Search results for: optical flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6344

Search results for: optical flow

1034 Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization

Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova

Abstract:

In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.

Keywords: supported copper-manganese catalysts, CO, VOCs oxidation, combustion of exhaust gases

Procedia PDF Downloads 280
1033 Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation

Authors: Tatyana T. Tabakova, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Krasimir I. Ivanov, Yordanka G. Karakirova, Petya Cv. Petrova, Georgi V. Avdeev

Abstract:

The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH3OH and (CH3)2O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH3OH conversion at about 60 and 140 oC, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al2O3 1:5 exhibited higher activity for CO and CH3OH oxidation in comparison with Au on Cu-Ce/γ-Al2O3 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria.

Keywords: CO and VOCs oxidation, copper oxide, Ceria, gold catalysts

Procedia PDF Downloads 311
1032 Effect of Anisotropy on Steady Creep in a Whisker Reinforced Functionally Graded Composite Disc

Authors: V. K. Gupta, Tejeet Singh

Abstract:

In many whisker reinforced composites, anisotropy may result due to material flow during processing operations such as forging, extrusion etc. The consequence of anisotropy, introduced during processing of disc material, has been investigated on the steady state creep deformations of the rotating disc. The disc material is assumed to undergo plastic deformations according to Hill’s anisotropic criterion. Steady state creep has been analyzed in a constant thickness rotating disc made of functionally graded 6061Al-SiCw (where the subscript ‘w’ stands for whisker) using Hill’s The content of reinforcement (SiCw) in the disc is assumed to decrease linearly from the inner to outer radius. The stresses and strain rates in the disc are estimated by solving the force equilibrium equation along with the constitutive equations describing multi-axial creep. The results obtained for anisotropic FGM disc have been compared with those estimated for isotropic FGM disc having the same average whisker content. The anisotropic constants, appearing in Hill’s yield criterion, have been obtained from the available experimental results. The results show that the presence of anisotropy reduces the tangential stress in the middle of the disc but near the inner and outer radii the tangential stress is higher when compared to isotropic disc. On the other hand, the steady state creep rates in the anisotropic disc are reduced significantly over the entire disc radius, with the maximum reduction observed at the inner radius. Further, in the presence of anisotropy the distribution of strain rate becomes relatively uniform over the entire disc, which may be responsible for reducing the extent of distortion in the disc.

Keywords: anisotropy, creep, functionally graded composite, rotating disc

Procedia PDF Downloads 387
1031 Cytogenetic Characterization of the VERO Cell Line Based on Comparisons with the Subline; Implication for Authorization and Quality Control of Animal Cell Lines

Authors: Fumio Kasai, Noriko Hirayama, Jorge Pereira, Azusa Ohtani, Masashi Iemura, Malcolm A. Ferguson Smith, Arihiro Kohara

Abstract:

The VERO cell line was established in 1962 from normal tissue of an African green monkey, Chlorocebus aethiops (2n=60), and has been commonly used worldwide for screening for toxins or as a cell substrate for the production of viral vaccines. The VERO genome was sequenced in 2014; however, its cytogenetic features have not been fully characterized as it contains several chromosome abnormalities and different karyotypes coexist in the cell line. In this study, the VERO cell line (JCRB0111) was compared with one of the sublines. In contrast to 59 chromosomes as the modal chromosome number in the VERO cell line, the subline had two peaks of 56 and 58 chromosomes. M-FISH analysis using human probes revealed that the VERO cell line was characterized by a translocation t(2;25) found in all metaphases, which was absent in the subline. Different abnormalities detected only in the subline show that the cell line is heterogeneous, indicating that the subline has the potential to change its genomic characteristics during cell culture. The various alterations in the two independent lineages suggest that genomic changes in both VERO cells can be accounted for by progressive rearrangements during their evolution in culture. Both t(5;X) and t(8;14) observed in all metaphases of the two cell lines might have a key role in VERO cells and could be used as genetic markers to identify VERO cells. The flow karyotype shows distinct differences from normal. Further analysis of sorted abnormal chromosomes may uncover other characteristics of VERO cells. Because of the absence of STR data, cytogenetic data are important in characterizing animal cell lines and can be an indicator of their quality control.

Keywords: VERO, cell culture passage, chromosome rearrangement, heterogeneous cells

Procedia PDF Downloads 412
1030 Aerosol Chemical Composition in Urban Sites: A Comparative Study of Lima and Medellin

Authors: Guilherme M. Pereira, Kimmo Teinïla, Danilo Custódio, Risto Hillamo, Célia Alves, Pérola de C. Vasconcellos

Abstract:

