Search results for: floor estimation algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5585

Search results for: floor estimation algorithm

245 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology

Authors: Ugwu O. C., Mamah R. O., Awudu W. S.

Abstract:

This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.

Keywords: beamforming algorithm, adaptive beamforming, simulink, reception

Procedia PDF Downloads 40
244 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 72
243 Drone Swarm Routing and Scheduling for Off-shore Wind Turbine Blades Inspection

Authors: Mohanad Al-Behadili, Xiang Song, Djamila Ouelhadj, Alex Fraess-Ehrfeld

Abstract:

In off-shore wind farms, turbine blade inspection accessibility under various sea states is very challenging and greatly affects the downtime of wind turbines. Maintenance of any offshore system is not an easy task due to the restricted logistics and accessibility. The multirotor unmanned helicopter is of increasing interest in inspection applications due to its manoeuvrability and payload capacity. These advantages increase when many of them are deployed simultaneously in a swarm. Hence this paper proposes a drone swarm framework for inspecting offshore wind turbine blades and nacelles so as to reduce downtime. One of the big challenges of this task is that when operating a drone swarm, an individual drone may not have enough power to fly and communicate during missions and it has no capability of refueling due to its small size. Once the drone power is drained, there are no signals transmitted and the links become intermittent. Vessels equipped with 5G masts and small power units are utilised as platforms for drones to recharge/swap batteries. The research work aims at designing a smart energy management system, which provides automated vessel and drone routing and recharging plans. To achieve this goal, a novel mathematical optimisation model is developed with the main objective of minimising the number of drones and vessels, which carry the charging stations, and the downtime of the wind turbines. There are a number of constraints to be considered, such as each wind turbine must be inspected once and only once by one drone; each drone can inspect at most one wind turbine after recharging, then fly back to the charging station; collision should be avoided during the drone flying; all wind turbines in the wind farm should be inspected within the given time window. We have developed a real-time Ant Colony Optimisation (ACO) algorithm to generate real-time and near-optimal solutions to the drone swarm routing problem. The schedule will generate efficient and real-time solutions to indicate the inspection tasks, time windows, and the optimal routes of the drones to access the turbines. Experiments are conducted to evaluate the quality of the solutions generated by ACO.

Keywords: drone swarm, routing, scheduling, optimisation model, ant colony optimisation

Procedia PDF Downloads 261
242 Optimized Scheduling of Domestic Load Based on User Defined Constraints in a Real-Time Tariff Scenario

Authors: Madia Safdar, G. Amjad Hussain, Mashhood Ahmad

Abstract:

One of the major challenges of today’s era is peak demand which causes stress on the transmission lines and also raises the cost of energy generation and ultimately higher electricity bills to the end users, and it was used to be managed by the supply side management. However, nowadays this has been withdrawn because of existence of potential in the demand side management (DSM) having its economic and- environmental advantages. DSM in domestic load can play a vital role in reducing the peak load demand on the network provides a significant cost saving. In this paper the potential of demand response (DR) in reducing the peak load demands and electricity bills to the electric users is elaborated. For this purpose the domestic appliances are modeled in MATLAB Simulink and controlled by a module called energy management controller. The devices are categorized into controllable and uncontrollable loads and are operated according to real-time tariff pricing pattern instead of fixed time pricing or variable pricing. Energy management controller decides the switching instants of the controllable appliances based on the results from optimization algorithms. In GAMS software, the MILP (mixed integer linear programming) algorithm is used for optimization. In different cases, different constraints are used for optimization, considering the comforts, needs and priorities of the end users. Results are compared and the savings in electricity bills are discussed in this paper considering real time pricing and fixed tariff pricing, which exhibits the existence of potential to reduce electricity bills and peak loads in demand side management. It is seen that using real time pricing tariff instead of fixed tariff pricing helps to save in the electricity bills. Moreover the simulation results of the proposed energy management system show that the gained power savings lie in high range. It is anticipated that the result of this research will prove to be highly effective to the utility companies as well as in the improvement of domestic DR.

Keywords: controllable and uncontrollable domestic loads, demand response, demand side management, optimization, MILP (mixed integer linear programming)

Procedia PDF Downloads 300
241 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique

Authors: Ahmet Karagoz, Irfan Karagoz

Abstract:

Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.

Keywords: automatic target recognition, sparse representation, image classification, SAR images

Procedia PDF Downloads 364
240 Recommendations for Data Quality Filtering of Opportunistic Species Occurrence Data

Authors: Camille Van Eupen, Dirk Maes, Marc Herremans, Kristijn R. R. Swinnen, Ben Somers, Stijn Luca

Abstract:

In ecology, species distribution models are commonly implemented to study species-environment relationships. These models increasingly rely on opportunistic citizen science data when high-quality species records collected through standardized recording protocols are unavailable. While these opportunistic data are abundant, uncertainty is usually high, e.g., due to observer effects or a lack of metadata. Data quality filtering is often used to reduce these types of uncertainty in an attempt to increase the value of studies relying on opportunistic data. However, filtering should not be performed blindly. In this study, recommendations are built for data quality filtering of opportunistic species occurrence data that are used as input for species distribution models. Using an extensive database of 5.7 million citizen science records from 255 species in Flanders, the impact on model performance was quantified by applying three data quality filters, and these results were linked to species traits. More specifically, presence records were filtered based on record attributes that provide information on the observation process or post-entry data validation, and changes in the area under the receiver operating characteristic (AUC), sensitivity, and specificity were analyzed using the Maxent algorithm with and without filtering. Controlling for sample size enabled us to study the combined impact of data quality filtering, i.e., the simultaneous impact of an increase in data quality and a decrease in sample size. Further, the variation among species in their response to data quality filtering was explored by clustering species based on four traits often related to data quality: commonness, popularity, difficulty, and body size. Findings show that model performance is affected by i) the quality of the filtered data, ii) the proportional reduction in sample size caused by filtering and the remaining absolute sample size, and iii) a species ‘quality profile’, resulting from a species classification based on the four traits related to data quality. The findings resulted in recommendations on when and how to filter volunteer generated and opportunistically collected data. This study confirms that correctly processed citizen science data can make a valuable contribution to ecological research and species conservation.

