Procedia PDF Downloads 1781392 On the Question of Ideology: Criticism of the Enlightenment Approach and Theory of Ideology as Objective Force in Gramsci and Althusser
Authors: Edoardo Schinco
Abstract:
Studying the Marxist intellectual tradition, it is possible to verify that there were numerous cases of philosophical regression, in which the important achievements of detailed studies have been replaced by naïve ideas and previous misunderstandings: one of most important example of this tendency is related to the question of ideology. According to a common Enlightenment approach, the ideology is essentially not a reality, i.e., a factor capable of having an effect on the reality itself; in other words, the ideology is a mere error without specific historical meaning, which is only due to ignorance or inability of subjects to understand the truth. From this point of view, the consequent and immediate practice against every form of ideology are the rational dialogue, the reasoning based on common sense, in order to dispel the obscurity of ignorance through the light of pure reason. The limits of this philosophical orientation are however both theoretical and practical: on the one hand, the Enlightenment criticism of ideology is not an historicistic thought, since it cannot grasp the inner connection that ties an historical context and its peculiar ideology together; moreover, on the other hand, when the Enlightenment approach fails to release people from their illusions (e.g., when the ideology persists, despite the explanation of its illusoriness), it usually becomes a racist or elitarian thought. Unlike this first conception of ideology, Gramsci attempts to recover Marx’s original thought and to valorize its dialectical methodology with respect to the reality of ideology. As Marx suggests, the ideology – in negative meaning – is surely an error, a misleading knowledge, which aims to defense the current state of things and to conceal social, political or moral contradictions; but, that is precisely why the ideological error is not casual: every ideology mediately roots in a particular material context, from which it takes its reason being. Gramsci avoids, however, any mechanistic interpretation of Marx and, for this reason; he underlines the dialectic relation that exists between material base and ideological superstructure; in this way, a specific ideology is not only a passive product of base but also an active factor that reacts on the base itself and modifies it. Therefore, there is a considerable revaluation of ideology’s role in maintenance of status quo and the consequent thematization of both ideology as objective force, active in history, and ideology as cultural hegemony of ruling class on subordinate groups. Among the Marxists, the French philosopher Louis Althusser also gives his contribution to this crucial question; as follower of Gramsci’s thought, he develops the idea of ideology as an objective force through the notions of Repressive State Apparatus (RSA) and Ideological State Apparatuses (ISA). In addition to this, his philosophy is characterized by the presence of structuralist elements, which must be studied, since they deeply change the theoretical foundation of his Marxist thought.Keywords: Althusser, enlightenment, Gramsci, ideology
Procedia PDF Downloads 1991391 Using Equipment Telemetry Data for Condition-Based maintenance decisions
Authors: John Q. Todd
Abstract:
Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.Keywords: condition based maintenance, equipment data, metrics, alerts
Procedia PDF Downloads 1881390 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 1211389 The Impact of Temporal Impairment on Quality of Experience (QoE) in Video Streaming: A No Reference (NR) Subjective and Objective Study
Authors: Muhammad Arslan Usman, Muhammad Rehan Usman, Soo Young Shin
Abstract:
Live video streaming is one of the most widely used service among end users, yet it is a big challenge for the network operators in terms of quality. The only way to provide excellent Quality of Experience (QoE) to the end users is continuous monitoring of live video streaming. For this purpose, there are several objective algorithms available that monitor the quality of the video in a live stream. Subjective tests play a very important role in fine tuning the results of objective algorithms. As human perception is considered to be the most reliable source for assessing the quality of a video stream, subjective tests are conducted in order to develop more reliable objective algorithms. Temporal impairments in a live video stream can have a negative impact on the end users. In this paper we have conducted subjective evaluation tests on a set of video sequences containing temporal impairment known as frame freezing. Frame Freezing is considered as a transmission error as well as a hardware error which can result in loss of video frames on the reception side of a transmission system. In our subjective tests, we have performed tests on videos that contain a single freezing event and also for videos that contain multiple freezing events. We have recorded our subjective test results for all the videos in order to give a comparison on the available No Reference (NR) objective algorithms. Finally, we have shown the performance of no reference algorithms used for objective evaluation of videos and suggested the algorithm that works better. The outcome of this study shows the importance of QoE and its effect on human perception. The results for the subjective evaluation can serve the purpose for validating objective algorithms.Keywords: objective evaluation, subjective evaluation, quality of experience (QoE), video quality assessment (VQA)
