Search results for: intuitionistic fuzzy graph
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1162

Search results for: intuitionistic fuzzy graph

652 An Iberian Study about Location of Parking Areas for Dangerous Goods

Authors: María Dolores Caro, Eugenio M. Fedriani, Ángel F. Tenorio

Abstract:

When lorries transport dangerous goods, there exist some legal stipulations in the European Union for assuring the security of the rest of road users as well as of those goods being transported. At this respect, lorry drivers cannot park in usual parking areas, because they must use parking areas with special conditions, including permanent supervision of security personnel. Moreover, drivers are compelled to satisfy additional regulations about resting and driving times, which involve in the practical possibility of reaching the suitable parking areas under these time parameters. The “European Agreement concerning the International Carriage of Dangerous Goods by Road” (ADR) is the basic regulation on transportation of dangerous goods imposed under the recommendations of the United Nations Economic Commission for Europe. Indeed, nowadays there are no enough parking areas adapted for dangerous goods and no complete study have suggested the best locations to build new areas or to adapt others already existing to provide the areas being necessary so that lorry drivers can follow all the regulations. The goal of this paper is to show how many additional parking areas should be built in the Iberian Peninsula to allow that lorry drivers may park in such areas under their restrictions in resting and driving time. To do so, we have modeled the problem via graph theory and we have applied a new efficient algorithm which determines an optimal solution for the problem of locating new parking areas to complement those already existing in the ADR for the Iberian Peninsula. The solution can be considered minimal since the number of additional parking areas returned by the algorithm is minimal in quantity. Obviously, graph theory is a natural way to model and solve the problem here proposed because we have considered as nodes: the already-existing parking areas, the loading-and-unloading locations and the bifurcations of roads; while each edge between two nodes represents the existence of a road between both nodes (the distance between nodes is the edge's weight). Except for bifurcations, all the nodes correspond to parking areas already existing and, hence, the problem corresponds to determining the additional nodes in the graph such that there are less up to 100 km between two nodes representing parking areas. (maximal distance allowed by the European regulations).

Keywords: dangerous goods, parking areas, Iberian peninsula, graph-based modeling

Procedia PDF Downloads 580
651 Risk Assessment on Construction Management with “Fuzzy Logy“

Authors: Mehrdad Abkenari, Orod Zarrinkafsh, Mohsen Ramezan Shirazi

Abstract:

Construction projects initiate in complicated dynamic environments and, due to the close relationships between project parameters and the unknown outer environment, they are faced with several uncertainties and risks. Success in time, cost and quality in large scale construction projects is uncertain in consequence of technological constraints, large number of stakeholders, too much time required, great capital requirements and poor definition of the extent and scope of the project. Projects that are faced with such environments and uncertainties can be well managed through utilization of the concept of risk management in project’s life cycle. Although the concept of risk is dependent on the opinion and idea of management, it suggests the risks of not achieving the project objectives as well. Furthermore, project’s risk analysis discusses the risks of development of inappropriate reactions. Since evaluation and prioritization of construction projects has been a difficult task, the network structure is considered to be an appropriate approach to analyze complex systems; therefore, we have used this structure for analyzing and modeling the issue. On the other hand, we face inadequacy of data in deterministic circumstances, and additionally the expert’s opinions are usually mathematically vague and are introduced in the form of linguistic variables instead of numerical expression. Owing to the fact that fuzzy logic is used for expressing the vagueness and uncertainty, formulation of expert’s opinion in the form of fuzzy numbers can be an appropriate approach. In other words, the evaluation and prioritization of construction projects on the basis of risk factors in real world is a complicated issue with lots of ambiguous qualitative characteristics. In this study, evaluated and prioritization the risk parameters and factors with fuzzy logy method by combination of three method DEMATEL (Decision Making Trial and Evaluation), ANP (Analytic Network Process) and TOPSIS (Technique for Order-Preference by Similarity Ideal Solution) on Construction Management.

