Search results for: energy conversion systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16310

Search results for: energy conversion systems

10970 Analysis of Vocal Pathologies Through Subglottic Pressure Measurement

Authors: Perla Elizabeth Jimarez Rocha, Carolina Daniela Tejeda Franco, Arturo Minor Martínez, Annel Gomez Coello

Abstract:

One of the biggest problems in developing new therapies for the management and treatment of voice disorders is the difficulty of objectively evaluating the results of each treatment. A system was proposed that captures and records voice signals, in addition to analyzing the vocal quality (fundamental frequency, zero crossings, energy, and amplitude spectrum), as well as the subglottic pressure (cm H2O) during the sustained phonation of the vowel / a /; a recording system is implemented, as well as an interactive system that records information on subglottic pressure. In Mexico City, a control group of 31 patients with phoniatric pathology is proposed; non-invasive tests were performed for these most common vocal pathologies (Nodules, Polyps, Irritative Laryngitis, Ventricular Dysphonia, Laryngeal Cancer, Dysphonia, and Dysphagia). The most common pathology was irritative laryngitis (32%), followed by vocal fold paralysis (unilateral and bilateral,19.4 %). We take into consideration men and women in the pathological groups due to the physiological difference. They were separated in gender by the difference in the morphology of the respiratory tract.

Keywords: amplitude spectrum, energy, fundamental frequency, subglottic pressure, zero crossings

Procedia PDF Downloads 105
10969 Engineering Design of a Chemical Launcher: An Interdisciplinary Design Activity

Authors: Mei Xuan Tan, Gim-Yang Maggie Pee, Mei Chee Tan

Abstract:

Academic performance, in the form of scoring high grades in enrolled subjects, is not the only significant trait in achieving success. Engineering graduates with experience in working on hands-on projects in a team setting are highly sought after in industry upon graduation. Such projects are typically real world problems that require the integration and application of knowledge and skills from several disciplines. In a traditional university setting, subjects are taught in a silo manner with no cross participation from other departments or disciplines. This may lead to knowledge compartmentalization and students are unable to understand and connect the relevance and applicability of the subject. University instructors thus see this integration across disciplines as a challenging task as they aim to better prepare students in understanding and solving problems for work or future studies. To improve students’ academic performance and to cultivate various skills such as critical thinking, there has been a gradual uptake in the use of an active learning approach in introductory science and engineering courses, where lecturing is traditionally the main mode of instruction. This study aims to discuss the implementation and experience of a hands-on, interdisciplinary project that involves all the four core subjects taught during the term at the Singapore University of Technology Design (SUTD). At SUTD, an interdisciplinary design activity, named 2D, is integrated into the curriculum to help students reinforce the concepts learnt. A student enrolled in SUTD experiences his or her first 2D in Term 1. This activity. which spans over one week in Week 10 of Term 1, highlights the application of chemistry, physics, mathematics, humanities, arts and social sciences (HASS) in designing an engineering product solution. The activity theme for Term 1 2D revolved around “work and play”. Students, in teams of 4 or 5, used a scaled-down model of a chemical launcher to launch a projectile across the room. It involved the use of a small chemical combustion reaction between ethanol (a highly volatile fuel) and oxygen. This reaction generated a sudden and large increase in gas pressure built up in a closed chamber, resulting in rapid gas expansion and ejection of the projectile out of the launcher. Students discussed and explored the meaning of play in their lives in HASS class while the engineering aspects of a combustion system to launch an object using underlying principles of energy conversion and projectile motion were revisited during the chemistry and physics classes, respectively. Numerical solutions on the distance travelled by the projectile launched by the chemical launcher, taking into account drag forces, was developed during the mathematics classes. At the end of the activity, students developed skills in report writing, data collection and analysis. Specific to this 2D activity, students gained an understanding and appreciation on the application and interdisciplinary nature of science, engineering and HASS. More importantly, students were exposed to design and problem solving, where human interaction and discussion are important yet challenging in a team setting.

Keywords: active learning, collaborative learning, first year undergraduate, interdisciplinary, STEAM

Procedia PDF Downloads 109
10968 Study of Transport Phenomena in Photonic Crystals with Correlated Disorder

Authors: Samira Cherid, Samir Bentata, Feyza Zahira Meghoufel, Yamina Sefir, Sabria Terkhi, Fatima Bendahma, Bouabdellah Bouadjemi, Ali Zitouni

Abstract:

Using the transfer-matrix technique and the Kronig Penney model, we numerically and analytically investigate the effect of short-range correlated disorder in random dimer model (RDM) on transmission properties of light in one dimension photonic crystals made of three different materials. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that one kind of these layers appears in pairs. It is shown that the one-dimensional random dimer photonic crystals support two types of extended modes. By shifting of the dimer resonance toward the host fundamental stationary resonance state, we demonstrate the existence of the ballistic response in these systems.