Procedia PDF Downloads 6021388 Correction Factors for Soil-Structure Interaction Predicted by Simplified Models: Axisymmetric 3D Model versus Fully 3D Model
Authors: Fu Jia
Abstract:
The effects of soil-structure interaction (SSI) are often studied using axial-symmetric three-dimensional (3D) models to avoid the high computational cost of the more realistic, fully 3D models, which require 2-3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed by axisymmetric models, embedded in uniform or layered half-space. The results are compared with those for fully 3D rectangular foundations of different aspect ratios. Correction factors are presented for a range of the model parameters, such as fixed-base frequency, structure mass, height and length-to-width ratio, foundation embedment, soil-layer stiffness and thickness. It is shown that the errors are larger for stiffer, taller and heavier structures, deeper foundations and deeper soil layer. For example, for a stiff structure like Millikan Library (NS response; length-to-width ratio 1), the error is 6.5% in system frequency, 49% in system damping and 180% in peak amplitude. Analysis of a case study shows that the NEHRP-2015 provisions for reduction of base shear force due to SSI effects may be unsafe for some structures and need revision. The presented correction factor diagrams can be used in practical design and other applications.Keywords: 3D soil-structure interaction, correction factors for axisymmetric models, length-to-width ratio, NEHRP-2015 provisions for reduction of base shear force, rectangular embedded foundations, SSI system frequency, SSI system damping
Procedia PDF Downloads 2661387 One vs. Rest and Error Correcting Output Codes Principled Rebalancing Schemes for Solving Imbalanced Multiclass Problems
Authors: Alvaro Callejas-Ramos, Lorena Alvarez-Perez, Alexander Benitez-Buenache, Anibal R. Figueiras-Vidal
Abstract:
This contribution presents a promising formulation which allows to extend the principled binary rebalancing procedures, also known as neutral re-balancing mechanisms in the sense that they do not alter the likelihood ratioKeywords: Bregman divergences, imbalanced multiclass classifi-cation, informed re-balancing, invariant likelihood ratio
Procedia PDF Downloads 2161386 Predicting Stem Borer Density in Maize Using RapidEye Data and Generalized Linear Models
Authors: Elfatih M. Abdel-Rahman, Tobias Landmann, Richard Kyalo, George Ong’amo, Bruno Le Ru
Abstract:
Maize (Zea mays L.) is a major staple food crop in Africa, particularly in the eastern region of the continent. The maize growing area in Africa spans over 25 million ha and 84% of rural households in Africa cultivate maize mainly as a means to generate food and income. Average maize yields in Sub Saharan Africa are 1.4 t/ha as compared to global average of 2.5–3.9 t/ha due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In East Africa, yield losses due to stem borers are currently estimated between 12% to 40% of the total production. The objective of the present study was therefore to predict stem borer larvae density in maize fields using RapidEye reflectance data and generalized linear models (GLMs). RapidEye images were captured for a test site in Kenya (Machakos) in January and in February 2015. Stem borer larva numbers were modeled using GLMs assuming Poisson (Po) and negative binomial (NB) distributions with error with log arithmetic link. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were employed to assess the models performance using a leave one-out cross-validation approach. Results showed that NB models outperformed Po ones in all study sites. RMSE and RPD ranged between 0.95 and 2.70, and between 2.39 and 6.81, respectively. Overall, all models performed similar when used the January and the February image data. We conclude that reflectance data from RapidEye data can be used to estimate stem borer larvae density. The developed models could to improve decision making regarding controlling maize stem borers using various integrated pest management (IPM) protocols.Keywords: maize, stem borers, density, RapidEye, GLM
Procedia PDF Downloads 4971385 Maximum Likelihood Estimation Methods on a Two-Parameter Rayleigh Distribution under Progressive Type-Ii Censoring
Authors: Daniel Fundi Murithi
Abstract:
Data from economic, social, clinical, and industrial studies are in some way incomplete or incorrect due to censoring. Such data may have adverse effects if used in the estimation problem. We propose the use of Maximum Likelihood Estimation (MLE) under a progressive type-II censoring scheme to remedy this problem. In particular, maximum likelihood estimates (MLEs) for the location (µ) and scale (λ) parameters of two Parameter Rayleigh distribution are realized under a progressive type-II censoring scheme using the Expectation-Maximization (EM) and the Newton-Raphson (NR) algorithms. These algorithms are used comparatively because they iteratively produce satisfactory results in the estimation problem. The progressively type-II censoring scheme is used because it allows the removal of test units before the termination of the experiment. Approximate asymptotic variances and confidence intervals for the location and scale parameters are