Keywords: fuzzy logy, risk, prioritization, assessment

Procedia PDF Downloads 594
650 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access

Authors: T. Wanyama, B. Far

Abstract:

Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.

Keywords: community water usage, fuzzy logic, irrigation, multi-agent system

Procedia PDF Downloads 298
649 On the Basis Number and the Minimum Cycle Bases of the Wreath Product of Paths with Wheels

Authors: M. M. M. Jaradat

Abstract:

For a given graph G, the set Ԑ of all subsets of E(G) forms an |E(G)| dimensional vector space over Z2 with vector addition X⊕Y = (X\Y ) [ (Y \X) and scalar multiplication 1.X = X and 0.X = Ø for all X, Yϵ Ԑ. The cycle space, C(G), of a graph G is the vector subspace of (E; ⊕; .) spanned by the cycles of G. Traditionally there have been two notions of minimality among bases of C(G). First, a basis B of G is called a d-fold if each edge of G occurs in at most d cycles of the basis B. The basis number, b(G), of G is the least non-negative integer d such that C(G) has a d-fold basis; a required basis of C(G) is a basis for which each edge of G belongs to at most b(G) elements of B. Second, a basis B is called a minimum cycle basis (MCB) if its total length Σ BϵB |B| is minimum among all bases of C(G). The lexicographic product GρH has the vertex set V (GρH) = V (G) x V (H) and the edge set E(GρH) = {(u1, v1)(u2, v2)|u1 = u2 and v1 v2 ϵ E(H); or u1u2 ϵ E(G) and there is α ϵ Aut(H) such that α (v1) = v2}. In this work, a construction of a minimum cycle basis for the wreath product of wheels with paths is presented. Also, the length of the longest cycle of a minimum cycle basis is determined. Moreover, the basis number for the wreath product of the same is investigated.

Keywords: cycle space, minimum cycle basis, basis number, wreath product

Procedia PDF Downloads 280
648 Message Passing Neural Network (MPNN) Approach to Multiphase Diffusion in Reservoirs for Well Interconnection Assessments

Authors: Margarita Mayoral-Villa, J. Klapp, L. Di G. Sigalotti, J. E. V. Guzmán

Abstract:

Automated learning techniques are widely applied in the energy sector to address challenging problems from a practical point of view. To this end, we discuss the implementation of a Message Passing algorithm (MPNN)within a Graph Neural Network(GNN)to leverage the neighborhood of a set of nodes during the aggregation process. This approach enables the characterization of multiphase diffusion processes in the reservoir, such that the flow paths underlying the interconnections between multiple wells may be inferred from previously available data on flow rates and bottomhole pressures. The results thus obtained compare favorably with the predictions produced by the Reduced Order Capacitance-Resistance Models (CRM) and suggest the potential of MPNNs to enhance the robustness of the forecasts while improving the computational efficiency.

Keywords: multiphase diffusion, message passing neural network, well interconnection, interwell connectivity, graph neural network, capacitance-resistance models

Procedia PDF Downloads 149
647 An Owen Value for Cooperative Games with Pairwise a Priori Incompatibilities

Authors: Jose M. Gallardo, Nieves Jimenez, Andres Jimenez-Losada, Esperanza Lebron

Abstract:

A game with a priori incompatibilities is a triple (N,v,g) where (N,v) is a cooperative game, and (N,g) is a graph which establishes initial incompatibilities between some players. In these games, the negotiation has two stages. In the first stage, players can only negotiate with others with whom they are compatible. In the second stage, the grand coalition will be formed. We introduce a value for these games. Given a game with a priori incompatibility (N,v,g), we consider the family of coalitions without incompatibility relations among their players. This family is a normal set system or coalition configuration Ig. Therefore, we can assign to each game with a priori incompatibilities (N,v,g) a game with coalition configuration (N,v, Ig). Now, in order to obtain a payoff vector for (N,v,g), it suffices to calculate a payoff vector for (N,v, Ig). To this end, we apply a value for games with coalition configuration. In our case, we will use the dual configuration value, which has been studied in the literature. With this method, we obtain a value for games with a priori incompatibilities, which is called the Owen value for a priori incompatibilities. We provide a characterization of this value.