Keywords: photonic crystals, disorder, correlation, transmission

Procedia PDF Downloads 459
10967 Enhancing of Biogas Production from Slaughterhouse and Dairy Farm Waste with Pasteurization

Authors: Mahmoud Hassan Onsa, Saadelnour Abdueljabbar Adam

Abstract:

Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents solution of organic waste from cow dairy farms and slaughterhouse the anaerobic digestion and biogas production. The paper presents the findings of experimental investigation of biogas production with and without pasteurization using cow manure, blood and rumen content were mixed at two proportions, 72.3% manure, 21.7%, rumen content and 6% blood for bio digester1with 62% dry matter at the beginning and without pasteurization and 72.3% manure, 21.7%, rumen content and 6% blood for bio-digester2 with 10% dry matter and pasteurization. The paper analyses the quantitative and qualitative composition of biogas: gas content, the concentration of methane. The highest biogas output 2.9 mL/g dry matter/day (from bio-digester2) together with a high quality biogas of 87.4% methane content which is useful for combustion and energy production and healthy bio-fertilizer but biodigester1 gave 1.68 mL/g dry matter/day with methane content 85% which is useful for combustion, energy production and can be considered as new technology of dryer bio-digesters.

Keywords: anaerobic digestion, bio-digester, blood, cow manure, rumen content

Procedia PDF Downloads 707
10966 Phylogeographic Reconstruction of the Tiger Shrimp (Penaeus monodon) Invasion in the Atlantic Ocean: The Role of the Farming Systems in the Marine Biological Invasions

Authors: Juan Carlos Aguirre Pabon, Stephen Sabatino, James Morris, Khor Waiho, Antonio Murias

Abstract:

The tiger shrimp Penaeus monodon is one of the most important species in aquaculture and is native to the Indo-Pacific Ocean. During its greatest success in world production (70s and 80s) was introduced in many Atlantic Ocean countries for cultivation purposes and is currently reported as established in several countries of this area. Because there are no studies to understand the magnitude of the invasion process, this is an exciting opportunity to test evolutionary hypotheses in the context of marine invasions mediated by culture systems; therefore, the purpose of this study was to reconstruct the scenario of invasion of P. monodon in the Atlantic Ocean, by using mitochondrial DNA and eight loci microsatellites. In addition, samples of the invasion area in the Atlantic Ocean (US, Colombia, Venezuela, Brazil, Guienne Bissau, Senegal), the Indo-Pacific Ocean (Indonesia, India, Mozambique), and some cultivation systems (India, Bangladesh, Madagascar) were collected; and analysis of phylogenetic relationships (using some species of the family), genetic diversity, structure population, and demographic changes were performed. High intraspecific divergence in P. semisulcatus and P. monodon were found, high genetic variability in all sites (especially with microsatellites) and the presence of three clusters or populations. In addition, signs of demographic expansion in the culture population and bottlenecks in the invasive and native populations were found, as well as evidence of gene mixtures from all of the populations studied, implying that cropping systems play an essential role in mitigating the negative effects of the founder effect and providing a source of genetic variability that can ensure the success of the invasion.

Keywords: species introduction, increased variability, demographic changes, promoting invasion.

Procedia PDF Downloads 25
10965 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.

Keywords: SEBS, remote sensing, evapotranspiration, ETa

Procedia PDF Downloads 318
10964 Machine Learning and Internet of Thing for Smart-Hydrology of the Mantaro River Basin

Authors: Julio Jesus Salazar, Julio Jesus De Lama

Abstract:

the fundamental objective of hydrological studies applied to the engineering field is to determine the statistically consistent volumes or water flows that, in each case, allow us to size or design a series of elements or structures to effectively manage and develop a river basin. To determine these values, there are several ways of working within the framework of traditional hydrology: (1) Study each of the factors that influence the hydrological cycle, (2) Study the historical behavior of the hydrology of the area, (3) Study the historical behavior of hydrologically similar zones, and (4) Other studies (rain simulators or experimental basins). Of course, this range of studies in a certain basin is very varied and complex and presents the difficulty of collecting the data in real time. In this complex space, the study of variables can only be overcome by collecting and transmitting data to decision centers through the Internet of things and artificial intelligence. Thus, this research work implemented the learning project of the sub-basin of the Shullcas river in the Andean basin of the Mantaro river in Peru. The sensor firmware to collect and communicate hydrological parameter data was programmed and tested in similar basins of the European Union. The Machine Learning applications was programmed to choose the algorithms that direct the best solution to the determination of the rainfall-runoff relationship captured in the different polygons of the sub-basin. Tests were carried out in the mountains of Europe, and in the sub-basins of the Shullcas river (Huancayo) and the Yauli river (Jauja) with heights close to 5000 m.a.s.l., giving the following conclusions: to guarantee a correct communication, the distance between devices should not pass the 15 km. It is advisable to minimize the energy consumption of the devices and avoid collisions between packages, the distances oscillate between 5 and 10 km, in this way the transmission power can be reduced and a higher bitrate can be used. In case the communication elements of the devices of the network (internet of things) installed in the basin do not have good visibility between them, the distance should be reduced to the range of 1-3 km. The energy efficiency of the Atmel microcontrollers present in Arduino is not adequate to meet the requirements of system autonomy. To increase the autonomy of the system, it is recommended to use low consumption systems, such as the Ashton Raggatt McDougall or ARM Cortex L (Ultra Low Power) microcontrollers or even the Cortex M; and high-performance direct current (DC) to direct current (DC) converters. The Machine Learning System has initiated the learning of the Shullcas system to generate the best hydrology of the sub-basin. This will improve as machine learning and the data entered in the big data coincide every second. This will provide services to each of the applications of the complex system to return the best data of determined flows.