South American large cities often present serious air pollution problems and their atmosphere composition is influenced by a variety of emissions sources. The South American Emissions Megacities, and Climate project (SAEMC) has focused on the study of emissions and its influence on climate in the South American largest cities and it also included Lima (Peru) and Medellin (Colombia), sites where few studies of the genre were done. Lima is a coastal city with more than 8 million inhabitants and the second largest city in South America. Medellin is a 2.5 million inhabitants city and second largest city in Colombia; it is situated in a valley. The samples were collected in quartz fiber filters in high volume samplers (Hi-Vol), in 24 hours of sampling. The samples were collected in intensive campaigns in both sites, in July, 2010. Several species were determined in the aerosol samples of Lima and Medellin. Organic and elemental carbon (OC and EC) in thermal-optical analysis; biomass burning tracers (levoglucosan - Lev, mannosan - Man and galactosan - Gal) in high-performance anion exchange ion chromatography with mass spectrometer detection; water soluble ions in ion chromatography. The average particulate matter was similar for both campaigns, the PM10 concentrations were above the recommended by World Health Organization (50 µg m⁻³ – daily limit) in 40% of the samples in Medellin, while in Lima it was above that value in 15% of the samples. The average total ions concentration was higher in Lima (17450 ng m⁻³ in Lima and 3816 ng m⁻³ in Medellin) and the average concentrations of sodium and chloride were higher in this site, these species also had better correlations (Pearson’s coefficient = 0,63); suggesting a higher influence of marine aerosol in the site due its location in the coast. Sulphate concentrations were also much higher at Lima site; which may be explained by a higher influence of marine originated sulphate. However, the OC, EC and monosaccharides average concentrations were higher at Medellin site; this may be due to the lower dispersion of pollutants due to the site’s location and a larger influence of biomass burning sources. The levoglucosan average concentration was 95 ng m⁻³ for Medellin and 16 ng m⁻³ and OC was well correlated with levoglucosan (Pearson’s coefficient = 0,86) in Medellin; suggesting a higher influence of biomass burning over the organic aerosol in this site. The Lev/Man ratio is often related to the type of biomass burned and was close to 18, similar to the observed in previous studies done at biomass burning impacted sites in the Amazon region; backward trajectories also suggested the transport of aerosol from that region. Biomass burning appears to have a larger influence on the air quality in Medellin, in addition the vehicular emissions; while Lima showed a larger influence of marine aerosol during the study period.

Keywords: aerosol transport, atmospheric particulate matter, biomass burning, SAEMC project

Procedia PDF Downloads 258
1029 A Piebald Cladistic Portray of Mitochondrial DNA Control Region Haplogroups in Khyber Pakhtunkhwa, Pakistan

Authors: Shahzad Bhatti, M. Aslamkhan, Sana Abbas, Marcella Attimonelli, Hikmet Hakan Aydin, Erica Martinha Silva de Souza,

Abstract:

Despite being situated at the crossroad of Asia, Pakistan has gained crucial importance because of its pivotal role in subsequent migratory events. To highlight the genetic footprints and to contribute an enigmatic picture of the relative population expansion pattern among four major Pashtun tribes in Khyber Pakhtunkhwa viz., Bangash, Khattak, Mahsuds and Orakzai, the complete mitochondrial control region of 100 Pashtun were analyzed. All Pashtun tribes studied here revealed high genetic diversity; that was comparable to the other Central Asian, Southeast Asian and European populations. The configuration of genetic variation and heterogeneity further unveiled through Multidimensional Scaling, Principal Component Analysis, and phylogenetic analysis. The results revealed that the Pashtun is a composite mosaic of West Eurasian ancestry of numerous geographic origin. They received substantial gene flow during different invasions and have a high element of the Western provenance. The most common haplogroups reported in this study are: South Asian haplogroup M (28%) and R (8%); whereas, West Asians haplogroups are present, albeit in high frequencies (67%) and widespread over all; HV (15%), U (17%), H (9%), J (8%), K (8%), W (4%), N (3%) and T (3%). Herein we linked the unexplored genetic connection between Ashkenazi Jews and Pashtun. The presence of specific haplotypes J1b (4%) and K1a1b1a (5%) point to a genetic connection of Jewish conglomeration with Khattak tribe. This was a result of an ancient genetic influx in the early Neolithic period that led to the formation of a diverse genetic substratum in present day Pashtun.

Keywords: mtDNA haplogroups, control region, Pakistan, KPK, ethnicity

Procedia PDF Downloads 477
1028 Fatigue Behavior of Friction Stir Welded EN AW 5754 Aluminum Alloy Using Load Increase Procedure

Authors: A. B. Chehreh, M. Grätzel, M. Klein, J. P. Bergmann, F. Walther

Abstract:

Friction stir welding (FSW) is an advantageous method in the thermal joining processes, featuring the welding of various dissimilar and similar material combinations, joining temperatures below the melting point which prevents irregularities such as pores and hot cracks as well as high strengths mechanical joints near the base material. The FSW process consists of a rotating tool which is made of a shoulder and a probe. The welding process is based on a rotating tool which plunges in the workpiece under axial pressure. As a result, the material is plasticized by frictional heat which leads to a decrease in the flow stress. During the welding procedure, the material is continuously displaced by the tool, creating a firmly bonded weld seam behind the tool. However, the mechanical properties of the weld seam are affected by the design and geometry of the tool. These include in particular microstructural and surface properties which can favor crack initiation. Following investigation compares the dynamic properties of FSW weld seams with conventional and stationary shoulder geometry based on load increase test (LIT). Compared to classical Woehler tests, it is possible to determine the fatigue strength of the specimens after a short amount of time. The investigations were carried out on a robotized welding setup on 2 mm thick EN AW 5754 aluminum alloy sheets. It was shown that an increased tensile and fatigue strength can be achieved by using the stationary shoulder concept. Furthermore, it could be demonstrated that the LIT is a valid method to describe the fatigue behavior of FSW weld seams.

Keywords: aluminum alloy, fatigue performance, fracture, friction stir welding

Procedia PDF Downloads 151
1027 Green Supply Chain Network Optimization with Internet of Things

Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen

Abstract:

Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.

Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling

Procedia PDF Downloads 325
1026 Pharmacodynamic Interaction between Tamsulosin and Finasteride Treatment on Induced Benign Prostate Hyperplasia in Mice by Using Chou-Talalay Method

Authors: Firas Rashad Al-Samarai

Abstract:

Introduction: Benign prostatic hyperplasia (BPH) is a common condition as men get older. An enlarged prostate gland can cause uncomfortable urinary symptoms, such as blocking the flow of urine out of the bladder. It can also cause bladder, urinary tract, or kidney problems. Objective: to evaluate the efficacy and interaction of tamsulosin with finasteride treatment on induced benign prostate hyperplasia (BPH) in mice. Methods: BPH was induced by subcutaneous injection of testosterone propionate (20 mg/kg) for 30 days. Eighty-five mice were divided into five groups. The first group (G1): twenty-five mice induced BPH treated with tamsulosin orally and divided into five equal subgroups with doses (0.017, 0.052, 0.087, 0. 123, and 0.158) mg/kg, the second group (G2): twenty-five mice induced BPH treated with finasteride orally and divided into five equal subgroups with doses (0.175, 0.527, 0.878, 1.23, and 1.580) mg/kg. the third group (G3): twenty-five mice induced BPH treated with a combination of tamsulosin with finasteride orally, and divided into five equal subgroups with doses (0.0085, 0.0875), (0.026, 0.2635), (0.0435, 0.439) , (0.0615, 0.615) and ( 0.079 , 0.790 ) mg/kg respectively. Fourth group (G4): five mice induced BPH and treated distilled water. Fifth group (G5): five mice were not inducing BPH and without any treatment. Results: The results showed a gradual significant increase in prostate weight % and prostate index % Inhibitions until reached saturation in the last two doses of tamsulosin, finasteride, and combination groups, the maximum effective dose of tamsulosin and finasteride were (0.156) and (1.495) mg/kg respectively. Moreover, the effective dose of the combination (tamsulosin and finasteride) was estimated (0.06876, 0.6876) mg/kg, respectively, as well as the type of interaction was synergism and the value of the combination index was 0.046. Conclusions: We concluded that the combination of tamsulosin with finasteride showed a synergistic effect in BPH treatment by minimizing the side effect of each drug as s result of decreasing the dose of each one.

Keywords: Tamsulosin, Finasteride, combination, BPH

Procedia PDF Downloads 73
1025 Analysis and Mapping of Climate and Spring Yield in Tanahun District, Nepal

Authors: Resham Lal Phuldel

Abstract:

This study based on a bilateral development cooperation project funded by the governments of Nepal and Finland. The first phase of the project has been completed in August 2012 and the phase II started in September 2013 and will end September 2018. The project strengthens the capacity of local governments in 14 districts to deliver services in water supply, sanitation and hygiene in Western development region and in Mid-Western development region of Nepal. In recent days, several spring sources have been dried out or slowly decreasing its yield across the country due to changing character of rainfall, increasing evaporative losses and some other manmade causes such as land use change, infrastructure development work etc. To sustain the hilly communities, the sources have to be able to provide sufficient water to serve the population, either on its own or in conjunction with other sources. Phase III have measured all water sources in Tanahu district in 2004 and sources were located with the GPS. Phase II has repeated the exercise to see changes in the district. 3320 water sources as identified in 2004 and altogether 4223 including new water sources were identified and measured in 2014. Between 2004 and 2014, 50% flow rate (yield) deduction of point sources’ average yield in 10 years is found. Similarly, 21.6% and 34% deductions of average yield were found in spring and stream water sources respectively. The rainfall from 2002 to 2013 shows erratic rainfalls in the district. The monsoon peak month is not consistent and the trend shows the decrease of annual rainfall 16.7 mm/year. Further, the temperature trend between 2002 and 2013 shows warming of + 0.0410C/year.

Keywords: climate change, rainfall, source discharge, water sources

Procedia PDF Downloads 277
1024 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather

Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa

Abstract:

A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Geomagnetically induced currents have been studied in other regions and have been noted to affect the power grid network. In Zimbabwe, grid failures have been experienced, but it is yet to be proven if these failures have been due to GICs. The purpose of this paper is to characterize geomagnetically induced currents with a power grid network. This paper analyses data collected, which is geomagnetic data, which includes the Kp index, DST index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.

Keywords: adverse space weather, DST index, geomagnetically induced currents, KP index, reactive power

Procedia PDF Downloads 110
1023 Numerical Investigation of the Needle Opening Process in a High Pressure Gas Injector

Authors: Matthias Banholzer, Hagen Müller, Michael Pfitzner

Abstract:

Gas internal combustion engines are widely used as propulsion systems or in power plants to generate heat and electricity. While there are different types of injection methods including the manifold port fuel injection and the direct injection, the latter has more potential to increase the specific power by avoiding air displacement in the intake and to reduce combustion anomalies such as backfire or pre-ignition. During the opening process of the injector, multiple flow regimes occur: subsonic, transonic and supersonic. To cover the wide range of Mach numbers a compressible pressure-based solver is used. While the standard Pressure Implicit with Splitting of Operators (PISO) method is used for the coupling between velocity and pressure, a high-resolution non-oscillatory central scheme established by Kurganov and Tadmor calculates the convective fluxes. A blending function based on the local Mach- and CFL-number switches between the compressible and incompressible regimes of the developed model. As the considered operating points are well above the critical state of the used fluids, the ideal gas assumption is not valid anymore. For the real gas thermodynamics, the models based on the Soave-Redlich-Kwong equation of state were implemented. The caloric properties are corrected using a departure formalism, for the viscosity and the thermal conductivity the empirical correlation of Chung is used. For the injector geometry, the dimensions of a diesel injector were adapted. Simulations were performed using different nozzle and needle geometries and opening curves. It can be clearly seen that there is a significant influence of all three parameters.