Keywords: citizen science, data quality filtering, species distribution models, trait profiles

Procedia PDF Downloads 200
239 Nurse-Led Codes: Practical Application in the Emergency Department during a Global Pandemic

Authors: F. DelGaudio, H. Gill

Abstract:

Resuscitation during cardiopulmonary (CPA) arrest is dynamic, high stress, high acuity situation, which can easily lead to communication breakdown, and errors. The care of these high acuity patients has also been shown to increase physiologic stress and task saturation of providers, which can negatively impact the care being provided. These difficulties are further complicated during a global pandemic and pose a significant safety risk to bedside providers. Nurse-led codes are a relatively new concept that may be a potential solution for alleviating some of these difficulties. An experienced nurse who has completed advanced cardiac life support (ACLS), and additional training, assumed the responsibility of directing the mechanics of the appropriate ACLS algorithm. This was done in conjunction with a physician who also acted as a physician leader. The additional nurse-led code training included a multi-disciplinary in situ simulation of a CPA on a suspected COVID-19 patient. During the CPA, the nurse leader’s responsibilities include: ensuring adequate compression depth and rate, minimizing interruptions in chest compressions, the timing of rhythm/pulse checks, and appropriate medication administration. In addition, the nurse leader also functions as a last line safety check for appropriate personal protective equipment and limiting exposure of staff. The use of nurse-led codes for CPA has shown to decrease the cognitive overload and task saturation for the physician, as well as limiting the number of staff being exposed to a potentially infectious patient. The real-world application has allowed physicians to perform and oversee high-risk procedures such as intubation, line placement, and point of care ultrasound, without sacrificing the integrity of the resuscitation. Nurse-led codes have also given the physician the bandwidth to review pertinent medical history, advanced directives, determine reversible causes, and have the end of life conversations with family. While there is a paucity of research on the effectiveness of nurse-led codes, there are many potentially significant benefits. In addition to its value during a pandemic, it may also be beneficial during complex circumstances such as extracorporeal cardiopulmonary resuscitation.

Keywords: cardiopulmonary arrest, COVID-19, nurse-led code, task saturation

Procedia PDF Downloads 154
238 Shear Strength Characterization of Coal Mine Spoil in Very-High Dumps with Large Scale Direct Shear Testing

Authors: Leonie Bradfield, Stephen Fityus, John Simmons

Abstract:

The shearing behavior of current and planned coal mine spoil dumps up to 400m in height is studied using large-sample-high-stress direct shear tests performed on a range of spoils common to the coalfields of Eastern Australia. The motivation for the study is to address industry concerns that some constructed spoil dump heights ( > 350m) are exceeding the scale ( ≤ 120m) for which reliable design information exists, and because modern geotechnical laboratories are not equipped to test representative spoil specimens at field-scale stresses. For more than two decades, shear strength estimation for spoil dumps has been based on either infrequent, very small-scale tests where oversize particles are scalped to comply with device specimen size capacity such that the influence of prototype-sized particles on shear strength is not captured; or on published guidelines that provide linear shear strength envelopes derived from small-scale test data and verified in practice by slope performance of dumps up to 120m in height. To date, these published guidelines appear to have been reliable. However, in the field of rockfill dam design there is a broad acceptance of a curvilinear shear strength envelope, and if this is applicable to coal mine spoils, then these industry-accepted guidelines may overestimate the strength and stability of dumps at higher stress levels. The pressing need to rationally define the shearing behavior of more representative spoil specimens at field-scale stresses led to the successful design, construction and operation of a large direct shear machine (LDSM) and its subsequent application to provide reliable design information for current and planned very-high dumps. The LDSM can test at a much larger scale, in terms of combined specimen size (720mm x 720mm x 600mm) and stress (σn up to 4.6MPa), than has ever previously been achieved using a direct shear machine for geotechnical testing of rockfill. The results of an extensive LDSM testing program on a wide range of coal-mine spoils are compared to a published framework that widely accepted by the Australian coal mining industry as the standard for shear strength characterization of mine spoil. A critical outcome is that the LDSM data highlights several non-compliant spoils, and stress-dependent shearing behavior, for which the correct application of the published framework will not provide reliable shear strength parameters for design. Shear strength envelopes developed from the LDSM data are also compared with dam engineering knowledge, where failure envelopes of rockfills are curved in a concave-down manner. The LDSM data indicates that shear strength envelopes for coal-mine spoils abundant with rock fragments are not in fact curved and that the shape of the failure envelope is ultimately determined by the strength of rock fragments. Curvilinear failure envelopes were found to be appropriate for soil-like spoils containing minor or no rock fragments, or hard-soil aggregates.