Keywords: cooperative game, game with coalition configuration, graph, independent set, Owen value, Shapley value

Procedia PDF Downloads 131
646 Applying Spanning Tree Graph Theory for Automatic Database Normalization

Authors: Chetneti Srisa-an

Abstract:

In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.

Keywords: relational database, functional dependency, automatic normalization, primary key, spanning tree

Procedia PDF Downloads 353
645 Optimizing of the Micro EDM Parameters in Drilling of Titanium Ti-6Al-4V Alloy for Higher Machining Accuracy-Fuzzy Modelling

Authors: Ahmed A. D. Sarhan, Mum Wai Yip, M. Sayuti, Lim Siew Fen

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy

Procedia PDF Downloads 496
644 A Comparative Study of the Maximum Power Point Tracking Methods for PV Systems Using Boost Converter

Authors: M. Doumi, A. Miloudi, A.G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir

Abstract:

The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. These algorithms are based on the Perturb-Observe, Conductance-Increment and the Fuzzy Logic methods. These techniques vary in many aspects as: simplicity, convergence speed, digital or analogical implementation, sensors required, cost, range of effectiveness, and in other aspects. This paper presents a comparative study of three widely-adopted MPPT algorithms; their performance is evaluated on the energy point of view, by using the simulation tool Simulink®, considering different solar irradiance variations. MPPT using fuzzy logic shows superior performance and more reliable control to the other methods for this application.

Keywords: photovoltaic system, MPPT, perturb and observe (P&O), incremental conductance (INC), Fuzzy Logic (FLC)

Procedia PDF Downloads 411
643 Ranking Effective Factors on Strategic Planning to Achieve Organization Objectives in Fuzzy Multivariate Decision-Making Technique

Authors: Elahe Memari, Ahmad Aslizadeh, Ahmad Memari

Abstract:

Today strategic planning is counted as the most important duties of senior directors in each organization. Strategic planning allows the organizations to implement compiled strategies and reach higher competitive benefits than their competitors. The present research work tries to prepare and rank the strategies form effective factors on strategic planning in fulfillment of the State Road Management and Transportation Organization in order to indicate the role of organizational factors in efficiency of the process to organization managers. Connection between six main factors in fulfillment of State Road Management and Transportation Organization were studied here, including Improvement of Strategic Thinking in senior managers, improvement of the organization business process, rationalization of resources allocation in different parts of the organization, coordination and conformity of strategic plan with organization needs, adjustment of organization activities with environmental changes, reinforcement of organizational culture. All said factors approved by implemented tests and then ranked using fuzzy multivariate decision-making technique.

Keywords: Fuzzy TOPSIS, improvement of organization business process, multivariate decision-making, strategic planning

Procedia PDF Downloads 423
642 Application of Adaptive Neuro Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel AASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of post-weld heat treatment (PWHT) experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556 %, which confirms the high accuracy of the model.

Keywords: prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, mean absolute percentage error

Procedia PDF Downloads 153
641 Investigating the Feasibility of Promoting Safety in Civil Projects by BIM System Using Fuzzy Logic

Authors: Mohammad Reza Zamanian

Abstract:

The construction industry has always been recognized as one of the most dangerous available industries, and the statistics of accidents and injuries resulting from it say that the safety category needs more attention and the arrival of up-to-date technologies in this field. Building information modeling (BIM) is one of the relatively new and applicable technologies in Iran, that the necessity of using it is increasingly evident. The main purposes of this research are to evaluate the feasibility of using this technology in the safety sector of construction projects and to evaluate the effectiveness and operationality of its various applications in this sector. These applications were collected and categorized after reviewing past studies and researches then a questionnaire based on Delphi method criteria was presented to 30 experts who were thoroughly familiar with modeling software and safety guidelines. After receiving and exporting the answers to SPSS software, the validity and reliability of the questionnaire were assessed to evaluate the measuring tools. Fuzzy logic is a good way to analyze data because of its flexibility in dealing with ambiguity and uncertainty issues, and the implementation of the Delphi method in the fuzzy environment overcomes the uncertainties in decision making. Therefore, this method was used for data analysis, and the results indicate the usefulness and effectiveness of BIM in projects and improvement of safety status at different stages of construction. Finally, the applications and the sections discussed were ranked in order of priority for efficiency and effectiveness. Safety planning is considered as the most influential part of the safety of BIM among the four sectors discussed, and planning for the installation of protective fences and barriers to prevent falls and site layout planning with a safety approach based on a 3D model are the most important applications of BIM among the 18 applications to improve the safety of construction projects.

Keywords: building information modeling, safety of construction projects, Delphi method, fuzzy logic

Procedia PDF Downloads 167
640 A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data

Authors: N. Borjalilu, P. Rabiei, A. Enjoo

Abstract:

Flight Data Monitoring (FDM) program assists an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM is a powerful tool for an aircraft operator integrated into the operator’s Safety Management System (SMS), allowing to detect, confirm, and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in four categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained.

Keywords: F-topsis, fuzzy set, flight data monitoring (FDM), flight safety

Procedia PDF Downloads 168
639 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic

Authors: Budoor Al Abid

Abstract:

Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.

Keywords: machine learning, adaptive, fuzzy logic, data mining

Procedia PDF Downloads 196
638 Evaluation of a Hybrid Knowledge-Based System Using Fuzzy Approach

Authors: Kamalendu Pal

Abstract:

This paper describes the main features of a knowledge-based system evaluation method. System evaluation is placed in the context of a hybrid legal decision-support system, Advisory Support for Home Settlement in Divorce (ASHSD). Legal knowledge for ASHSD is represented in two forms, as rules and previously decided cases. Besides distinguishing the two different forms of knowledge representation, the paper outlines the actual use of these forms in a computational framework that is designed to generate a plausible solution for a given case, by using rule-based reasoning (RBR) and case-based reasoning (CBR) in an integrated environment. The nature of suitability assessment of a solution has been considered as a multiple criteria decision making process in ASHAD evaluation. The evaluation was performed by a combination of discussions and questionnaires with different user groups. The answers to questionnaires used in this evaluations method have been measured as a combination of linguistic variables, fuzzy numbers, and by using defuzzification process. The results show that the designed evaluation method creates suitable mechanism in order to improve the performance of the knowledge-based system.

Keywords: case-based reasoning, fuzzy number, legal decision-support system, linguistic variable, rule-based reasoning, system evaluation

Procedia PDF Downloads 367
637 Research on Dynamic Practical Byzantine Fault Tolerance Consensus Algorithm

Authors: Cao Xiaopeng, Shi Linkai

Abstract:

The practical Byzantine fault-tolerant algorithm does not add nodes dynamically. It is limited in practical application. In order to add nodes dynamically, Dynamic Practical Byzantine Fault Tolerance Algorithm (DPBFT) was proposed. Firstly, a new node sends request information to other nodes in the network. The nodes in the network decide their identities and requests. Then the nodes in the network reverse connect to the new node and send block information of the current network. The new node updates information. Finally, the new node participates in the next round of consensus, changes the view and selects the master node. This paper abstracts the decision of nodes into the undirected connected graph. The final consistency of the graph is used to prove that the proposed algorithm can adapt to the network dynamically. Compared with the PBFT algorithm, DPBFT has better fault tolerance and lower network bandwidth.