Keywords: high pressure gas injection, hybrid solver, hydrogen injection, needle opening process, real-gas thermodynamics

Procedia PDF Downloads 457
1022 External Vacuum Dressing: Optimising Non-Operative Management of Flail Sternum Post CPR

Authors: Nicholas Bayfield, Mark Newman

Abstract:

Case Presentation: A 48-year-old male was brought in by ambulance after an out-of-hospital cardiac arrest, with 20 minutes of good-quality cardiopulmonary resuscitation in the community. Return of spontaneous circulation was achieved with defibrillation, revealing an inferior ST-elevation myocardial infarction. He was revascularized emergently in the cath lab and stabilised. Following the procedure, he was noted to have paradoxical respiratory movements of the sternum and high oxygen requirements. CT imaging demonstrated a flail chest with bilateral anterior rib 1-7 fractures as well as a large left-sided extra-pleural haematoma and small haemopneumothorax, secondary to CPR. The patient’s ventilation was stabilised with oxygen via a high-flow humidifier. Pain relief was provided. The anatomy of his rib fractures was not easily amenable to operative fixation. In addition, he was considered to be a high-risk operative candidate due to his recent arrest. He was managed thus non-operatively with an external vacuum dressing applied to the anterior chest wall to minimise respiratory compromise and minimise pain from the motion around the rib fracture sites. Non-operative management was successful, and the patient was reviewed one month later. The paradoxical sternal movement had abated. Discussion: External vacuum dressing has been trialled for non-operative management of rib fractures with varying success. It provides an external brace to minimise fracture site movement during respiration and coughing, thus minimising pain. This modality should be considered a low-cost, high-reward adjunct to non-operative management of bony thoracic trauma.

Keywords: thoracic surgery, thoracic trauma, rib fractures, negative pressure dressing

Procedia PDF Downloads 153
1021 Seepage Analysis through Earth Dam Embankment: Case Study of Batu Dam

Authors: Larifah Mohd Sidik, Anuar Kasa

Abstract:

In recent years, the demands for raw water are increasing along with the growth of the economy and population. Hence, the need for the construction and operation of dams is one of the solutions for the management of water resources problems. The stability of the embankment should be taken into consideration to evaluate the safety of retaining water. The safety of the dam is mostly based on numerous measurable components, for instance, seepage flowrate, pore water pressure and deformation of the embankment. Seepage and slope stability is the primary and most important reason to ascertain the overall safety behavior of the dams. This research study was conducted to evaluate static condition seepage and slope stability performances of Batu dam which is located in Kuala Lumpur capital city. The numerical solution Geostudio-2012 software was employed to analyse the seepage using finite element method, SEEP/W and slope stability using limit equilibrium method, SLOPE/W for three different cases of reservoir level operations; normal and flooded condition. Results of seepage analysis using SEEP/W were utilized as parental input for the analysis of SLOPE/W. Sensitivity analysis on hydraulic conductivity of material was done and calibrated to minimize the relative error of simulation SEEP/W, where the comparison observed field data and predicted value were also carried out. In seepage analysis, such as leakage flow rate, pore water distribution and location of a phreatic line are determined using the SEEP/W. The result of seepage analysis shows the clay core effectively lowered the phreatic surface and no piping failure is shown in the result. Hence, the total seepage flux was acceptable and within the permissible limit.

Keywords: earth dam, dam safety, seepage, slope stability, pore water pressure

Procedia PDF Downloads 216
1020 Endothelial Progenitor Cells Is a Determinant of Vascular Function and Atherosclerosis in Ankylosing Spondylitis

Authors: Ashit Syngle, Inderjit Verma, Pawan Krishan

Abstract:

Objective: Endothelial progenitor cells (EPCs) have reparative potential in overcoming the endothelial dysfunction and reducing cardiovascular risk. EPC depletion has been demonstrated in the setting of established atherosclerotic diseases. With this background, we evaluated whether reduced EPCs population are associated with endothelial dysfunction, subclinical atherosclerosis and inflammatory markers in ankylosing spondylitis (AS) patients without any known traditional cardiovascular risk factor in AS patients. Methods: Levels of circulating EPCs (CD34+/CD133+), brachial artery flow-mediated dilatation, carotid intima-media thickness (CIMT) and inflammatory markers i.e erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tissue necrosis factor (TNF)–α, interleukin (IL)-6, IL-1 were assessed in 30 AS patients (mean age33.41 ± 10.25; 11 female and 19 male) who fulfilled the modified New York diagnostic criteria with 25 healthy volunteers (mean age 29.36± 8.64; 9 female and 16 male) matched for age and sex. Results: EPCs (CD34+/CD133+) cells were significantly (0.020 ± 0.001% versus 0.040 ± 0.010%, p<0.001) reduced in patients with AS compared to healthy controls. Endothelial function (7.35 ± 2.54 versus 10.27 ±1.73, p=0.002), CIMT (0.63 ± 0.01 versus 0.35 ± 0.02, p < 0.001) and inflammatory markers were also significantly (p < 0.01) altered as compared to healthy controls. Specifically, CD34+CD133+cells were inversely multivariate correlated with CRP and TNF-α and endothelial dysfunction was positively correlated with reduced number of EPC. Conclusion: Depletion of EPCs population is an independent predictor of endothelial dysfunction and early atherosclerosis in AS patients and may provide additional information beyond conventional risk factors and inflammatory markers.