Keywords: coal mine, direct shear test, high dump, large scale, mine spoil, shear strength, spoil dump

Procedia PDF Downloads 159
237 Detection of Patient Roll-Over Using High-Sensitivity Pressure Sensors

Authors: Keita Nishio, Takashi Kaburagi, Yosuke Kurihara

Abstract:

Recent advances in medical technology have served to enhance average life expectancy. However, the total time for which the patients are prescribed complete bedrest has also increased. With patients being required to maintain a constant lying posture- also called bedsore- development of a system to detect patient roll-over becomes imperative. For this purpose, extant studies have proposed the use of cameras, and favorable results have been reported. Continuous on-camera monitoring, however, tends to violate patient privacy. We have proposed unconstrained bio-signal measurement system that could detect body-motion during sleep and does not violate patient’s privacy. Therefore, in this study, we propose a roll-over detection method by the date obtained from the bi-signal measurement system. Signals recorded by the sensor were assumed to comprise respiration, pulse, body motion, and noise components. Compared the body-motion and respiration, pulse component, the body-motion, during roll-over, generate large vibration. Thus, analysis of the body-motion component facilitates detection of the roll-over tendency. The large vibration associated with the roll-over motion has a great effect on the Root Mean Square (RMS) value of time series of the body motion component calculated during short 10 s segments. After calculation, the RMS value during each segment was compared to a threshold value set in advance. If RMS value in any segment exceeded the threshold, corresponding data were considered to indicate occurrence of a roll-over. In order to validate the proposed method, we conducted experiment. A bi-directional microphone was adopted as a high-sensitivity pressure sensor and was placed between the mattress and bedframe. Recorded signals passed through an analog Band-pass Filter (BPF) operating over the 0.16-16 Hz bandwidth. BPF allowed the respiration, pulse, and body-motion to pass whilst removing the noise component. Output from BPF was A/D converted with the sampling frequency 100Hz, and the measurement time was 480 seconds. The number of subjects and data corresponded to 5 and 10, respectively. Subjects laid on a mattress in the supine position. During data measurement, subjects—upon the investigator's instruction—were asked to roll over into four different positions—supine to left lateral, left lateral to prone, prone to right lateral, and right lateral to supine. Recorded data was divided into 48 segments with 10 s intervals, and the corresponding RMS value for each segment was calculated. The system was evaluated by the accuracy between the investigator’s instruction and the detected segment. As the result, an accuracy of 100% was achieved. While reviewing the time series of recorded data, segments indicating roll-over tendencies were observed to demonstrate a large amplitude. However, clear differences between decubitus and the roll-over motion could not be confirmed. Extant researches possessed a disadvantage in terms of patient privacy. The proposed study, however, demonstrates more precise detection of patient roll-over tendencies without violating their privacy. As a future prospect, decubitus estimation before and after roll-over could be attempted. Since in this paper, we could not confirm the clear differences between decubitus and the roll-over motion, future studies could be based on utilization of the respiration and pulse components.

Keywords: bedsore, high-sensitivity pressure sensor, roll-over, unconstrained bio-signal measurement

Procedia PDF Downloads 120
236 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks

Authors: Tesfaye Mengistu

Abstract:

Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.

Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net

Procedia PDF Downloads 111
235 Effect of Land Use and Abandonment on Soil Carbon and Nitrogen Depletion by Runoff in Shallow Soils under Semi-Arid Mediterranean Climate

Authors: Mohamed Emran, Giovanni Pardini, Maria Gispert, Mohamed Rashad

Abstract:

Land use and abandonment in semi-arid degraded ecosystems may cause regressive dynamics in vegetation cover affecting organic matter contents, soil nutrients and structural stability, thus reducing soil resistance to erosion. Mediterranean areas are generally subjected to climatic fluctuations, which modify soil conditions and hydrological processes, such as runoff and water infiltration within the upper soil horizons. Low erosion rates occur in very fragile and shallow soils with minor clay content progressively decrease organic carbon C and nitrogen N pools in the upper soil horizons. Seven soils were selected representing variant context of land use and abandonment at the Cap de Creus Peninsula, Catalonia, NE Spain, from recent cultivated vines and olive groves, mid abandoned forests standing under cork and pine trees, pasture to late abandoned Cistus and Erica scrubs. The aim of this work was to study the effect of changes in land use and abandonment on the depletion of soil organic carbon and nitrogen transported by runoff water in shallow soils after natural rainfall events during two years with different rainfall patterns (1st year with low rainfall and 2nd year with high rainfall) by i) monitoring the most significant soil erosion parameters at recorded rainfall events, ii) studying the most relevant soil physical and chemical characteristics on seasonal basis and iii) analysing the seasonal trends of depleted carbon and nitrogen and their interaction with soil surface compaction parameters. Significant seasonal variability was observed in the relevant soil physical and chemical parameters and soil erosion parameters in all soils to establish their evolution under land use and abandonment during two years of different rainfall patterns (214 and 487 mm per year), giving important indications on soil response to rainfall impacts. Erosion rates decreased significantly with the increasing of soil C and N under low and high rainfall. In cultivated soils, C and N depletion increased by 144% and 115%, respectively by 13% increase in erosion rates during the 1st year with respect to the 2nd year. Depleted C and N were proportionally higher in soils under vines and olive with vulnerable soil structure and low soil resilience leading to degradation, altering nutrients cycles and causing adverse impact on environmental quality. Statistical analysis underlined that, during the 1st year, soil surface was less effective in preserving stocks of organic resources leading to higher susceptibility to erosion with consequent C and N depletion. During the 2nd year, higher organic reserve and water storage occurred despite the increasing of C and N loss with an effective contribution from soil surface compaction parameters. The overall estimation during the two years indicated clear differences among soils under vines, olive, cork and pines, suggesting on the one hand, that current cultivation practices are inappropriate and that reforestation with pines may delay the achievement of better soil conditions. On the other hand, the natural succession of vegetation under Cistus, pasture and Erica suggests the recovery of good soil conditions.