Keywords: hydrology, internet of things, machine learning, river basin

Procedia PDF Downloads 146
10963 Components of Effective Learning Environments: Global Perspectives on Student Perceptions

Authors: Victoria Appatova

Abstract:

internal and external, that are largely shaped by the student’s perceptions. Since 2006, the ELE concept has been studied by an international group of scholars through the creation of an ELE survey which was administered in nine countries and translated into five languages. The survey compares students’ perceptions of their learning environments and self-efficacy across A student’s effective learning environment (ELE) is comprised of multiple factors, both cultures as well as distinguishes similarities and differences in the students’ needs related to their learning. The main objectives of this international project include the following: Determine a system of components constituting ELE from the perspective of students and other academic populations Analyze students’ expectations, and their chances to succeed in college based on their expectations Conceptualize a comprehensive approach for assessing the effectiveness of a learning environment Compare the actualization of the ELE concept in American schools versus other national educational systems Compare student perceptions of ELE with those of faculty, administrators, and professional staff Four major factors influencing student learning across cultures and various national educational systems were determined: students’ initiative in using support services; learning skills; external comfort; and curriculum. Recent changes in the students’ perceptions, resulting from technology advances and a rapid shift to online learning, are being explored. The findings call for administrative and pedagogical actions which would cultivate more equitable education systems.

Keywords: learning environment, student perception, global perspectives, self-efficacy

Procedia PDF Downloads 72
10962 Implementation of a Web-Based Wireless ECG Measuring and Recording System

Authors: Onder Yakut, Serdar Solak, Emine Dogru Bolat

Abstract:

Measuring the Electrocardiogram (ECG) signal is an essential process for the diagnosis of the heart diseases. The ECG signal has the information of the degree of how much the heart performs its functions. In medical diagnosis and treatment systems, Decision Support Systems processing the ECG signal are being developed for the use of clinicians while medical examination. In this study, a modular wireless ECG (WECG) measuring and recording system using a single board computer and e-Health sensor platform is developed. In this designed modular system, after the ECG signal is taken from the body surface by the electrodes first, it is filtered and converted to digital form. Then, it is recorded to the health database using Wi-Fi communication technology. The real time access of the ECG data is provided through the internet utilizing the developed web interface.

Keywords: ECG, e-health sensor shield, Raspberry Pi, wiFi technology

Procedia PDF Downloads 382
10961 Optimal Scheduling of Load and Operational Strategy of a Load Aggregator to Maximize Profit with PEVs

Authors: Md. Shafiullah, Ali T. Al-Awami

Abstract:

This project proposes optimal scheduling of imported power of a load aggregator with the utilization of EVs to maximize its profit. As with the increase of renewable energy resources, electricity price in competitive market becomes more uncertain and, on the other hand, with the penetration of renewable distributed generators in the distribution network the predicted load of a load aggregator also becomes uncertain in real time. Though there is uncertainties in both load and price, the use of EVs storage capacity can make the operation of load aggregator flexible. LA submits its offer to day-ahead market based on predicted loads and optimized use of its EVs to maximize its profit, as well as in real time operation it uses its energy storage capacity in such a way that it can maximize its profit. In this project, load aggregators profit maximization algorithm is formulated and the optimization problem is solved with the help of CVX. As in real time operation the forecasted loads differ from actual load, the mismatches are settled in real time balancing market. Simulation results compare the profit of a load aggregator with a hypothetical group of 1000 EVs and without EVs.

Keywords: CVX, electricity market, load aggregator, load and price uncertainties, profit maximization, real time balancing operation

Procedia PDF Downloads 400
10960 Computational Modeling of Heat Transfer from a Horizontal Array Cylinders for Low Reynolds Numbers

Authors: Ovais U. Khan, G. M. Arshed, S. A. Raza, H. Ali

Abstract:

A numerical model based on the computational fluid dynamics (CFD) approach is developed to investigate heat transfer across a longitudinal row of six circular cylinders. The momentum and energy equations are solved using the finite volume discretization technique. The convective terms are discretized using a second-order upwind methodology, whereas diffusion terms are discretized using a central differencing scheme. The second-order implicit technique is utilized to integrate time. Numerical simulations have been carried out for three different values of free stream Reynolds number (ReD) 100, 200, 300 and two different values of dimensionless longitudinal pitch ratio (SL/D) 1.5, 2.5 to demonstrate the fluid flow and heat transfer behavior. Numerical results are validated with the analytical findings reported in the literature and have been found to be in good agreement. The maximum percentage error in values of the average Nusselt number obtained from the numerical and analytical solutions is in the range of 10% for the free stream Reynolds number up to 300. It is demonstrated that the average Nusselt number for the array of cylinders increases with increasing the free stream Reynolds number and dimensionless longitudinal pitch ratio. The information generated would be useful in the design of more efficient heat exchangers or other fluid systems involving arrays of cylinders.