Keywords: endothelial progenitor cells, atherosclerosis, ankylosing spondylitis, cardiovascular

Procedia PDF Downloads 381
1019 A Study of the Relationship between Habitat Patch Metrics and Landscape Connectivity with Reference to Colombo Wetlands Sri Lanka

Authors: H. E. M. W. G. M. K. Ekanayake, J. Dharmasena

Abstract:

Natural Landscape fragmentation and habitat loss are emerging issues in Sri Lanka, which is due to rapid urban development and inadequate concern of managing Landscape connectivity. Urban Wetlands are the most vulnerable ecosystem effects from the fragmentation. Therefore, management of landscape connectivity with proper analysis and understanding has become a most important measure for urban wetland habitats. This study aimed to introduce spatial planning strategy to identify and locate landscape developments appropriately in order to restore landscape connectivity. Therefore, the study focuses on understanding the relationship between habitat patch metrics and landscape connectivity with reference to Colombo wetlands. Geographic Information Systems (GIS) was used to measure the wetland patch metrics; Patch area, Total edge, Perimeter-area ratio, Core area index and Inter-patch distances. Further, GIS-enabled least-cost path tool was used to measure the Landscape connectivity and calculate the number of species flow paths per wetland patch. According to the research findings; increasing the patch area, maintaining a mean perimeter-area ratio and core area index also reducing the inter-patch distances could enhance the landscape connectivity. Further, this study introduces three patch typologies; ‘active patches,' ‘open patches’ and ‘closed patches’ that severs to landscape connectivity in different levels. In the end, the study proposes a strategy for Landscape Architects to select most suitable locations to implement ecological based landscape developments with adjacent to the existing urban habitat in order to enhance habitat patch metrics and to restore the landscape connectivity.

Keywords: landscape fragmentation, urban wetlands, landscape connectivity, patch metrics

Procedia PDF Downloads 198
1018 Performance Analysis of a Shell and Tube Heat Exchanger in the Organic Rankine Cycle Power Plant

Authors: Yogi Sirodz Gaos, Irvan Wiradinata

Abstract:

In the 500 kW Organic Rankine Cycle (ORC) power plant in Indonesia, an AFT (according to the Tubular Exchanger Manufacturers Association – TEMA) type shell and tube heat exchanger device is used as a pre-heating system for the ORC’s hot water circulation system. The pre-heating source is a waste heat recovery of the brine water, which is tapped from a geothermal power plant. The brine water itself has 5 MWₜₕ capacities, with average temperature of 170ᵒC, and 7 barg working pressure. The aim of this research is to examine the performance of the heat exchanger in the ORC system in a 500 kW ORC power plant. The data for this research were collected during the commissioning on the middle of December 2016. During the commissioning, the inlet temperature and working pressure of the brine water to the shell and tube type heat exchanger was 149ᵒC, and 4.4 barg respectively. Furthermore, the ΔT for the hot water circulation of the ORC system to the heat exchanger was 27ᵒC, with the inlet temperature of 140ᵒC. The pressure in the hot circulation system was dropped slightly from 7.4ᵒC to 7.1ᵒC. The flow rate of the hot water circulation was 80.5 m³/h. The presentation and discussion of a case study on the performance of the heat exchanger on the 500 kW ORC system is presented as follows: (1) the heat exchange duty is 2,572 kW; (2) log mean temperature of the heat exchanger is 13.2ᵒC; (3) the actual overall thermal conductivity is 1,020.6 W/m².K (4) the required overall thermal conductivity is 316.76 W/m².K; and (5) the over design for this heat exchange performance is 222.2%. An analysis of the heat exchanger detailed engineering design (DED) is briefly discussed. To sum up, this research concludes that the shell and tube heat exchangers technology demonstrated a good performance as pre-heating system for the ORC’s hot water circulation system. Further research need to be conducted to examine the performance of heat exchanger system on the ORC’s hot water circulation system.

Keywords: shell and tube, heat exchanger, organic Rankine cycle, performance, commissioning

Procedia PDF Downloads 140
1017 Variability Studies of Seyfert Galaxies Using Sloan Digital Sky Survey and Wide-Field Infrared Survey Explorer Observations

Authors: Ayesha Anjum, Arbaz Basha

Abstract:

Active Galactic Nuclei (AGN) are the actively accreting centers of the galaxies that host supermassive black holes. AGN emits radiation in all wavelengths and also shows variability across all the wavelength bands. The analysis of flux variability tells us about the morphology of the site of emission radiation. Some of the major classifications of AGN are (a) Blazars, with featureless spectra. They are subclassified as BLLacertae objects, Flat Spectrum Radio Quasars (FSRQs), and others; (b) Seyferts with prominent emission line features are classified into Broad Line, Narrow Line Seyferts of Type 1 and Type 2 (c) quasars, and other types. Sloan Digital Sky Survey (SDSS) is an optical telescope based in Mexico that has observed and classified billions of objects based on automated photometric and spectroscopic methods. A sample of blazars is obtained from the third Fermi catalog. For variability analysis, we searched for light curves for these objects in Wide-Field Infrared Survey Explorer (WISE) and Near Earth Orbit WISE (NEOWISE) in two bands: W1 (3.4 microns) and W2 (4.6 microns), reducing the final sample to 256 objects. These objects are also classified into 155 BLLacs, 99 FSRQs, and 2 Narrow Line Seyferts, namely, PMNJ0948+0022 and PKS1502+036. Mid-infrared variability studies of these objects would be a contribution to the literature. With this as motivation, the present work is focused on studying a final sample of 256 objects in general and the Seyferts in particular. Owing to the fact that the classification is automated, SDSS has miclassified these objects into quasars, galaxies, and stars. Reasons for the misclassification are explained in this work. The variability analysis of these objects is done using the method of flux amplitude variability and excess variance. The sample consists of observations in both W1 and W2 bands. PMN J0948+0022 is observed between MJD from 57154.79 to 58810.57. PKS 1502+036 is observed between MJD from 57232.42 to 58517.11, which amounts to a period of over six years. The data is divided into different epochs spanning not more than 1.2 days. In all the epochs, the sources are found to be variable in both W1 and W2 bands. This confirms that the object is variable in mid-infrared wavebands in both long and short timescales. Also, the sources are observed for color variability. Objects either show a bluer when brighter trend (BWB) or a redder when brighter trend (RWB). The possible claim for the object to be BWB (present objects) is that the longer wavelength radiation emitted by the source can be suppressed by the high-energy radiation from the central source. Another result is that the smallest radius of the emission source is one day since the epoch span used in this work is one day. The mass of the black holes at the centers of these sources is found to be less than or equal to 108 solar masses, respectively.