Keywords: practical byzantine, fault tolerance, blockchain, consensus algorithm, consistency analysis

Procedia PDF Downloads 130
636 Speed Control of Hybrid Stepper Motor by Using Adaptive Neuro-Fuzzy Controller

Authors: Talha Ali Khan

Abstract:

This paper presents an adaptive neuro-fuzzy interference system (ANFIS), which is applied to a hybrid stepper motor (HSM) to regulate its speed. The dynamic response of the HSM with the ANFIS controller is studied during the starting process and under different load disturbance. The effectiveness of the proposed controller is compared with that of the conventional PI controller. The proposed method solves the problem of nonlinearities and load changes of the HSM drives. The proposed controller ensures fast and precise dynamic response with an excellent steady state performance. Matlab/Simulink program is used for this dynamic simulation study.

Keywords: stepper motor, hybrid, ANFIS, speed control

Procedia PDF Downloads 551
635 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics

Authors: Mikheil Kalmakhelidze

Abstract:

Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.

Keywords: description logic, fuzzy logic, neural networks, record linkage

Procedia PDF Downloads 272
634 Fuzzy Climate Control System for Hydroponic Green Forage Production

Authors: Germán Díaz Flórez, Carlos Alberto Olvera Olvera, Domingo José Gómez Meléndez, Francisco Eneldo López Monteagudo

Abstract:

In recent decades, population growth has exerted great pressure on natural resources. Two of the most scarce and difficult to obtain resources, arable land, and water, are closely interrelated, to the satisfaction of the demand for food production. In Mexico, the agricultural sector uses more than 70% of water consumption. Therefore, maximize the efficiency of current production systems is inescapable. It is essential to utilize techniques and tools that will enable us to the significant savings of water, labor and fertilizer. In this study, we present a production module of hydroponic green forage (HGF), which is a viable alternative in the production of livestock feed in the semi-arid and arid zones. The equipment in addition to having a forage production module, has a climate and irrigation control system that operated with photovoltaics. The climate control, irrigation and power management is based on fuzzy control techniques. The fuzzy control provides an accurate method in the design of controllers for nonlinear dynamic physical phenomena such as temperature and humidity, besides other as lighting level, aeration and irrigation control using heuristic information. In this working, firstly refers to the production of the hydroponic green forage, suitable weather conditions and fertigation subsequently presents the design of the production module and the design of the controller. A simulation of the behavior of the production module and the end results of actual operation of the equipment are presented, demonstrating its easy design, flexibility, robustness and low cost that represents this equipment in the primary sector.

Keywords: fuzzy, climate control system, hydroponic green forage, forage production module

Procedia PDF Downloads 397
633 Electronic Stability Control for a 7 DOF Vehicle Model Using Flex Ray and Neuro Fuzzy Techniques

Authors: Praveen Battula

Abstract:

Any high performance car has the tendency to over steer and Understeer under slippery conditions, An Electronic Stability Control System is needed under these conditions to regulate the steering of the car. It uses Anti-Lock Braking System (ABS) and Traction Control and Wheel Speed Sensor, Steering Angle Sensor, Rotational Speed Sensors to correct the problems. The focus of this paper is to improve the driving dynamics and safety by controlling the forces applied on each wheel. ESC Control the Yaw Stability, traction controls the Roll Stability, where actually the vehicle slip rate and lateral acceleration is controlled. ESC uses differential braking on all four brakes independently to control the vehicle’s motion. A mathematical model is developed in Simulink for the FlexRay based Electronic Stability Control. Vehicle steering is developed using Neuro Fuzzy Logic Controller. 7 Degrees of Freedom Vehicle Model is used as a Plant Model using dSpace autobox. The Performance of the system is assessed using two different road Scenarios, Vehicle Control under standard maneuvering conditions. The entire system is set using Dspace Control Desk. Results are provided by comparison of how a Vehicle with and without Electronic Stability Control which shows an improved performance in control.