Keywords: computational fluid dynamics, array of cylinders, longitudinal pitch ratio, finite volume method, incompressible navier-stokes equations

Procedia PDF Downloads 65
10959 A Decision Support System for Flight Disruptions Management

Authors: Burak Erkayman, Emin Gundogar, Hayrettin Evirgen, Murat Sarı

Abstract:

With the increasing competition in recent years, airline companies tend to manage their operations aiming fewer losses in a robust manner. Airline operations are complex operations and have the necessity of being performed just in time and more knock-on relevant elements in the event of a disruption. In this study a knowledge based decision support system is suggested and software is developed. The developed software includes knowledge bases which are based on expert experience and government regulations, model bases and data bases. The results of the suggested approach are presented and improvable aspects of the approach are discussed.

Keywords: knowledge based systems, irregular operations, decision support systems, flight disruptions management

Procedia PDF Downloads 302
10958 Quasiperiodic Magnetic Chains as Spin Filters

Authors: Arunava Chakrabarti

Abstract:

A one-dimensional chain of magnetic atoms, representative of a quantum gas in an artificial quasi-periodic potential and modeled by the well-known Aubry-Andre function and its variants are studied in respect of its capability of working as a spin filter for arbitrary spins. The basic formulation is explained in terms of a perfectly periodic chain first, where it is shown that a definite correlation between the spin S of the incoming particles and the magnetic moment h of the substrate atoms can open up a gap in the energy spectrum. This is crucial for a spin filtering action. The simple one-dimensional chain is shown to be equivalent to a 2S+1 strand ladder network. This equivalence is exploited to work out the condition for the opening of gaps. The formulation is then applied for a one-dimensional chain with quasi-periodic variation in the site potentials, the magnetic moments and their orientations following an Aubry-Andre modulation and its variants. In addition, we show that a certain correlation between the system parameters can generate absolutely continuous bands in such systems populated by Bloch like extended wave functions only, signaling the possibility of a metal-insulator transition. This is a case of correlated disorder (a deterministic one), and the results provide a non-trivial variation to the famous Anderson localization problem. We have worked within a tight binding formalism and have presented explicit results for the spin half, spin one, three halves and spin five half particles incident on the magnetic chain to explain our scheme and the central results.

Keywords: Aubry-Andre model, correlated disorder, localization, spin filter

Procedia PDF Downloads 345
10957 Solar Still Absorber Plate Modification and Exergy Analysis

Authors: Dudul Das, Pankaj Kalita, Sangeeta Borah

Abstract:

Freshwater availability in the world is as low as 1% of total water available and in many geographical locations dissolved fluoride and arsenic are serious problem. In India availability of freshwater will be stressed by 2025, so the availability saline water from sea is a hope for the people of Indian sub-continent, but saline water is not drinkable it need to be processed, which again require a huge amount of energy. So the most easy and handy option in such situation for all those problems is solar still, this investigation presents various scopes for improvement of its efficiency. Experiments showed that by increasing the absorber plate area through better design can increase the distillate output by two fold and by using jute wicks in the modified absorber plate increases the output up to three times that of conventional solar still available in the Department of Energy, Tezpur University. The experiment is carried out at constant water depth of 8.5 cm and glass cover inclination of 27o facing South. The exergy analysis carried out clearly resulted that with the use of jute wick and baffle plated basin the efficiency achieved more than the simple baffle plated basin. The Instantaneous exergy without jute wick ranges from 2.5% to 4.5% while using jute it ranges from 1.5% to 5.15%.

Keywords: fluoride, absorber plate, jute wick, instantaneous exergy

Procedia PDF Downloads 446
10956 A 1.57ghz Mixer Design for GPS Receiver

Authors: Hamd Ahmed

Abstract:

During the Persian Gulf War in 1991s, The confederation forces were surprised when they were being shot at by friendly forces in Iraqi desert. As obvious was the fact that they were mislead due to the lack of proper guidance and technology resulting in unnecessary loss of life and bloodshed. This unforeseen incident along with many others led the US department of defense to open the doors of GPS. In the very beginning, this technology was for military use, but now it is being widely used and increasingly popular among the public due to its high accuracy and immeasurable significance. The GPS system simply consists of three segments, the space segment (the satellite), the control segment (ground control) and the user segment (receiver). This project work is about designing a 1.57GHZ mixer for triple conversion GPS receiver .The GPS Front-End receiver based on super heterodyne receiver which improves selectivity and image frequency. However the main principle of the super heterodyne receiver depends on the mixer. Many different types of mixers (single balanced mixer, Single Ended mixer, Double balanced mixer) can be used with GPS receiver, it depends on the required specifications. This research project will provide an overview of the GPS system and details about the basic architecture of the GPS receiver. The basic emphasis of this report in on investigating general concept of the mixer circuit some terms related to the mixer along with their definitions and present the types of mixer, then gives some advantages of using singly balanced mixer and its application. The focus of this report is on how to design mixer for GPS receiver and discussing the simulation results.