Keywords: active galaxies, variability, Seyfert galaxies, SDSS, WISE

Procedia PDF Downloads 127
1016 Fabrication of Electrospun Green Fluorescent Protein Nano-Fibers for Biomedical Applications

Authors: Yakup Ulusu, Faruk Ozel, Numan Eczacioglu, Abdurrahman Ozen, Sabriye Acikgoz

Abstract:

GFP discovered in the mid-1970s, has been used as a marker after replicated genetic study by scientists. In biotechnology, cell, molecular biology, the GFP gene is frequently used as a reporter of expression. In modified forms, it has been used to make biosensors. Many animals have been created that express GFP as an evidence that a gene can be expressed throughout a given organism. Proteins labeled with GFP identified locations are determined. And so, cell connections can be monitored, gene expression can be reported, protein-protein interactions can be observed and signals that create events can be detected. Additionally, monitoring GFP is noninvasive; it can be detected by under UV-light because of simply generating fluorescence. Moreover, GFP is a relatively small and inert molecule, that does not seem to treat any biological processes of interest. The synthesis of GFP has some steps like, to construct the plasmid system, transformation in E. coli, production and purification of protein. GFP carrying plasmid vector pBAD–GFPuv was digested using two different restriction endonuclease enzymes (NheI and Eco RI) and DNA fragment of GFP was gel purified before cloning. The GFP-encoding DNA fragment was ligated into pET28a plasmid using NheI and Eco RI restriction sites. The final plasmid was named pETGFP and DNA sequencing of this plasmid indicated that the hexa histidine-tagged GFP was correctly inserted. Histidine-tagged GFP was expressed in an Escherichia coli BL21 DE3 (pLysE) strain. The strain was transformed with pETGFP plasmid and grown on LuiraBertoni (LB) plates with kanamycin and chloramphenicol selection. E. coli cells were grown up to an optical density (OD 600) of 0.8 and induced by the addition of a final concentration of 1mM isopropyl-thiogalactopyranoside (IPTG) and then grown for additional 4 h. The amino-terminal hexa-histidine-tag facilitated purification of the GFP by using a His Bind affinity chromatography resin (Novagen). Purity of GFP protein was analyzed by a 12 % sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The concentration of protein was determined by UV absorption at 280 nm (Varian Cary 50 Scan UV/VIS spectrophotometer). Synthesis of GFP-Polymer composite nanofibers was produced by using GFP solution (10mg/mL) and polymer precursor Polyvinylpyrrolidone, (PVP, Mw=1300000) as starting materials and template, respectively. For the fabrication of nanofibers with the different fiber diameter; a sol–gel solution comprising of 0.40, 0.60 and 0.80 g PVP (depending upon the desired fiber diameter) and 100 mg GFP in 10 mL water: ethanol (3:2) mixtures were prepared and then the solution was covered on collecting plate via electro spinning at 10 kV with a feed-rate of 0.25 mL h-1 using Spellman electro spinning system. Results show that GFP-based nano-fiber can be used plenty of biomedical applications such as bio-imaging, bio-mechanic, bio-material and tissue engineering.

Keywords: biomaterial, GFP, nano-fibers, protein expression

Procedia PDF Downloads 316
1015 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality

Procedia PDF Downloads 183
1014 Exploring the Optimum Temperature and Diet for Growth and Gastric Emptying Time of Juvenile Malabar Blood Snapper (Lutjanus malabaricus)

Authors: Sabuj Kanti Mazumder, Mazlan Abd Ghaffar, Simon Kumar Das

Abstract:

In this study, we analyzed the effects of water temperature and diet on the growth properties and gastric emptying period of juvenile Malabar blood snapper (Lutjanus malabaricus) over a 30day experimental period. Fish were collected from a local hatchery of Pulau Ketam, Selangor, Malaysia and immediately transferred to flow-through sea water system and subjected to four different temperatures (22, 26, 30, and 34 °C) and two diets (formulated pellet and shrimp). Body weight gain, food consumption, food conversion ratio, food consumption efficiency, specific growth rate, relative growth rate, daily growth rate, and gastric emptying period were significantly influenced by temperature and diet (P<0.05). The best food conversion ratio was with the shrimp group recorded at 30°C (1.33±0.08). The highest growth rate was observed in the shrimp group at 30°C (3.97±0.57% day-1), and the lowest was observed in the formulated pellet group at 22°C (1.63±0.29% day-1). No significant difference was observed between the groups subjected to temperatures of 26 and 30°C. Similarly, the lowest gastric emptying period was detected in the shrimp group at 30°C (16h), where the proportion of meal residues in the stomach decreased from 100% to less than 8% after 12h of starvation. A significantly longer gastric emptying period was observed in the formulated pellet group at 22°C (28h). Overall, the best results were observed on shrimp group subjected to a 30°C temperature. The data obtained from this study suggest that a shrimp diet fed on L. malabaricus at 30°C will optimize the commercial production of this commercially important fish species.