Keywords: land abandonment, land use, nutrient's depletion, soil erosion

Procedia PDF Downloads 344
234 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce

Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya

Abstract:

Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.

Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews

Procedia PDF Downloads 200
233 Computer-Aided Drug Repurposing for Mycobacterium Tuberculosis by Targeting Tryptophanyl-tRNA Synthetase

Authors: Neslihan Demirci, Serdar Durdağı

Abstract:

Mycobacterium tuberculosis is still a worldwide disease-causing agent that, according to WHO, led to the death of 1.5 million people from tuberculosis (TB) in 2020. The bacteria reside in macrophages located specifically in the lung. There is a known quadruple drug therapy regimen for TB consisting of isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB). Over the past 60 years, there have been great contributions to treatment options, such as recently approved delamanid (OPC67683) and bedaquiline (TMC207/R207910), targeting mycolic acid and ATP synthesis, respectively. Also, there are natural compounds that can block the tryptophanyl-tRNA synthetase (TrpRS) enzyme, chuangxinmycin, and indolmycin. Yet, already the drug resistance is reported for those agents. In this study, the newly released TrpRS enzyme structure is investigated for potential inhibitor drugs from already synthesized molecules to help the treatment of resistant cases and to propose an alternative drug for the quadruple drug therapy of tuberculosis. Maestro, Schrodinger is used for docking and molecular dynamic simulations. In-house library containing ~8000 compounds among FDA-approved indole-containing compounds, a total of 57 obtained from the ChemBL were used for both ATP and tryptophan binding pocket docking. Best of indole-containing 57 compounds were subjected to hit expansion and compared later with virtual screening workflow (VSW) results. After docking, VSW was done. Glide-XP docking algorithm was chosen. When compared, VSW alone performed better than the hit expansion module. Best scored compounds were kept for ten ns molecular dynamic simulations by Desmond. Further, 100 ns molecular dynamic simulation was performed for elected molecules according to Z-score. The top three MMGBSA-scored compounds were subjected to steered molecular dynamic (SMD) simulations by Gromacs. While SMD simulations are still being conducted, ponesimod (for multiple sclerosis), vilanterol (β₂ adrenoreceptor agonist), and silodosin (for benign prostatic hyperplasia) were found to have a significant affinity for tuberculosis TrpRS, which is the propulsive force for the urge to expand the research with in vitro studies. Interestingly, top-scored ponesimod has been reported to have a side effect that makes the patient prone to upper respiratory tract infections.

Keywords: drug repurposing, molecular dynamics, tryptophanyl-tRNA synthetase, tuberculosis

Procedia PDF Downloads 121
232 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 89
231 Distribution System Modelling: A Holistic Approach for Harmonic Studies

Authors: Stanislav Babaev, Vladimir Cuk, Sjef Cobben, Jan Desmet

Abstract:

The procedures for performing harmonic studies for medium-voltage distribution feeders have become relatively mature topics since the early 1980s. The efforts of various electric power engineers and researchers were mainly focused on handling large harmonic non-linear loads connected scarcely at several buses of medium-voltage feeders. In order to assess the impact of these loads on the voltage quality of the distribution system, specific modeling and simulation strategies were proposed. These methodologies could deliver a reasonable estimation accuracy given the requirements of least computational efforts and reduced complexity. To uphold these requirements, certain analysis assumptions have been made, which became de facto standards for establishing guidelines for harmonic analysis. Among others, typical assumptions include balanced conditions of the study and the negligible impact of impedance frequency characteristics of various power system components. In latter, skin and proximity effects are usually omitted, and resistance and reactance values are modeled based on the theoretical equations. Further, the simplifications of the modelling routine have led to the commonly accepted practice of neglecting phase angle diversity effects. This is mainly associated with developed load models, which only in a handful of cases are representing the complete harmonic behavior of a certain device as well as accounting on the harmonic interaction between grid harmonic voltages and harmonic currents. While these modelling practices were proven to be reasonably effective for medium-voltage levels, similar approaches have been adopted for low-voltage distribution systems. Given modern conditions and massive increase in usage of residential electronic devices, recent and ongoing boom of electric vehicles, and large-scale installing of distributed solar power, the harmonics in current low-voltage grids are characterized by high degree of variability and demonstrate sufficient diversity leading to a certain level of cancellation effects. It is obvious, that new modelling algorithms overcoming previously made assumptions have to be accepted. In this work, a simulation approach aimed to deal with some of the typical assumptions is proposed. A practical low-voltage feeder is modeled in PowerFactory. In order to demonstrate the importance of diversity effect and harmonic interaction, previously developed measurement-based models of photovoltaic inverter and battery charger are used as loads. The Python-based script aiming to supply varying voltage background distortion profile and the associated current harmonic response of loads is used as the core of unbalanced simulation. Furthermore, the impact of uncertainty of feeder frequency-impedance characteristics on total harmonic distortion levels is shown along with scenarios involving linear resistive loads, which further alter the impedance of the system. The comparative analysis demonstrates sufficient differences with cases when all the assumptions are in place, and results indicate that new modelling and simulation procedures need to be adopted for low-voltage distribution systems with high penetration of non-linear loads and renewable generation.