Keywords: GPS , RF filter, heterodyne, mixer

Procedia PDF Downloads 302
10955 Multi-Objective Optimization of an Aerodynamic Feeding System Using Genetic Algorithm

Authors: Jan Busch, Peter Nyhuis

Abstract:

Considering the challenges of short product life cycles and growing variant diversity, cost minimization and manufacturing flexibility increasingly gain importance to maintain a competitive edge in today’s global and dynamic markets. In this context, an aerodynamic part feeding system for high-speed industrial assembly applications has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. The aerodynamic part feeding system outperforms conventional systems with respect to its process safety, reliability, and operating speed. In this paper, a multi-objective optimisation of the aerodynamic feeding system regarding the orientation rate, the feeding velocity and the required nozzle pressure is presented.

Keywords: aerodynamic feeding system, genetic algorithm, multi-objective optimization, workpiece orientation

Procedia PDF Downloads 563
10954 Development of Catalyst, Incorporating Phosphinite Ligands, for Transfer Hydrogenation

Authors: S. Assylbekova, D. Zolotareva, A. Dauletbakov, Ye. Belyankova, S. Bayazit, A. Basharimova, A. Zazybin, A. Isimberlenova, A. Kakimova, M. Aydemir, A. Kairullinova

Abstract:

Transfer hydrogenation (TH) is a key process in organic chemistry, especially in pharmaceutical and agrochemical synthesis, offering a safer and more sustainable approach compared to traditional methods. This work is devoted to the synthesis and use of ruthenium catalysts containing phosphinite ligands in TH reactions. Ruthenium complexes are particularly noteworthy for their effectiveness in asymmetric TH. Their stability and adaptability to different reaction environments make them ideal for both laboratory-scale and industrial applications. Phosphinite ligands (P(OR)R'2) are used in the synthesis of complexes to improve their properties. These ligands are known for their ability to finely tune the electronic and steric properties of metal centers. The electron-donating nature of the phosphorus atom, combined with the variability in the R and R' groups, allows for significant customization of the catalyst's properties. The purpose and difference of the work is to study the incorporation of a hydrophilic ionic liquid into the composition of a phosphinite ligand, which will then be converted into a catalyst. The technique involves the synthesis of a phosphinite ligand with an ionic liquid at room temperature under an inert atmosphere and then a ruthenium complex. Next, the TH reactions of acetophenone and its derivatives are carried out using the resulting catalyst. The conversion of ketone to alcohol is analyzed using a gas chromatograph. This study contributes to the understanding of the influence of catalyst physico-chemical properties on transfer hydrogenation results.

Keywords: transfer hydrogenation, ruthenium, catalysts, phosphinite ligands

Procedia PDF Downloads 41
10953 Magnetic Properties of Nickel Oxide Nanoparticles in Superparamagnetic State

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Superparamagnetism is an interesting phenomenon and observed in small particles of magnetic materials. It arises due to a reduction in particle size. In the superparamagnetic state, as the thermal energy overcomes magnetic anisotropy energy, the magnetic moment vector of particles flip their magnetization direction between states of minimum energy. Superparamagnetic nanoparticles have been attracting the researchers due to many applications such as information storage, magnetic resonance imaging, biomedical applications, and sensors. For information storage, thermal fluctuations lead to loss of data. So that nanoparticles should have high blocking temperature. And to achieve this, nanoparticles should have a higher magnetic moment and magnetic anisotropy constant. In this work, the magnetic anisotropy constant of the antiferromagnetic nanoparticles system is determined. Magnetic studies on nanoparticles of NiO (nickel oxide) are reported well. This antiferromagnetic nanoparticle system has high blocking temperature and magnetic anisotropy constant of order 105 J/m3. The magnetic study of NiO nanoparticles in the superparamagnetic region is presented. NiO particles of two different sizes, i.e., 6 and 8 nm, are synthesized using the chemical route. These particles are characterized by an x-ray diffractometer, transmission electron microscope, and superconducting quantum interference device magnetometry. The magnetization vs. applied magnetic field and temperature data for both samples confirm their superparamagnetic nature. The blocking temperature for 6 and 8 nm particles is found to be 200 and 172 K, respectively. Magnetization vs. applied magnetic field data of NiO is fitted to an appropriate magnetic expression using a non-linear least square fit method. The role of particle size distribution and magnetic anisotropy is taken in to account in magnetization expression. The source code is written in Python programming language. This fitting provides us the magnetic anisotropy constant for NiO and other magnetic fit parameters. The particle size distribution estimated matches well with the transmission electron micrograph. The value of magnetic anisotropy constants for 6 and 8 nm particles is found to be 1.42 X 105 and 1.20 X 105 J/m3, respectively. The obtained magnetic fit parameters are verified using the Neel model. It is concluded that the effect of magnetic anisotropy should not be ignored while studying the magnetization process of nanoparticles.