Keywords: aquaculture, diet, digestion rate, growth, Malabar blood snapper

Procedia PDF Downloads 281
1013 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique

Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak

Abstract:

The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.

Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method

Procedia PDF Downloads 177
1012 Diverse Sensitivity to Ultraviolet Radiation of DNA and RNA Viruses

Authors: Nickolay Nosik, Dmitry Nosik, Marina Bochkova, Nina Kondrashina, Olga Lobach

Abstract:

The bactericidal effect of UV radiation is known for long time and widely used for inactivation of pathogens but for viruses it is not so uniform. Due to a wide variety of viruses their sensitivity to UV radiation is quite different and not quite predictable. The goal of the study was to determine the inactivation kinetics of UV radiation ( 254 nm) of the viruses of social importance (HIV), as well as test-viruses (poliovirus, adenovirus) used for the evaluation of the viral inactivation efficacy of germicides. Methods: DNA viruses- adenovirus, type 5; Herpes simplex virus (HSV), type 1, and RNA viruses–human immunodeficiency virus (HIV), type 1 and poliovirus, type 1 (Sabin strain) were obtained from State collection of viruses ( The D.I. Ivanovsky Institute of Virology). The source of UV radiation was a 15-watt low-pressure mercury vapor lamp (over 60% 254nm). The samples of 5cm2 were placed direct under the UV lamp flow (h-0.3m). Log reduction value was used as a marker for the rate of virus inactivation. Results: The data obtained indicate that poliovirus (one of the viruses most resistant to chemical germicides) and HSV are rather sensitive to UV radiation ( D90 =250-311 J/m2). Adenovirus is much more resistant to UV radiation (750 J/m2 ). The kinetics of adenovirus inactivation : 0 min- 5.0 lg TCID50, 10 min - 5,0, 15 min -4,0, 30 min – 3.5, 60 min – 1,0, 75 min -0,5 lg TCID50, 90 min –virus not detectable. HIV is most resistant to UV radiation among the studied viruses. It takes more than 4 hrs to inactivate the virus on the surface. D90 = 2000 J/m2 Conclusion: The results of the study show that there is no direct dependence between sensitivity to UV light and the size of the virion or presence\absence of the envelope of the virus. Poliovirus and adenovirus are small viruses (20-30nm poliovirus and 70-90nm adenovirus) and both are non-enveloped viruses but adenovirus 3-fold more resistant to UV radiation than poliovirus. It can be expected that viruses with more complicate structure, like Herpes virus (200nm) or HIV (80-100 nm), would be more sensitive to UV light. However, the very high resistance of HIV to UV radiation needs further investigation. The diverse resistance of the different viruses to UV radiation should be taken into the account when UV light is used to inactivate infectious viruses in hospitals and other public environments.

Keywords: HIV, HSV, inhibition of viruses, UV radiation

Procedia PDF Downloads 451
1011 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks

Authors: Kai-Wei Ji, Dung-Ying Lin

Abstract:

This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.

Keywords: demand estimation, genetic algorithm, housing price, transportation

Procedia PDF Downloads 11
1010 Impact of Nanoparticles in Enhancement of Thermal Conductivity of Phase Change Materials in Thermal Energy Storage and Cooling of Concentrated Photovoltaics

Authors: Ismaila H. Zarma, Mahmoud Ahmed, Shinichi Ookawara, Hamdi Abo-Ali

Abstract:

Phase change materials (PCM) are an ideal thermal storage medium. They are characterized by a high latent heat, which allows them to store large amounts of energy when the material transitions into different physical states. Concentrated photovoltaic (CPV) systems are widely recognized as the most efficient form of Photovoltaic (PV) for thermal energy which can be stored in Phase Change Materials (PCM). However, PCMs often have a low thermal conductivity which leads to a slow transient response. This makes it difficult to quickly store and access the energy stored within the PCM based systems, so there is need to improve transient responses and increase the thermal conductivity. The present study aims to investigate and analyze the melting and solidification process of phase change materials (PCMs) enhanced by nanoparticle contained in a container. Heat flux from concentrated photovoltaic is applied in an attempt to analyze the thermal performance and the impact of nanoparticles. The work will be realized by using a two dimensional model which take into account the phase change phenomena based on the principle of enthalpy method. Numerical simulations have been performed to investigate heat and flow characteristics by using governing equations, to ascertain the impacts of the nanoparticle loading. The Rayleigh number, sub-cooling as well as the unsteady evolution of the melting front and the velocity and temperature fields were also observed. The predicted results exhibited a good agreement, showing thermal enhancement due to present of nanoparticle which leads to decreasing the melting time.