Keywords: electric power system, harmonic distortion, power quality, public low-voltage network, harmonic modelling

Procedia PDF Downloads 157
230 Early Outcomes and Lessons from the Implementation of a Geriatric Hip Fracture Protocol at a Level 1 Trauma Center

Authors: Peter Park, Alfonso Ayala, Douglas Saeks, Jordan Miller, Carmen Flores, Karen Nelson

Abstract:

Introduction Hip fractures account for more than 300,000 hospital admissions every year. Many present as fragility fractures in geriatric patients with multiple medical comorbidities. Standardized protocols for the multidisciplinary management of this patient population have been shown to improve patient outcomes. A hip fracture protocol was implemented at a Level I Trauma center with a focus on pre-operative medical optimization and early surgical care. This study evaluates the efficacy of that protocol, including the early transition period. Methods A retrospective review was performed of all patients ages 60 and older with isolated hip fractures who were managed surgically between 2020 and 2022. This included patients 1 year prior and 1 year following the implementation of a hip fracture protocol at a Level I Trauma center. Results 530 patients were identified: 249 patients were treated before, and 281 patients were treated after the protocol was instituted. There was no difference in mean age (p=0.35), gender (p=0.3), or Charlson Comorbidity Index (p=0.38) between the cohorts. Following the implementation of the protocol, there were observed increases in time to surgery (27.5h vs. 33.8h, p=0.01), hospital length of stay (6.3d vs. 9.7d, p<0.001), and ED LOS (5.1h vs. 6.2h, p<0.001). There were no differences in in-hospital mortality (2.01% pre vs. 3.20% post, p=0.39) and complication rates (25% pre vs 26% post, p=0.76). A trend towards improved outcomes was seen after the early transition period but failed to yield statistical significance. Conclusion Early medical management and surgical intervention are key determining factors affecting outcomes following fragility hip fractures. The implementation of a hip fracture protocol at this institution has not yet significantly affected these parameters. This could in part be due to the restrictions placed at this institution during the COVID-19 pandemic. Despite this, the time to OR pre-and post-implementation was quicker than figures reported elsewhere in literature. Further longitudinal data will be collected to determine the final influence of this protocol. Significance/Clinical Relevance Given the increasing number of elderly people and the high morbidity and mortality associated with hip fractures in this population finding cost effective ways to improve outcomes in the management of these injuries has the potential to have enormous positive impact for both patients and hospital systems.

Keywords: hip fracture, geriatric, treatment algorithm, preoperative optimization

Procedia PDF Downloads 76
229 An Adaptive Conversational AI Approach for Self-Learning

Authors: Airy Huang, Fuji Foo, Aries Prasetya Wibowo

Abstract:

In recent years, the focus of Natural Language Processing (NLP) development has been gradually shifting from the semantics-based approach to deep learning one, which performs faster with fewer resources. Although it performs well in many applications, the deep learning approach, due to the lack of semantics understanding, has difficulties in noticing and expressing a novel business case with a pre-defined scope. In order to meet the requirements of specific robotic services, deep learning approach is very labor-intensive and time consuming. It is very difficult to improve the capabilities of conversational AI in a short time, and it is even more difficult to self-learn from experiences to deliver the same service in a better way. In this paper, we present an adaptive conversational AI algorithm that combines both semantic knowledge and deep learning to address this issue by learning new business cases through conversations. After self-learning from experience, the robot adapts to the business cases originally out of scope. The idea is to build new or extended robotic services in a systematic and fast-training manner with self-configured programs and constructed dialog flows. For every cycle in which a chat bot (conversational AI) delivers a given set of business cases, it is trapped to self-measure its performance and rethink every unknown dialog flows to improve the service by retraining with those new business cases. If the training process reaches a bottleneck and incurs some difficulties, human personnel will be informed of further instructions. He or she may retrain the chat bot with newly configured programs, or new dialog flows for new services. One approach employs semantics analysis to learn the dialogues for new business cases and then establish the necessary ontology for the new service. With the newly learned programs, it completes the understanding of the reaction behavior and finally uses dialog flows to connect all the understanding results and programs, achieving the goal of self-learning process. We have developed a chat bot service mounted on a kiosk, with a camera for facial recognition and a directional microphone array for voice capture. The chat bot serves as a concierge with polite conversation for visitors. As a proof of concept. We have demonstrated to complete 90% of reception services with limited self-learning capability.

Keywords: conversational AI, chatbot, dialog management, semantic analysis

Procedia PDF Downloads 135
228 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit

Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira

Abstract:

Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.

Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing

Procedia PDF Downloads 143
227 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller

Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian

Abstract:

The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.

Keywords: air flow, biomass combustion, feedback control signal, fuel feeding, ladder logic, programmable logic controller, temperature

Procedia PDF Downloads 128
226 Development and Implementation of An "Electric Island" Monitoring Infrastructure for Promoting Energy Efficiency in Schools

Authors: Vladislav Grigorovitch, Marina Grigorovitch, David Pearlmutter, Erez Gal

Abstract:

The concept of “electric island” is involved with achieving the balance between the self-power generation ability of each educational institution and energy consumption demand. Photo-Voltaic (PV) solar system installed on the roofs of educational buildings is a common way to absorb the available solar energy and generate electricity for self-consumption and even for returning to the grid. The main objective of this research is to develop and implement an “electric island” monitoring infrastructure for promoting energy efficiency in educational buildings. A microscale monitoring methodology will be developed to provide a platform to estimate energy consumption performance classified by rooms and subspaces rather than the more common macroscale monitoring of the whole building. The monitoring platform will be established on the experimental sites, enabling an estimation and further analysis of the variety of environmental and physical conditions. For each building, separate measurement configurations will be applied taking into account the specific requirements, restrictions, location and infrastructure issues. The direct results of the measurements will be analyzed to provide deeper understanding of the impact of environmental conditions and sustainability construction standards, not only on the energy demand of public building, but also on the energy consumption habits of the children that study in those schools and the educational and administrative staff that is responsible for providing the thermal comfort conditions and healthy studying atmosphere for the children. A monitoring methodology being developed in this research is providing online access to real-time data of Interferential Therapy (IFTs) from any mobile phone or computer by simply browsing the dedicated website, providing powerful tools for policy makers for better decision making while developing PV production infrastructure to achieve “electric islands” in educational buildings. A detailed measurement configuration was technically designed based on the specific conditions and restriction of each of the pilot buildings. A monitoring and analysis methodology includes a large variety of environmental parameters inside and outside the schools to investigate the impact of environmental conditions both on the energy performance of the school and educational abilities of the children. Indoor measurements are mandatory to acquire the energy consumption data, temperature, humidity, carbon dioxide and other air quality conditions in different parts of the building. In addition to that, we aim to study the awareness of the users to the energy consideration and thus the impact on their energy consumption habits. The monitoring of outdoor conditions is vital for proper design of the off-grid energy supply system and validation of its sufficient capacity. The suggested outcomes of this research include: 1. both experimental sites are designed to have PV production and storage capabilities; 2. Developing an online information feedback platform. The platform will provide consumer dedicated information to academic researchers, municipality officials and educational staff and students; 3. Designing an environmental work path for educational staff regarding optimal conditions and efficient hours for operating air conditioning, natural ventilation, closing of blinds, etc.

Keywords: sustainability, electric island, IOT, smart building

Procedia PDF Downloads 179
225 ESRA: An End-to-End System for Re-identification and Anonymization of Swiss Court Decisions

Authors: Joel Niklaus, Matthias Sturmer

Abstract:

The publication of judicial proceedings is a cornerstone of many democracies. It enables the court system to be made accountable by ensuring that justice is made in accordance with the laws. Equally important is privacy, as a fundamental human right (Article 12 in the Declaration of Human Rights). Therefore, it is important that the parties (especially minors, victims, or witnesses) involved in these court decisions be anonymized securely. Today, the anonymization of court decisions in Switzerland is performed either manually or semi-automatically using primitive software. While much research has been conducted on anonymization for tabular data, the literature on anonymization for unstructured text documents is thin and virtually non-existent for court decisions. In 2019, it has been shown that manual anonymization is not secure enough. In 21 of 25 attempted Swiss federal court decisions related to pharmaceutical companies, pharmaceuticals, and legal parties involved could be manually re-identified. This was achieved by linking the decisions with external databases using regular expressions. An automated re-identification system serves as an automated test for the safety of existing anonymizations and thus promotes the right to privacy. Manual anonymization is very expensive (recurring annual costs of over CHF 20M in Switzerland alone, according to an estimation). Consequently, many Swiss courts only publish a fraction of their decisions. An automated anonymization system reduces these costs substantially, further leading to more capacity for publishing court decisions much more comprehensively. For the re-identification system, topic modeling with latent dirichlet allocation is used to cluster an amount of over 500K Swiss court decisions into meaningful related categories. A comprehensive knowledge base with publicly available data (such as social media, newspapers, government documents, geographical information systems, business registers, online address books, obituary portal, web archive, etc.) is constructed to serve as an information hub for re-identifications. For the actual re-identification, a general-purpose language model is fine-tuned on the respective part of the knowledge base for each category of court decisions separately. The input to the model is the court decision to be re-identified, and the output is a probability distribution over named entities constituting possible re-identifications. For the anonymization system, named entity recognition (NER) is used to recognize the tokens that need to be anonymized. Since the focus lies on Swiss court decisions in German, a corpus for Swiss legal texts will be built for training the NER model. The recognized named entities are replaced by the category determined by the NER model and an identifier to preserve context. This work is part of an ongoing research project conducted by an interdisciplinary research consortium. Both a legal analysis and the implementation of the proposed system design ESRA will be performed within the next three years. This study introduces the system design of ESRA, an end-to-end system for re-identification and anonymization of Swiss court decisions. Firstly, the re-identification system tests the safety of existing anonymizations and thus promotes privacy. Secondly, the anonymization system substantially reduces the costs of manual anonymization of court decisions and thus introduces a more comprehensive publication practice.

Keywords: artificial intelligence, courts, legal tech, named entity recognition, natural language processing, ·privacy, topic modeling

Procedia PDF Downloads 147
224 Selected Macrophyte Populations Promotes Coupled Nitrification and Denitrification Function in Eutrophic Urban Wetland Ecosystem

Authors: Rupak Kumar Sarma, Ratul Saikia

Abstract:

Macrophytes encompass major functional group in eutrophic wetland ecosystems. As a key functional element of freshwater lakes, they play a crucial role in regulating various wetland biogeochemical cycles, as well as maintain the biodiversity at the ecosystem level. The high carbon-rich underground biomass of macrophyte populations may harbour diverse microbial community having significant potential in maintaining different biogeochemical cycles. The present investigation was designed to study the macrophyte-microbe interaction in coupled nitrification and denitrification, considering Deepor Beel Lake (a Ramsar conservation site) of North East India as a model eutrophic system. Highly eutrophic sites of Deepor Beel were selected based on sediment oxygen demand and inorganic phosphorus and nitrogen (P&N) concentration. Sediment redox potential and depth of the lake was chosen as the benchmark for collecting the plant and sediment samples. The average highest depth in winter (January 2016) and summer (July 2016) were recorded as 20ft (6.096m) and 35ft (10.668m) respectively. Both sampling depth and sampling seasons had the distinct effect on variation in macrophyte community composition. Overall, the dominant macrophytic populations in the lake were Nymphaea alba, Hydrilla verticillata, Utricularia flexuosa, Vallisneria spiralis, Najas indica, Monochoria hastaefolia, Trapa bispinosa, Ipomea fistulosa, Hygrorhiza aristata, Polygonum hydropiper, Eichhornia crassipes and Euryale ferox. There was a distinct correlation in the variation of major sediment physicochemical parameters with change in macrophyte community compositions. Quantitative estimation revealed an almost even accumulation of nitrate and nitrite in the sediment samples dominated by the plant species Eichhornia crassipes, Nymphaea alba, Hydrilla verticillata, Vallisneria spiralis, Euryale ferox and Monochoria hastaefolia, which might have signified a stable nitrification and denitrification process in the sites dominated by the selected aquatic plants. This was further examined by a systematic analysis of microbial populations through culture dependent and independent approach. Culture-dependent bacterial community study revealed the higher population of nitrifiers and denitrifiers in the sediment samples dominated by the six macrophyte species. However, culture-independent study with bacterial 16S rDNA V3-V4 metagenome sequencing revealed the overall similar type of bacterial phylum in all the sediment samples collected during the study. Thus, there might be the possibility of uneven distribution of nitrifying and denitrifying molecular markers among the sediment samples collected during the investigation. The diversity and abundance of the nitrifying and denitrifying molecular markers in the sediment samples are under investigation. Thus, the role of different aquatic plant functional types in microorganism mediated nitrogen cycle coupling could be screened out further from the present initial investigation.

Keywords: denitrification, macrophyte, metagenome, microorganism, nitrification

Procedia PDF Downloads 171
223 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms

Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita

Abstract:

Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.

Keywords: air quality, internet of things, artificial intelligence, smart home

Procedia PDF Downloads 92
222 Implementation of Chlorine Monitoring and Supply System for Drinking Water Tanks

Authors: Ugur Fidan, Naim Karasekreter

Abstract:

Healthy and clean water should not contain disease-causing micro-organisms and toxic chemicals and must contain the necessary minerals in a balanced manner. Today, water resources have a limited and strategic importance, necessitating the management of water reserves. Water tanks meet the water needs of people and should be regularly chlorinated to prevent waterborne diseases. For this purpose, automatic chlorination systems placed in water tanks for killing bacteria. However, the regular operation of automatic chlorination systems depends on refilling the chlorine tank when it is empty. For this reason, there is a need for a stock control system, in which chlorine levels are regularly monitored and supplied. It has become imperative to take urgent measures against epidemics caused by the fact that most of our country is not aware of the end of chlorine. The aim of this work is to rehabilitate existing water tanks and to provide a method for a modern water storage system in which chlorination is digitally monitored by turning the newly established water tanks into a closed system. A sensor network structure using GSM/GPRS communication infrastructure has been developed in the study. The system consists of two basic units: hardware and software. The hardware includes a chlorine level sensor, an RFID interlock system for authorized personnel entry into water tank, a motion sensor for animals and other elements, and a camera system to ensure process safety. It transmits the data from the hardware sensors to the host server software via the TCP/IP protocol. The main server software processes the incoming data through the security algorithm and informs the relevant unit responsible (Security forces, Chlorine supply unit, Public health, Local Administrator) by e-mail and SMS. Since the software is developed base on the web, authorized personnel are also able to monitor drinking water tank and report data on the internet. When the findings and user feedback obtained as a result of the study are evaluated, it is shown that closed drinking water tanks are built with GRP type material, and continuous monitoring in digital environment is vital for sustainable health water supply for people.

Keywords: wireless sensor networks (WSN), monitoring, chlorine, water tank, security

Procedia PDF Downloads 159
221 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 137
220 Exploiting the Potential of Fabric Phase Sorptive Extraction for Forensic Food Safety: Analysis of Food Samples in Cases of Drug Facilitated Crimes

Authors: Bharti Jain, Rajeev Jain, Abuzar Kabir, Torki Zughaibi, Shweta Sharma

Abstract:

Drug-facilitated crimes (DFCs) entail the use of a single drug or a mixture of drugs to render a victim unable. Traditionally, biological samples have been gathered from victims and conducted analysis to establish evidence of drug administration. Nevertheless, the rapid metabolism of various drugs and delays in analysis can impede the identification of such substances. For this, the present article describes a rapid, sustainable, highly efficient and miniaturized protocol for the identification and quantification of three sedative-hypnotic drugs, namely diazepam, chlordiazepoxide and ketamine in alcoholic beverages and complex food samples (cream of biscuit, flavored milk, juice, cake, tea, sweets and chocolate). The methodology involves utilizing fabric phase sorptive extraction (FPSE) to extract diazepam (DZ), chlordiazepoxide (CDP), and ketamine (KET). Subsequently, the extracted samples are subjected to analysis using gas chromatography-mass spectrometry (GC-MS). Several parameters, including the type of membrane, pH, agitation time and speed, ionic strength, sample volume, elution volume and time, and type of elution solvent, were screened and thoroughly optimized. Sol-gel Carbowax 20M (CW-20M) has demonstrated the most effective extraction efficiency for the target analytes among all evaluated membranes. Under optimal conditions, the method displayed linearity within the range of 0.3–10 µg mL–¹ (or µg g–¹), exhibiting a coefficient of determination (R2) ranging from 0.996–0.999. The limits of detection (LODs) and limits of quantification (LOQs) for liquid samples range between 0.020-0.069 µg mL-¹ and 0.066-0.22 µg mL-¹, respectively. Correspondingly, the LODs for solid samples ranged from 0.056-0.090 µg g-¹, while the LOQs ranged from 0.18-0.29 µg g-¹. Notably, the method showcased better precision, with repeatability and reproducibility both below 5% and 10%, respectively. Furthermore, the FPSE-GC-MS method proved effective in determining diazepam (DZ) in forensic food samples connected to drug-facilitated crimes (DFCs). Additionally, the proposed method underwent evaluation for its whiteness using the RGB12 algorithm.