Keywords: anisotropy, superparamagnetic, nanoparticle, magnetization

Procedia PDF Downloads 118
10952 Increasing the Use of LNG on the Java Island (Bali Province) through the Development of Small-Scale LNG Projects

Authors: Herman Susilo, Rahmat Budiman

Abstract:

Bali province is one of the most famous tourist destinations in Indonesia. As a central tourist destination, Bali is very concerned about the use of clean energy. Since Bali is an area that does not have natural resources, so all of its energy sources are imported from java island and other islands. As an example, currently, Pertagas is developing the use of LNG for the needs of the retail industry. Right now, LNG is transported from the LNG plant facility in Bontang (Kalimantan Province) using ISO Tanks which are transported by cargo ships and then transported by trucks to the island of Bali. After that, LNG from ISO Tank is breakbulk into LNG Cylinders for distribution to retail customers. The existing distribution scheme is very long and costly since the source of LNG is come from another island (Kalimantan) and is relatively far away. To solve this problem, we plan to build the mini-LNG plant on Java Island since there are lots of gas sources available. There are some small gas reserves (flared or stranded gas) that are not yet monetized and are less valuable (cheaper) because the volume is very small. After liquifying the gas from the gas field, the LNG is transported by the truck using ISO Tank. After that, LNG from ISO Tank is breakbulk into LNG Cylinders for distribution to retail customers. From this new LNG distribution scheme, there are 4-5 USD/MMBTU saving compared to the existing distribution scheme. It is hoped that with these cost savings, the number of retail LNG sales can increase rapidly.

Keywords: LNG, LNG retail, mini LNG, small scale LNG

Procedia PDF Downloads 83
10951 Concealed Objects Detection in Visible, Infrared and Terahertz Ranges

Authors: M. Kowalski, M. Kastek, M. Szustakowski

Abstract:

Multispectral screening systems are becoming more popular because of their very interesting properties and applications. One of the most significant applications of multispectral screening systems is prevention of terrorist attacks. There are many kinds of threats and many methods of detection. Visual detection of objects hidden under clothing of a person is one of the most challenging problems of threats detection. There are various solutions of the problem; however, the most effective utilize multispectral surveillance imagers. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. We investigate the possibility of long lasting detection of potentially dangerous objects covered with various types of clothing. In the article we present the results of comparative studies of passive imaging in three spectrums – visible, infrared and terahertz

Keywords: terahertz, infrared, object detection, screening camera, image processing

Procedia PDF Downloads 341
10950 Laboratory Scale Production of Bio-Based Chemicals from Industrial Waste Feedstock in South Africa

Authors: P. Mandree, S. O. Ramchuran, F. O'Brien, L. Sethunya, S. Khumalo

Abstract:

South Africa is identified as one of the five emerging waste management markets, globally. The waste sector in South Africa influences the areas of energy, water and food at an economic and social level. Recently, South African industries have focused on waste valorization and diversification of the current product offerings in an attempt to reduce industrial waste, target a zero waste-to-landfill initiative and recover energy. South Africa has a number of waste streams including industrial and agricultural biomass, municipal waste and marine waste. Large volumes of agricultural and forestry residues, in particular, are generated which provides significant opportunity for production of bio-based fuels and chemicals. This could directly impact development of a rural economy. One of the largest agricultural industries is the sugar industry, which contributes significantly to the country’s economy and job creation. However, the sugar industry is facing challenges due to fluctuations in sugar prices, increasing competition with low-cost global sugar producers, increasing energy and agricultural input costs, lower consumption and aging facilities. This study is aimed at technology development for the production of various bio-based chemicals using feedstock from the sugar refining process. Various indigenous bacteria and yeast species were assessed for the potential to produce platform chemicals in flask studies and at 30 L fermentation scale. Quantitative analysis of targeted bio-based chemicals was performed using either gas chromatography or high pressure liquid chromatography to assess production yields and techno-economics in order to compare performance to current commercial benchmark processes. The study also creates a decision platform for the research direction that is required for strain development using Industrial Synthetic Biology.

Keywords: bio-based chemicals, biorefinery, industrial synthetic biology, waste valorization

Procedia PDF Downloads 109
10949 Systematic Formulation Development and Evaluation of Self-Nanoemulsifying Systems of Rosuvastatin Employing QbD Approach and Chemometric Techniques

Authors: Sarwar Beg, Gajanand Sharma, O. P. Katare, Bhupinder Singh

Abstract:

The current studies entail development of self-nano emulsifying drug delivery systems (SNEDDS) of rosuvastatin, employing rational QbD-based approach for enhancing its oral bioavailability. SNEDDS were prepared using the blend of lipidic and emulsifying excipients, i.e., Peceol, Tween 80, and Transcutol HP. The prepared formulations evaluated for in vitro drug release, ex vivo permeation, in situ perfusion studies and in vivo pharmacokinetic studies in rats, which demonstrated 3-4 fold improvement in biopharmaceutical performance of the developed formulations. Cytotoxicity studies using MTT assay and histopathological studies in intestinal cells revealed the lack of cytotoxicity and thereby safety and efficacy of the developed formulations.

Keywords: SNEDDS, bioavailability, solubility, Quality by Design (QbD)

Procedia PDF Downloads 489
10948 Discrete Sliding Modes Regulator with Exponential Holder for Non-Linear Systems

Authors: G. Obregon-Pulido , G. C. Solis-Perales, J. A. Meda-Campaña

Abstract:

In this paper, we present a sliding mode controller in discrete time. The design of the controller is based on the theory of regulation for nonlinear systems. In the problem of disturbance rejection and/or output tracking, it is known that in discrete time, a controller that uses the zero-order holder only guarantees tracking at the sampling instances but not between instances. It is shown that using the so-called exponential holder, it is possible to guarantee asymptotic zero output tracking error, also between the sampling instant. For stabilizing the problem of close loop system we introduce the sliding mode approach relaxing the requirements of the existence of a linear stabilizing control law.