derived/constructed. The efficiency of EM and the NR algorithms is compared given root mean squared error (RMSE), bias, and the coverage rate. The simulation study showed that in most sets of simulation cases, the estimates obtained using the Expectation-maximization algorithm had small biases, small variances, narrower/small confidence intervals width, and small root of mean squared error compared to those generated via the Newton-Raphson (NR) algorithm. Further, the analysis of a real-life data set (data from simple experimental trials) showed that the Expectation-Maximization (EM) algorithm performs better compared to Newton-Raphson (NR) algorithm in all simulation cases under the progressive type-II censoring scheme.Keywords: expectation-maximization algorithm, maximum likelihood estimation, Newton-Raphson method, two-parameter Rayleigh distribution, progressive type-II censoring
Procedia PDF Downloads 1631384 Modified Lot Quality Assurance Sampling (LQAS) Model for Quality Assessment of Malaria Parasite Microscopy and Rapid Diagnostic Tests in Kano, Nigeria
Authors: F. Sarkinfada, Dabo N. Tukur, Abbas A. Muaz, Adamu A. Yahuza
Abstract:
Appropriate Quality Assurance (QA) of parasite-based diagnosis of malaria to justify Artemisinin-based Combination Therapy (ACT) is essential for Malaria Programmes. In Low and Middle Income Countries (LMIC), resource constrain appears to be a major challenge in implementing the conventional QA system. We designed and implemented a modified LQAS model for QA of malaria parasite (MP) microscopy and RDT in a State Specialist Hospital (SSH) and a University Health Clinic (UHC) in Kano, Nigeria. The capacities of both facilities for MP microscopy and RDT were assessed before implementing a modified LQAS over a period of 3 months. Quality indicators comprising the qualities of blood film and staining, MP positivity rates, concordance rates, error rates (in terms of false positives and false negatives), sensitivity and specificity were monitored and evaluated. Seventy one percent (71%) of the basic requirements for malaria microscopy was available in both facilities, with the absence of certifies microscopists, SOPs and Quality Assurance mechanisms. A daily average of 16 to 32 blood samples were tested with a blood film staining quality of >70% recorded in both facilities. Using microscopy, the MP positivity rates were 50.46% and 19.44% in SSH and UHS respectively, while the MP positivity rates were 45.83% and 22.78% in SSH and UHS when RDT was used. Higher concordance rates of 88.90% and 93.98% were recorded in SSH and UHC respectively using microscopy, while lower rates of 74.07% and 80.58% in SSH and UHC were recorded when RDT was used. In both facilities, error rates were higher when RDT was used than with microscopy. Sensitivity and specificity were higher when microscopy was used (95% and 84% in SSH; 94% in UHC) than when RDT was used (72% and 76% in SSH; 78% and 81% in UHC). It could be feasible to implement an integrated QA model for MP microscopy and RDT using modified LQAS in Malaria Control Programmes in Low and Middle Income Countries that might have resource constrain for parasite-base diagnosis of malaria to justify ACT treatment.Keywords: malaria, microscopy, quality assurance, RDT
Procedia PDF Downloads 2221383 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm
Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan
Abstract:
Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power
Procedia PDF Downloads 851382 The Analysis of Gizmos Online Program as Mathematics Diagnostic Program: A Story from an Indonesian Private School
Authors: Shofiayuningtyas Luftiani
Abstract:
Some private schools in Indonesia started integrating the online program Gizmos in the teaching-learning process. Gizmos was developed to supplement the existing curriculum by integrating it into the instructional programs. The program has some features using an inquiry-based simulation, in which students conduct exploration by using a worksheet while teachers use the teacher guidelines to direct and assess students’ performance In this study, the discussion about Gizmos highlights its features as the assessment media of mathematics learning for secondary school students. The discussion is based on the case study and literature review from the Indonesian context. The purpose of applying Gizmos as an assessment media refers to the diagnostic assessment. As a part of the diagnostic assessment, the teachers review the student exploration sheet, analyze particularly in the students’ difficulties and consider findings in planning future learning process. This assessment becomes important since the teacher needs the data about students’ persistent weaknesses. Additionally, this program also helps to build student’ understanding by its interactive simulation. Currently, the assessment over-emphasizes the students’ answers in the worksheet based on the provided answer keys while students perform their skill in translating the question, doing the simulation and answering the question. Whereas, the assessment should involve the multiple perspectives and sources of students’ performance since teacher should adjust the instructional programs with the complexity of students’ learning needs and styles. Consequently, the approach to improving the assessment components is selected to challenge the current assessment. The purpose of this challenge is to involve not only the cognitive diagnosis but also the analysis