Keywords: drug facilitated crime, fabric phase sorptive extraction, food forensics, white analytical chemistry

Procedia PDF Downloads 65
219 Roboweeder: A Robotic Weeds Killer Using Electromagnetic Waves

Authors: Yahoel Van Essen, Gordon Ho, Brett Russell, Hans-Georg Worms, Xiao Lin Long, Edward David Cooper, Avner Bachar

Abstract:

Weeds reduce farm and forest productivity, invade crops, smother pastures and some can harm livestock. Farmers need to spend a significant amount of money to control weeds by means of biological, chemical, cultural, and physical methods. To solve the global agricultural labor shortage and remove poisonous chemicals, a fully autonomous, eco-friendly, and sustainable weeding technology is developed. This takes the form of a weeding robot, ‘Roboweeder’. Roboweeder includes a four-wheel-drive self-driving vehicle, a 4-DOF robotic arm which is mounted on top of the vehicle, an electromagnetic wave generator (magnetron) which is mounted on the “wrist” of the robotic arm, 48V battery packs, and a control/communication system. Cameras are mounted on the front and two sides of the vehicle. Using image processing and recognition, distinguish types of weeds are detected before being eliminated. The electromagnetic wave technology is applied to heat the individual weeds and clusters dielectrically causing them to wilt and die. The 4-DOF robotic arm was modeled mathematically based on its structure/mechanics, each joint’s load, brushless DC motor and worm gear’ characteristics, forward kinematics, and inverse kinematics. The Proportional-Integral-Differential control algorithm is used to control the robotic arm’s motion to ensure the waveguide aperture pointing to the detected weeds. GPS and machine vision are used to traverse the farm and avoid obstacles without the need of supervision. A Roboweeder prototype has been built. Multiple test trials show that Roboweeder is able to detect, point, and kill the pre-defined weeds successfully although further improvements are needed, such as reducing the “weeds killing” time and developing a new waveguide with a smaller waveguide aperture to avoid killing crops surrounded. This technology changes the tedious, time consuming and expensive weeding processes, and allows farmers to grow more, go organic, and eliminate operational headaches. A patent of this technology is pending.

Keywords: autonomous navigation, machine vision, precision heating, sustainable and eco-friendly

Procedia PDF Downloads 247
218 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College

Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa

Abstract:

This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.

Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling

Procedia PDF Downloads 231
217 Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model

Authors: Shreya Srivastava, Sagnik Dey

Abstract:

Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method).

Keywords: aerosol radiative forcing (ARF), aerosol composition, MISR, CERES, SBDART

Procedia PDF Downloads 51
216 Towards an Effective Approach for Modelling near Surface Air Temperature Combining Weather and Satellite Data

Authors: Nicola Colaninno, Eugenio Morello

Abstract:

The urban environment affects local-to-global climate and, in turn, suffers global warming phenomena, with worrying impacts on human well-being, health, social and economic activities. Physic-morphological features of the built-up space affect urban air temperature, locally, causing the urban environment to be warmer compared to surrounding rural. This occurrence, typically known as the Urban Heat Island (UHI), is normally assessed by means of air temperature from fixed weather stations and/or traverse observations or based on remotely sensed Land Surface Temperatures (LST). The information provided by ground weather stations is key for assessing local air temperature. However, the spatial coverage is normally limited due to low density and uneven distribution of the stations. Although different interpolation techniques such as Inverse Distance Weighting (IDW), Ordinary Kriging (OK), or Multiple Linear Regression (MLR) are used to estimate air temperature from observed points, such an approach may not effectively reflect the real climatic conditions of an interpolated point. Quantifying local UHI for extensive areas based on weather stations’ observations only is not practicable. Alternatively, the use of thermal remote sensing has been widely investigated based on LST. Data from Landsat, ASTER, or MODIS have been extensively used. Indeed, LST has an indirect but significant influence on air temperatures. However, high-resolution near-surface air temperature (NSAT) is currently difficult to retrieve. Here we have experimented Geographically Weighted Regression (GWR) as an effective approach to enable NSAT estimation by accounting for spatial non-stationarity of the phenomenon. The model combines on-site measurements of air temperature, from fixed weather stations and satellite-derived LST. The approach is structured upon two main steps. First, a GWR model has been set to estimate NSAT at low resolution, by combining air temperature from discrete observations retrieved by weather stations (dependent variable) and the LST from satellite observations (predictor). At this step, MODIS data, from Terra satellite, at 1 kilometer of spatial resolution have been employed. Two time periods are considered according to satellite revisit period, i.e. 10:30 am and 9:30 pm. Afterward, the results have been downscaled at 30 meters of spatial resolution by setting a GWR model between the previously retrieved near-surface air temperature (dependent variable), the multispectral information as provided by the Landsat mission, in particular the albedo, and Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM), both at 30 meters. Albedo and DEM are now the predictors. The area under investigation is the Metropolitan City of Milan, which covers an area of approximately 1,575 km2 and encompasses a population of over 3 million inhabitants. Both models, low- (1 km) and high-resolution (30 meters), have been validated according to a cross-validation that relies on indicators such as R2, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). All the employed indicators give evidence of highly efficient models. In addition, an alternative network of weather stations, available for the City of Milano only, has been employed for testing the accuracy of the predicted temperatures, giving and RMSE of 0.6 and 0.7 for daytime and night-time, respectively.

Keywords: urban climate, urban heat island, geographically weighted regression, remote sensing

Procedia PDF Downloads 193