Keywords: regulation theory, sliding modes, discrete controller, ripple-free tracking

Procedia PDF Downloads 40
10947 An Overview of Bioinformatics Methods to Detect Novel Riboswitches Highlighting the Importance of Structure Consideration

Authors: Danny Barash

Abstract:

Riboswitches are RNA genetic control elements that were originally discovered in bacteria and provide a unique mechanism of gene regulation. They work without the participation of proteins and are believed to represent ancient regulatory systems in the evolutionary timescale. One of the biggest challenges in riboswitch research is that many are found in prokaryotes but only a small percentage of known riboswitches have been found in certain eukaryotic organisms. The few examples of eukaryotic riboswitches were identified using sequence-based bioinformatics search methods that include some slight structural considerations. These pattern-matching methods were the first ones to be applied for the purpose of riboswitch detection and they can also be programmed very efficiently using a data structure called affix arrays, making them suitable for genome-wide searches of riboswitch patterns. However, they are limited by their ability to detect harder to find riboswitches that deviate from the known patterns. Several methods have been developed since then to tackle this problem. The most commonly used by practitioners is Infernal that relies on Hidden Markov Models (HMMs) and Covariance Models (CMs). Profile Hidden Markov Models were also carried out in the pHMM Riboswitch Scanner web application, independently from Infernal. Other computational approaches that have been developed include RMDetect by the use of 3D structural modules and RNAbor that utilizes Boltzmann probability of structural neighbors. We have tried to incorporate more sophisticated secondary structure considerations based on RNA folding prediction using several strategies. The first idea was to utilize window-based methods in conjunction with folding predictions by energy minimization. The moving window approach is heavily geared towards secondary structure consideration relative to sequence that is treated as a constraint. However, the method cannot be used genome-wide due to its high cost because each folding prediction by energy minimization in the moving window is computationally expensive, enabling to scan only at the vicinity of genes of interest. The second idea was to remedy the inefficiency of the previous approach by constructing a pipeline that consists of inverse RNA folding considering RNA secondary structure, followed by a BLAST search that is sequence-based and highly efficient. This approach, which relies on inverse RNA folding in general and our own in-house fragment-based inverse RNA folding program called RNAfbinv in particular, shows capability to find attractive candidates that are missed by Infernal and other standard methods being used for riboswitch detection. We demonstrate attractive candidates found by both the moving-window approach and the inverse RNA folding approach performed together with BLAST. We conclude that structure-based methods like the two strategies outlined above hold considerable promise in detecting riboswitches and other conserved RNAs of functional importance in a variety of organisms.

Keywords: riboswitches, RNA folding prediction, RNA structure, structure-based methods

Procedia PDF Downloads 221
10946 Patients’ Trust in Health Care Systems

Authors: Dilara Usta, Fatos Korkmaz

Abstract:

Background: Individuals who utilise health services maintain relationships with health professionals, insurers and institutions. The nature of these relationships requires service receivers to have trust in the service providers because maintaining health services without reciprocal trust is very difficult. Therefore, individual evaluations of trust within the scope of health services have become increasingly important. Objective: To investigate patients’ trust in the health-care system and their relevant socio-demographical characteristics. Methods: This research was conducted using a descriptive design which included 493 literate patients aged 18-65 years who were hospitalised for a minimum of two days at public university and training&research hospitals in Ankara, Turkey. Patients’ trust in health-care professionals, insurers, and institutions were investigated. Data were collected using a demographic questionnaire and the Multidimensional Trust in Health-Care Systems Scale between September 2015 and April 2016. Results: The participants’ mean age was 47.7±13.1; 70% had a moderate income and 69% had a prior hospitalisation and 63.5% of the patients were satisfied with the health-care services. The mean Multidimensional Trust in Health-Care Systems Scale score for the sample was 61.5±8.3; the provider subscale had a mean of 38.1±5, the insurers subscale had a mean of 12.9±3.7, and institutions subscale had a mean of 10.6±1.9. Conclusion: Patients’ level of trust in the health-care system was above average and the trust level of the patients with higher educational and socio-economic levels was lower compared to the other patients. Health-care professionals should raise awareness about the significance of trust in the health-care system.

Keywords: delivery of health care, health care system, nursing, patients, trust

Procedia PDF Downloads 354
10945 GPS Refinement in Cities Using Statistical Approach

Authors: Ashwani Kumar

Abstract:

GPS plays an important role in everyday life for safe and convenient transportation. While pedestrians use hand held devices to know their position in a city, vehicles in intelligent transport systems use relatively sophisticated GPS receivers for estimating their current position. However, in urban areas where the GPS satellites are occluded by tall buildings, trees and reflections of GPS signals from nearby vehicles, GPS position estimation becomes poor. In this work, an exhaustive GPS data is collected at a single point in urban area under different times of day and under dynamic environmental conditions. The data is analyzed and statistical refinement methods are used to obtain optimal position estimate among all the measured positions. The results obtained are compared with publically available datasets and obtained position estimation refinement results are promising.