of skills and error. Concerning the selected setting for this diagnostic assessment that develops the combination of cognitive diagnosis, skills analysis and error analysis, the teachers should create an assessment rubric. The rubric plays the important role as the guide to provide a set of criteria for the assessment. Without the precise rubric, the teacher potentially ineffectively documents and follows up the data about students at risk of failure. Furthermore, the teachers who employ the program of Gizmos as the diagnostic assessment might encounter some obstacles. Based on the condition of assessment in the selected setting, the obstacles involve the time constrain, the reluctance of higher teaching burden and the students’ behavior. Consequently, the teacher who chooses the Gizmos with those approaches has to plan, implement and evaluate the assessment. The main point of this assessment is not in the result of students’ worksheet. However, the diagnostic assessment has the two-stage process; the process to prompt and effectively follow-up both individual weaknesses and those of the learning process. Ultimately, the discussion of Gizmos as the media of the diagnostic assessment refers to the effort to improve the mathematical learning process.Keywords: diagnostic assessment, error analysis, Gizmos online program, skills analysis
Procedia PDF Downloads 1821381 Design and Simulation of an Inter-Satellite Optical Wireless Communication System Using Diversity Techniques
Authors: Sridhar Rapuru, D. Mallikarjunreddy, Rajanarendra Sai
Abstract:
In this reign of the internet, the access of any multimedia file to the users at any time with a superior quality is needed. To achieve this goal, it is very important to have a good network without any interruptions between the satellites along with various earth stations. For that purpose, a high speed inter-satellite optical wireless communication system (IsOWC) is designed with space and polarization diversity techniques. IsOWC offers a high bandwidth, small size, less power requirement and affordable when compared with the present microwave satellite systems. To improve the efficiency and to reduce the propagation delay, inter-satellite link is established between the satellites. High accurate tracking systems are required to establish the reliable connection between the satellites as they have their own orbits. The only disadvantage of this IsOWC system is laser beam width is narrower than the RF because of this highly accurate tracking system to meet this requirement. The satellite uses the 'ephemerides data' for rough pointing and tracking system for fine pointing to the other satellite. In this proposed IsOWC system, laser light is used as a wireless connectedness between the source and destination and free space acts as the channel to carry the message. The proposed system will be designed, simulated and analyzed for 6000km with an improvement of data rate over previously existing systems. The performance parameters of the system are Q-factor, eye opening, bit error rate, etc., The proposed system for Inter-satellite Optical Wireless Communication System Design Using Diversity Techniques finds huge scope of applications in future generation communication purposes.Keywords: inter-satellite optical wireless system, space and polarization diversity techniques, line of sight, bit error rate, Q-factor
Procedia PDF Downloads 2691380 Improving the Accuracy of Stress Intensity Factors Obtained by Scaled Boundary Finite Element Method on Hybrid Quadtree Meshes
Authors: Adrian W. Egger, Savvas P. Triantafyllou, Eleni N. Chatzi
Abstract:
The scaled boundary finite element method (SBFEM) is a semi-analytical numerical method, which introduces a scaling center in each element’s domain, thus transitioning from a Cartesian reference frame to one resembling polar coordinates. Consequently, an analytical solution is achieved in radial direction, implying that only the boundary need be discretized. The only limitation imposed on the resulting polygonal elements is that they remain star-convex. Further arbitrary p- or h-refinement may be applied locally in a mesh. The polygonal nature of SBFEM elements has been exploited in quadtree meshes to alleviate all issues conventionally associated with hanging nodes. Furthermore, since in 2D this results in only 16 possible cell configurations, these are precomputed in order to accelerate the forward analysis significantly. Any cells, which are clipped to accommodate the domain geometry, must be computed conventionally. However, since SBFEM permits polygonal elements, significantly coarser meshes at comparable accuracy levels are obtained when compared with conventional quadtree analysis, further increasing the computational efficiency of this scheme. The generalized stress intensity factors (gSIFs) are computed by exploiting the semi-analytical solution in radial direction. This is initiated by placing the scaling center of the element containing the crack at the crack tip. Taking an analytical limit of this element’s stress field as it approaches the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary conditions, the geometry correction factor is obtained, and the gSIFs are then evaluated based on their formal definition. Since the SBFEM solution is constructed as a power series, not unlike mode superposition in FEM, the two modes contributing to the singular response of the element can be easily identified in post-processing. Compared to the extended finite element method (XFEM) this approach is highly convenient, since neither enrichment terms nor a priori knowledge of the singularity is required. Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with hybrid quadtrees employing linear elements, this does not always hold. Nevertheless, it has been shown that crack propagation schemes are highly effective even given very coarse discretization since they only rely on the ratio of mode one to mode two gSIFs. The absolute values of the gSIFs may still be subject to large errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from the approximation space of the cracked element, thus limiting the error in the gSIFs to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the cracked element, which elevates the amount of modes present in the solution. The resulting numerical description of the element is highly accurate, with the main error source now stemming from its boundary displacement solution. Numerical examples show that this post-processing procedure can significantly improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes resulting from hybrid quadtrees.Keywords: linear elastic fracture mechanics, generalized stress intensity factors, scaled finite element method, hybrid quadtrees
Procedia PDF Downloads 1461379 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization
Procedia PDF Downloads 1561378 Simplified INS\GPS Integration Algorithm in Land Vehicle Navigation
Authors: Othman Maklouf, Abdunnaser Tresh
Abstract:
Land vehicle navigation is subject of great interest today. Global Positioning System (GPS) is the main navigation system for positioning in such systems. GPS alone is incapable of providing continuous and reliable positioning, because of its inherent dependency on external electromagnetic signals. Inertial Navigation (INS) is the implementation of inertial sensors to determine the position and orientation of a vehicle. The availability of low-cost Micro-Electro-Mechanical-System (MEMS) inertial sensors is now making it feasible to develop INS using an inertial measurement unit (IMU). INS has unbounded error growth since the error accumulates at each step. Usually, GPS and INS are integrated with a loosely coupled scheme. With the development of low-cost, MEMS inertial sensors and GPS technology, integrated INS/GPS systems are beginning to meet the growing demands of lower cost, smaller size, and seamless navigation solutions for land vehicles. Although MEMS inertial sensors are very inexpensive compared to conventional sensors, their cost (especially MEMS gyros) is still not acceptable for many low-end civilian applications (for example, commercial car navigation or personal location systems). An efficient way to reduce the expense of these systems is to reduce the number of gyros and accelerometers, therefore, to use a partial IMU (ParIMU) configuration. For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a field experiment for a low-cost strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach, we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost IMU (Inertial Measurement Unit) and because of the relatively small area of the trajectory.Keywords: GPS, IMU, Kalman filter, materials engineering
Procedia PDF Downloads 4221377 Development and Total Error Concept Validation of Common Analytical Method for Quantification of All Residual Solvents Present in Amino Acids by Gas Chromatography-Head Space
Authors: A. Ramachandra Reddy, V. Murugan, Prema Kumari
Abstract:
Residual solvents in Pharmaceutical samples are monitored using gas chromatography with headspace (GC-HS). Based on current regulatory and compendial requirements, measuring the residual solvents are mandatory for all release testing of active pharmaceutical ingredients (API). Generally, isopropyl alcohol is used as the residual solvent in proline and tryptophan; methanol in cysteine monohydrate hydrochloride, glycine, methionine and serine; ethanol in glycine and lysine monohydrate; acetic acid in methionine. In order to have a single method for determining these residual solvents (isopropyl alcohol, ethanol, methanol and acetic acid) in all these 7 amino acids a sensitive and simple method was developed by using gas chromatography headspace technique with flame ionization detection. During development, no reproducibility, retention time variation and bad peak shape of acetic acid peaks were identified due to the reaction of acetic acid with the stationary phase (cyanopropyl dimethyl polysiloxane phase) of column and dissociation of acetic acid with water (if diluent) while applying temperature gradient. Therefore, dimethyl sulfoxide was used as diluent to avoid these issues. But most the methods published for acetic acid quantification by GC-HS uses derivatisation technique to protect acetic acid. As per compendia, risk-based approach was selected as appropriate to determine the degree and extent of the validation process to assure the fitness of the procedure. Therefore, Total error concept was selected to validate the analytical procedure. An accuracy profile of ±40% was selected for lower level (quantitation limit level) and for other levels ±30% with 95% confidence interval (risk profile 5%). The method was developed using DB-Waxetr column manufactured by Agilent contains 530 µm internal diameter, thickness: 2.0 µm, and length: 30 m. A constant flow of 6.0 mL/min. with constant make up mode of Helium gas was selected as a carrier gas. The present method is simple, rapid, and accurate, which is suitable for rapid analysis of isopropyl alcohol, ethanol, methanol and acetic acid in amino acids. The range of the method for isopropyl alcohol is 50ppm to 200ppm, ethanol is 50ppm to 3000ppm, methanol is 50ppm to 400ppm and acetic acid 100ppm to 400ppm, which covers the specification limits provided in European pharmacopeia. The accuracy profile and risk profile generated as part of validation were found to be satisfactory. Therefore, this method can be used for testing of residual solvents in amino acids drug substances.Keywords: amino acid, head space, gas chromatography, total error