Keywords: ESC, flexray, chassis control, steering, neuro fuzzy, vehicle dynamics

Procedia PDF Downloads 448
632 Application of Fuzzy TOPSIS in Evaluating Green Transportation Options for Dhaka Megacity

Authors: Md. Moniruzzaman, Thirayoot Limanond

Abstract:

Being the most visible indicator, the transport system of a city points out how developed the city is. Dhaka megacity holds a mixed composition of motorized and non-motorized modes of transport and the number of vehicle figure is escalating over times. And this obviously poses associated environmental costs like air pollution, noise etc. which is degrading the quality of life in the city. Eventually sustainable transport or more importantly green transport from environmental point of view has become a prime choice to the transport professionals in order to cope up the crisis. Currently the city authority is planning to execute such sustainable transport systems that could serve the pressing demand of the present and meet the future needs effectively. This study focuses on the selection and evaluation of green transportation systems among potential alternatives on a priority basis. In this paper, Fuzzy TOPSIS - a multi-criteria decision method is presented to find out the most prioritized alternative. In the first step, Twenty-one individual specific criteria for sustainability assessment are selected. In the following step, experts provide linguistic ratings to the potential alternatives with respect to the selected criteria. The approach is used to generate aggregate scores for sustainability assessment and selection of the best alternative. In the third step, a sensitivity analysis is performed to understand the influence of criteria weights on the decision making process. The key strength of fuzzy TOPSIS approach is its practical applicability having a generation of good quality solution even under uncertainty.

Keywords: green transport, multi-criteria decision approach, urban transportation system, sustainability assessment, fuzzy theory, uncertainty

Procedia PDF Downloads 290
631 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique

Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak

Abstract:

The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.

Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method

Procedia PDF Downloads 179
630 Predicting the Areal Development of the City of Mashhad with the Automaton Fuzzy Cell Method

Authors: Mehran Dizbadi, Daniyal Safarzadeh, Behrooz Arastoo, Ansgar Brunn

Abstract:

Rapid and uncontrolled expansion of cities has led to unplanned aerial development. In this way, modeling and predicting the urban growth of a city helps decision-makers. In this study, the aspect of sustainable urban development has been studied for the city of Mashhad. In general, the prediction of urban aerial development is one of the most important topics of modern town management. In this research, using the Cellular Automaton (CA) model developed for geo data of Geographic Information Systems (GIS) and presenting a simple and powerful model, a simulation of complex urban processes has been done.

Keywords: urban modeling, sustainable development, fuzzy cellular automaton, geo-information system

Procedia PDF Downloads 132
629 On the Existence of Homotopic Mapping Between Knowledge Graphs and Graph Embeddings

Authors: Jude K. Safo

Abstract:

Knowledge Graphs KG) and their relation to Graph Embeddings (GE) represent a unique data structure in the landscape of machine learning (relative to image, text and acoustic data). Unlike the latter, GEs are the only data structure sufficient for representing hierarchically dense, semantic information needed for use-cases like supply chain data and protein folding where the search space exceeds the limits traditional search methods (e.g. page-rank, Dijkstra, etc.). While GEs are effective for compressing low rank tensor data, at scale, they begin to introduce a new problem of ’data retreival’ which we observe in Large Language Models. Notable attempts by transE, TransR and other prominent industry standards have shown a peak performance just north of 57% on WN18 and FB15K benchmarks, insufficient practical industry applications. They’re also limited, in scope, to next node/link predictions. Traditional linear methods like Tucker, CP, PARAFAC and CANDECOMP quickly hit memory limits on tensors exceeding 6.4 million nodes. This paper outlines a topological framework for linear mapping between concepts in KG space and GE space that preserve cardinality. Most importantly we introduce a traceable framework for composing dense linguistic strcutures. We demonstrate performance on WN18 benchmark this model hits. This model does not rely on Large Langauge Models (LLM) though the applications are certainy relevant here as well.

Keywords: representation theory, large language models, graph embeddings, applied algebraic topology, applied knot theory, combinatorics

Procedia PDF Downloads 68
628 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic

Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi

Abstract:

In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.

Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing

Procedia PDF Downloads 299
627 Information Technologies in Automotive Assembly Industry in Thailand

Authors: Jirarat Teeravaraprug, Usawadee Inklay

Abstract:

This paper gave an attempt in prioritizing information technologies that organizations should give concentration. The case study was organizations in the automotive assembly industry in Thailand. Data were first collected to gather all information technologies known and used in the automotive assembly industry in Thailand. Five experts from the industries were surveyed based on the concept of fuzzy DEMATEL. The information technologies were categorized into six groups, which were communication, transaction, planning, organization management, warehouse management, and transportation. The cause groups of information technologies for each group were analysed and presented. Moreover, the relationship between the used and the significant information technologies was given. Discussions based on the used information technologies and the research results are given.

Keywords: information technology, automotive assembly industry, fuzzy DEMATEL

Procedia PDF Downloads 345
626 Prediction of Compressive Strength in Geopolymer Composites by Adaptive Neuro Fuzzy Inference System

Authors: Mehrzad Mohabbi Yadollahi, Ramazan Demirboğa, Majid Atashafrazeh

Abstract:

Geopolymers are highly complex materials which involve many variables which makes modeling its properties very difficult. There is no systematic approach in mix design for Geopolymers. Since the amounts of silica modulus, Na2O content, w/b ratios and curing time have a great influence on the compressive strength an ANFIS (Adaptive neuro fuzzy inference system) method has been established for predicting compressive strength of ground pumice based Geopolymers and the possibilities of ANFIS for predicting the compressive strength has been studied. Consequently, ANFIS can be used for geopolymer compressive strength prediction with acceptable accuracy.

Keywords: geopolymer, ANFIS, compressive strength, mix design

Procedia PDF Downloads 853
625 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode

Authors: N. Ould cherchali, M. S. Boucherit, L. Barazane, A. Morsli

Abstract:

Photovoltaic power is widely used to supply isolated or unpopulated areas (lighting, pumping, etc.). Great advantage is that this source is inexhaustible, it offers great safety in use and it is clean. But the dynamic models used to describe a photovoltaic system are complicated and nonlinear and due to nonlinear I-V and P–V characteristics of photovoltaic generators, a maximum power point tracking technique (MPPT) is required to maximize the output power. In this paper, two online techniques of maximum power point tracking using robust controller for photovoltaic systems are proposed, the first technique use fuzzy logic controller (FLC) and the second use sliding mode controller (SMC) for photovoltaic systems. The two maximum power point tracking controllers receive the partial derivative of power as inputs, and the output is the duty cycle corresponding to maximum power. A Photovoltaic generator with Boost converter is developed using MATLAB/Simulink to verify the preferences of the proposed techniques. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.

Keywords: fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller

Procedia PDF Downloads 547
624 Fuzzy Inference System for Determining Collision Risk of Ship in Madura Strait Using Automatic Identification System

Authors: Emmy Pratiwi, Ketut B. Artana, A. A. B. Dinariyana

Abstract:

Madura Strait is considered as one of the busiest shipping channels in Indonesia. High vessel traffic density in Madura Strait gives serious threat due to navigational safety in this area, i.e. ship collision. This study is necessary as an attempt to enhance the safety of marine traffic. Fuzzy inference system (FIS) is proposed to calculate risk collision of ships. Collision risk is evaluated based on ship domain, Distance to Closest Point of Approach (DCPA), and Time to Closest Point of Approach (TCPA). Data were collected by utilizing Automatic Identification System (AIS). This study considers several ships’ domain models to give the characteristic of marine traffic in the waterways. Each encounter in the ship domain is analyzed to obtain the level of collision risk. Risk level of ships, as the result in this study, can be used as guidance to avoid the accident, providing brief description about safety traffic in Madura Strait and improving the navigational safety in the area.

Keywords: automatic identification system, collision risk, DCPA, fuzzy inference system, TCPA

Procedia PDF Downloads 549
623 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine

Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji

Abstract:

The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.

Keywords: medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis

Procedia PDF Downloads 319