Keywords: global positioning system, statistical approach, intelligent transport systems, least squares estimation

Procedia PDF Downloads 267
10944 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features

Authors: Rabab M. Ramadan, Elaraby A. Elgallad

Abstract:

With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.

Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)

Procedia PDF Downloads 221
10943 Speech Identification Test for Individuals with High-Frequency Sloping Hearing Loss in Telugu

Authors: S. B. Rathna Kumar, Sandya K. Varudhini, Aparna Ravichandran

Abstract:

Telugu is a south central Dravidian language spoken in Andhra Pradesh, a southern state of India. The available speech identification tests in Telugu have been developed to determine the communication problems of individuals having a flat frequency hearing loss. These conventional speech audiometric tests would provide redundant information when used on individuals with high-frequency sloping hearing loss because of better hearing sensitivity in the low- and mid-frequency regions. Hence, conventional speech identification tests do not indicate the true nature of the communication problem of individuals with high-frequency sloping hearing loss. It is highly possible that a person with a high-frequency sloping hearing loss may get maximum scores if conventional speech identification tests are used. Hence, there is a need to develop speech identification test materials that are specifically designed to assess the speech identification performance of individuals with high-frequency sloping hearing loss. The present study aimed to develop speech identification test for individuals with high-frequency sloping hearing loss in Telugu. Individuals with high-frequency sloping hearing loss have difficulty in perception of voiceless consonants whose spectral energy is above 1000 Hz. Hence, the word lists constructed with phonemes having mid- and high-frequency spectral energy will estimate speech identification performance better for such individuals. The phonemes /k/, /g/, /c/, /ṭ/ /t/, /p/, /s/, /ś/, /ṣ/ and /h/are preferred for the construction of words as these phonemes have spectral energy distributed in the frequencies above 1000 KHz predominantly. The present study developed two word lists in Telugu (each word list contained 25 words) for evaluating speech identification performance of individuals with high-frequency sloping hearing loss. The performance of individuals with high-frequency sloping hearing loss was evaluated using both conventional and high-frequency word lists under recorded voice condition. The results revealed that the developed word lists were found to be more sensitive in identifying the true nature of the communication problem of individuals with high-frequency sloping hearing loss.

Keywords: speech identification test, high-frequency sloping hearing loss, recorded voice condition, Telugu

Procedia PDF Downloads 402
10942 Centre of the Milky Way Galaxy

Authors: Svanik Garg

Abstract:

The center of our galaxy is often referred to as the ‘galactic center’ and has many theories associated with its true nature. Given the existence of interstellar dust and bright stars, it is nearly impossible to observe its position, about 24,000 light-years away. Due to this uncertainty, humans have often speculated what could exist at a vantage point upon which the entire galaxy spirals and revolves, with wild theories ranging from the presence of dark matter to black holes and wormholes. Data up till now on the same is very limited, and conclusions are to the best of the author's knowledge, as the only method to view the galactic center is through x-ray and infrared imaging, which counter the problems mentioned earlier. This paper examines, first, the existence of a galactic center, then the methods to identify what it might contain, and lastly, possible conclusions along with implications of the findings. Several secondary sources, along with a python tool to analyze x-ray readings were used to identify the true nature of what lies in the center of the galaxy, whether it be a void due to the existence of dark energy or a black hole. Using this roughly 4-part examination, as a result of this study, a plausible definition of the galactic center was formulated, keeping in mind the rather wild theories, data and different ideas proposed by researchers. This paper aims to dissect the theory of a galactic center and identify its nature to help understand what it shows about galaxies and our universe.

Keywords: milky way, galaxy, dark energy, stars

Procedia PDF Downloads 111
10941 Enabling Communication Systems: Optical Switches for Photonic Integrated Circuits

Authors: Ahan Chakrabortty, Sk. Faiyazul Islam, Samia Zaman Purba, Md. Saif Ali Khan

Abstract:

The demand for high-speed communication systems continues to escalate with the exponential growth of data-driven applications. Photonic integrated circuits (PICs) have emerged as compelling contenders to address these escalating demands, offering intrinsic advantages, including high bandwidth, low power consumption, and compatibility with existing semiconductor fabrication technologies. Beginning with an overview of the fundamental principles underlying photonic devices and integration techniques, the research delves into the intricate design considerations for PICs targeting communication applications. This research focuses on developing optical switches, crucial components in optical transistors, which enable efficient routing and control of optical signals within PICs. Through meticulous analysis and experimentation, this research endeavors to propel the advancement of photonic integration technology, charting the path towards realizing high-performance communication systems characterized by elevated speed, efficiency, and reliability, thereby addressing the burgeoning demands of the digital era. Intending to contribute to the seamless integration of data-driven applications into everyday life, this work embraces the era of interconnected devices.

Keywords: photonic integrated circuit, frustrated total internal reflection, evanescent wave, optical pumping, optical switch

Procedia PDF Downloads 5