Procedia PDF Downloads 1481376 Gnss Aided Photogrammetry for Digital Mapping
Authors: Muhammad Usman Akram
Abstract:
This research work based on GNSS-Aided Photogrammetry for Digital Mapping. It focuses on topographic survey of an area or site which is to be used in future Planning & development (P&D) or can be used for further, examination, exploration, research and inspection. Survey and Mapping in hard-to-access and hazardous areas are very difficult by using traditional techniques and methodologies; as well it is time consuming, labor intensive and has less precision with limited data. In comparison with the advance techniques it is saving with less manpower and provides more precise output with a wide variety of multiple data sets. In this experimentation, Aerial Photogrammetry technique is used where an UAV flies over an area and captures geocoded images and makes a Three-Dimensional Model (3-D Model), UAV operates on a user specified path or area with various parameters; Flight altitude, Ground sampling distance (GSD), Image overlapping, Camera angle etc. For ground controlling, a network of points on the ground would be observed as a Ground Control point (GCP) using Differential Global Positioning System (DGPS) in PPK or RTK mode. Furthermore, that raw data collected by UAV and DGPS will be processed in various Digital image processing programs and Computer Aided Design software. From which as an output we obtain Points Dense Cloud, Digital Elevation Model (DEM) and Ortho-photo. The imagery is converted into geospatial data by digitizing over Ortho-photo, DEM is further converted into Digital Terrain Model (DTM) for contour generation or digital surface. As a result, we get Digital Map of area to be surveyed. In conclusion, we compared processed data with exact measurements taken on site. The error will be accepted if the amount of error is not breached from survey accuracy limits set by concerned institutions.Keywords: photogrammetry, post processing kinematics, real time kinematics, manual data inquiry
Procedia PDF Downloads 321375 A Single Loop Repetitive Controller for a Four Legs Matrix Converter Unit
Authors: Wesam Rohouma
Abstract:
The aim of this paper is to investigate the use of repetitive controller to regulate the output voltage of three phase four leg matric converter for an Aircraft Ground Power Supply Unit. The proposed controller improve the steady state error and provide good regulation during different loading. Simulation results of 7.5 KW converter are presented to verify the operation of the proposed controller.Keywords: matrix converter, Power electronics, controller, regulation
Procedia PDF Downloads 15061374 Comparison of Two Neural Networks To Model Margarine Age And Predict Shelf-Life Using Matlab
Authors: Phakamani Xaba, Robert Huberts, Bilainu Oboirien
Abstract:
The present study was aimed at developing & comparing two neural-network-based predictive models to predict shelf-life/product age of South African margarine using free fatty acid (FFA), water droplet size (D3.3), water droplet distribution (e-sigma), moisture content, peroxide value (PV), anisidine valve (AnV) and total oxidation (totox) value as input variables to the model. Brick margarine products which had varying ages ranging from fresh i.e. week 0 to week 47 were sourced. The brick margarine products which had been stored at 10 & 25 °C and were characterized. JMP and MATLAB models to predict shelf-life/ margarine age were developed and their performances were compared. The key performance indicators to evaluate the model performances were correlation coefficient (CC), root mean square error (RMSE), and mean absolute percentage error (MAPE) relative to the actual data. The MATLAB-developed model showed a better performance in all three performance indicators. The correlation coefficient of the MATLAB model was 99.86% versus 99.74% for the JMP model, the RMSE was 0.720 compared to 1.005 and the MAPE was 7.4% compared to 8.571%. The MATLAB model was selected to be the most accurate, and then, the number of hidden neurons/ nodes was optimized to develop a single predictive model. The optimized MATLAB with 10 neurons showed a better performance compared to the models with 1 & 5 hidden neurons. The developed models can be used by margarine manufacturers, food research institutions, researchers etc, to predict shelf-life/ margarine product age, optimize addition of antioxidants, extend shelf-life of products and proactively troubleshoot for problems related to changes which have an impact on shelf-life of margarine without conducting expensive trials.Keywords: margarine shelf-life, predictive modelling, neural networks, oil oxidation
Procedia PDF Downloads 1971373 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant
Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani
Abstract:
Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning
Procedia PDF Downloads 381372 An Experiment Research on the Effect of Brain-Break in the Classroom on Elementary School Students’ Selective Attention
Authors: Hui Liu, Xiaozan Wang, Jiarong Zhong, Ziming Shao
Abstract:
Introduction: Related research shows that students don’t concentrate on teacher’s speaking in the classroom. The d2 attention test is a time-limited test about selective attention. The d2 attention test can be used to evaluate individual selective attention. Purpose: To use the d2 attention test tool to measure the difference between the attention level of the experimental class and the control class before and after Brain-Break and to explore the effect of Brain-Break in the classroom on students' selective attention. Methods: According to the principle of no difference in pre-test data, two classes in the fourth- grade of Shenzhen Longhua Central Primary School were selected. After 20 minutes of class in the third class in the morning and the third class in the afternoon, about 3-minute Brain-Break intervention was performed in the experimental class for 10 weeks. The normal class in the control class did not intervene. Before and after the experiment, the d2 attention test tool was used to test the attention level of the two-class students. The paired sample t-test and independent sample t-test in SPSS 23.0 was used to test the change in the attention level of the two-class classes around 10 weeks. This article only presents results with significant differences. Results: The independent sample t-test results showed that after ten-week of Brain-Break, the missed errors (E1 t = -2.165 p = 0.042), concentration performance (CP t = 1.866 p = 0.05), and the degree of omissions (Epercent t = -2.375 p = 0.029) in experimental class showed significant differences compared with control class. The students’ error level decreased and the concentration increased. Conclusions: Adding Brain-Break interventions in the classroom can effectively improve the attention level of fourth-grade primary school students to a certain extent, especially can improve the concentration of attention and decrease the error rate in the tasks. The new sport's learning model is worth promotingKeywords: cultural class, micromotor, attention, D2 test
Procedia PDF Downloads 1321371 Protocol for Consumer Research in Academia for Community Marketing Campaigns
Authors: Agnes J. Otjen, Sarah Keller
Abstract:
A Montana university has used applied consumer research in experiential learning with non-profit clients for over a decade. Through trial and error, a successful protocol has been established from problem statement through formative research to integrated marketing campaign execution. In this paper, we describe the protocol and its applications. Analysis was completed to determine the effectiveness of the campaigns and the results of how pre- and post-consumer research mark societal change because of media.Keywords: consumer, research, marketing, communications
Procedia PDF Downloads 1371370 Statistical Convergence for the Approximation of Linear Positive Operators
Authors: Neha Bhardwaj
Abstract:
In this paper, we consider positive linear operators and study the Voronovskaya type result of the operator then obtain an error estimate in terms of the higher order modulus of continuity of the function being approximated and its A-statistical convergence. Also, we compute the corresponding rate of A-statistical convergence for the linear positive operators.Keywords: Poisson distribution, Voronovskaya, modulus of continuity, a-statistical convergence
Procedia PDF Downloads 3331369 Estimating Water Balance at Beterou Watershed, Benin Using Soil and Water Assessment Tool (SWAT) Model
Authors: Ella Sèdé Maforikan
Abstract:
Sustained water management requires quantitative information and the knowledge of spatiotemporal dynamics of hydrological system within the basin. This can be achieved through the research. Several studies have investigated both surface water and groundwater in Beterou catchment. However, there are few published papers on the application of the SWAT modeling in Beterou catchment. The objective of this study was to evaluate the performance of SWAT to simulate the water balance within the watershed. The inputs data consist of digital elevation model, land use maps, soil map, climatic data and discharge records. The model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI2) approach. The calibrated started from 1989 to 2006 with four years warming up period (1985-1988); and validation was from 2007 to 2020. The goodness of the model was assessed using five indices, i.e., Nash–Sutcliffe efficiency (NSE), the ratio of the root means square error to the standard deviation of measured data (RSR), percent bias (PBIAS), the coefficient of determination (R²), and Kling Gupta efficiency (KGE). Results showed that SWAT model successfully simulated river flow in Beterou catchment with NSE = 0.79, R2 = 0.80 and KGE= 0.83 for the calibration process against validation process that provides NSE = 0.78, R2 = 0.78 and KGE= 0.85 using site-based streamflow data. The relative error (PBIAS) ranges from -12.2% to 3.1%. The parameters runoff curve number (CN2), Moist Bulk Density (SOL_BD), Base Flow Alpha Factor (ALPHA_BF), and the available water capacity of the soil layer (SOL_AWC) were the most sensitive parameter. The study provides further research with uncertainty analysis and recommendations for model improvement and provision of an efficient means to improve rainfall and discharges measurement data.Keywords: watershed, water balance, SWAT modeling, Beterou
Procedia PDF Downloads 551368 Modeling Binomial Dependent Distribution of the Values: Synthesis Tables of Probabilities of Errors of the First and Second Kind of Biometrics-Neural Network Authentication System
Authors: B. S.Akhmetov, S. T. Akhmetova, D. N. Nadeyev, V. Yu. Yegorov, V. V. Smogoonov
Abstract:
Estimated probabilities of errors of the first and second kind for nonideal biometrics-neural transducers 256 outputs, the construction of nomograms based error probability of 'own' and 'alien' from the mathematical expectation and standard deviation of the normalized measures Hamming.Keywords: modeling, errors, probability, biometrics, neural network, authentication
Procedia PDF Downloads 4821367 Validity of a Timing System in the Alpine Ski Field: A Magnet-Based Timing System Using the Magnetometer Built into an Inertial Measurement Units
Authors: Carla Pérez-Chirinos Buxadé, Bruno Fernández-Valdés, Mónica Morral-Yepes, Sílvia Tuyà Viñas, Josep Maria Padullés Riu, Gerard Moras Feliu
Abstract:
There is a long way to explore all the possible applications inertial measurement units (IMUs) have in the sports field. The aim of this study was to evaluate the validity of a new application on the use of these wearable sensors, specifically it was to evaluate a magnet-based timing system (M-BTS) for timing gate-to-gate in an alpine ski slalom using the magnetometer embedded in an IMU. This was a validation study. The criterion validity of time measured by the M-BTS was assessed using the 95% error range against actual time obtained from photocells. The experiment was carried out with first-and second-year junior skiers performing a ski slalom on a ski training slope. Eight alpine skiers (17.4 ± 0.8 years, 176.4 ± 4.9 cm, 67.7 ± 2.0 kg, 128.8 ± 26.6 slalom FIS-Points) participated in the study. An IMU device was attached to the skier’s lower back. Skiers performed a 40-gate slalom from which four gates were assessed. The M-BTS consisted of placing four bar magnets buried into the snow surface on the inner side of each gate’s turning pole; the magnetometer built into the IMU detected the peak-shaped magnetic field when passing near the magnets at a certain speed. Four magnetic peaks were detected. The time compressed between peaks was calculated. Three inter-gate times were obtained for each system: photocells and M-BTS. The total time was defined as the time sum of the inter-gate times. The 95% error interval for the total time was 0.050 s for the ski slalom. The M-BTS is valid for timing gate-to-gate in an alpine ski slalom. Inter-gate times can provide additional data for analyzing a skier’s performance, such as asymmetries between left and right foot.Keywords: gate crossing time, inertial measurement unit, timing system, wearable sensor
Procedia PDF Downloads 1841366 Orbit Determination from Two Position Vectors Using Finite Difference Method
Authors: Akhilesh Kumar, Sathyanarayan G., Nirmala S.
Abstract:
An unusual approach is developed to determine the orbit of satellites/space objects. The determination of orbits is considered a boundary value problem and has been solved using the finite difference method (FDM). Only positions of the satellites/space objects are known at two end times taken as boundary conditions. The technique of finite difference has been used to calculate the orbit between end times. In this approach, the governing equation is defined as the satellite's equation of motion with a perturbed acceleration. Using the finite difference method, the governing equations and boundary conditions are discretized. The resulting system of algebraic equations is solved using Tri Diagonal Matrix Algorithm (TDMA) until convergence is achieved. This methodology test and evaluation has been done using all GPS satellite orbits from National Geospatial-Intelligence Agency (NGA) precise product for Doy 125, 2023. Towards this, two hours of twelve sets have been taken into consideration. Only positions at the end times of each twelve sets are considered boundary conditions. This algorithm is applied to all GPS satellites. Results achieved using FDM compared with the results of NGA precise orbits. The maximum RSS error for the position is 0.48 [m] and the velocity is 0.43 [mm/sec]. Also, the present algorithm is applied on the IRNSS satellites for Doy 220, 2023. The maximum RSS error for the position is 0.49 [m], and for velocity is 0.28 [mm/sec]. Next, a simulation has been done for a Highly Elliptical orbit for DOY 63, 2023, for the duration of 6 hours. The RSS of difference in position is 0.92 [m] and velocity is 1.58 [mm/sec] for the orbital speed of more than 5km/sec. Whereas the RSS of difference in position is 0.13 [m] and velocity is 0.12 [mm/sec] for the orbital speed less than 5km/sec. Results show that the newly created method is reliable and accurate. Further applications of the developed methodology include missile and spacecraft targeting, orbit design (mission planning), space rendezvous and interception, space debris correlation, and navigation solutions.Keywords: finite difference method, grid generation, NavIC system, orbit perturbation
Procedia PDF Downloads 851365 Design and Simulation of All Optical Fiber to the Home Network
Authors: Rahul Malhotra
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 556