Keywords: thermal energy storage, phase-change material, nanoparticle, concentrated photovoltaic

Procedia PDF Downloads 198
1009 Exposure of Pacu, Piaractus mesopotamicus Gill Tissue to a High Stocking Density: An Ion Regulatory and Microscopy Study

Authors: Wiolene Montanari Nordi, Debora Botequio Moretti, Mariana Caroline Pontin, Jessica Pampolini, Raul Machado-Neto

Abstract:

Gills are organs responsible for respiration and osmoregulation between the fish internal environment and water. Under stress conditions, oxidative response and gill plasticity to attempt to increase gas exchange area are noteworthy, compromising the physiological processes and therefore fish health. Colostrum is a dietary source of nutrients, immunoglobulin, antioxidant and bioactive molecules, essential for immunological protection and development of the gastrointestinal epithelium. The hypothesis of this work is that antioxidant factors present in the colostrum, unprecedentedly tested in gills, can minimize or reduce the alteration of its epithelium structure of juvenile pacu (Piaractus mesopotamicus) subjected to high stocking density. The histological changes in the gills architecture were characterized by the frequency, incidence and severity of the tissue alteration and ionic status. Juvenile (50 kg fish/m3) were fed with pelleted diets containing 0, 10, 20 or 30% of lyophilized bovine colostrum (LBC) inclusion and at 30 experimental days, gill and blood samples were collected in eight fish per treatment. The study revealed differences in the type, frequency and severity (histological alterations index – HAI) of tissue alterations among the treatments, however, no distinct differences in the incidence of alteration (mean alteration value – MAV) were observed. The main histological changes in gill were elevation of the lamellar epithelium, excessive cell proliferation of the filament and lamellar epithelium causing total or partial melting of the lamella, hyperplasia and hypertrophy of lamellar and filament epithelium, uncontrolled thickening of filament and lamellar tissues, mucous and chloride cells presence in the lamella, aneurysms, vascular congestion and presence of parasites. The MAV obtained per treatment were 2.0, 2.5, 1.8 and 2.5 to fish fed diets containing 0, 10, 20 and 30% of LBC inclusion, respectively, classifying the incidence of gill alterations as slightly to moderate. The severity of alteration of individual fish of treatment 0, 10 and 20% LBC ranged values from 5 to 40 (HAI average of 20.1, 17.5 and 17.6, respectively, P > 0.05), and differs from 30% LBC, that ranged from 6 to 129 (HAI mean of 77.2, P < 0.05). The HAI value in the treatments 0, 10 and 20% LBC reveals gill tissue with injuries classified from slightly to moderate, while in 30% LBC moderate to severe, consequence of the onset of necrosis in the tissue of two fish that compromises the normal functioning of the organ. In relation to frequency of gill alterations, evaluated according to absence of alterations (0) to highly frequent (+++), histological alterations were observed in all evaluated fish, with a trend of higher frequency in 0% LBC. The concentration of Na+, Cl-, K+ and Ca2+ did not changed in all treatments (P > 0.05), indicating similar capacity of ion exchange. The concentrations of bovine colostrum used in diets of present study did not impair the alterations observed in the gills of juvenile pacu.

Keywords: histological alterations of gill tissue, ionic status, lyophilized bovine colostrum, optical microscopy

Procedia PDF Downloads 295
1008 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw

Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar

Abstract:

Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.

Keywords: ANSYS-Fluent, hydrodynamic behavior, scraped surface heat exchange, thermal behavior

Procedia PDF Downloads 153
1007 A Study of the Effects of Zimbabwean Youth Migration on Musina Area, South Africa

Authors: R. Chinyakata, N. R. Raselekoane

Abstract:

Migration has always been part of human history. Migration is spurred by globalisation which connects nations by encouraging the flow of goods, services, ideas and people across borders. Migration does not only involve movement of adults from one country to another. It also affects and involves the youth as they are the most mobile group. Musina area, like many other border areas, experiences a variety of challenges as a result of the influx of people from the neighbouring Zimbabwe and other African countries. Of great concern about this migration is the fact that the host country or area may become unsafe and unstable as a result of huge influx of migrants. There may also be tensions between local people and migrants over the resources. The study sought to investigate the effects of the Zimbabwean youth migration on Musina area. The study was undertaken in Musina area which is situated 18km from the Beit-Bridge border post. A qualitative research approach was used. Semi-structured interviews were used to collect data. Non-probability quota sampling technique was used to select the respondents. The study sample consisted of sixteen female and male respondents. Thematic coding was used to analyse the data. Ethical considerations such as informed consent, confidentiality, anonymity and voluntary participation were taken into account to protect the participants. The study found that the effects of the Zimbabwean youth migration on the Musina area include, among others, tensions between locals and the Zimbabwean youth migrants over resources, job and business opportunities, overcrowding and crime. Multi-pronged strategies which involve different stakeholders should be applied to address tensions over job and business opportunities, overcrowding and crime in the Musina area.

Keywords: host country, effects, migrant, migration, Musina, youth, Zimbabwe

Procedia PDF Downloads 240
1006 Monitoring of Rice Phenology and Agricultural Practices from Sentinel 2 Images

Authors: D. Courault, L. Hossard, V. Demarez, E. Ndikumana, D. Ho Tong Minh, N. Baghdadi, F. Ruget

Abstract:

In the global change context, efficient management of the available resources has become one of the most important topics, particularly for sustainable crop development. Timely assessment with high precision is crucial for water resource and pest management. Rice cultivated in Southern France in the Camargue region must face a challenge, reduction of the soil salinity by flooding and at the same time reduce the number of herbicides impacting negatively the environment. This context has lead farmers to diversify crop rotation and their agricultural practices. The objective of this study was to evaluate this crop diversity both in crop systems and in agricultural practices applied to rice paddy in order to quantify the impact on the environment and on the crop production. The proposed method is based on the combined use of crop models and multispectral data acquired from the recent Sentinel 2 satellite sensors launched by the European Space Agency (ESA) within the homework of the Copernicus program. More than 40 images at fine spatial resolution (10m in the optical range) were processed for 2016 and 2017 (with a revisit time of 5 days) to map crop types using random forest method and to estimate biophysical variables (LAI) retrieved by inversion of the PROSAIL canopy radiative transfer model. Thanks to the high revisit time of Sentinel 2 data, it was possible to monitor the soil labor before flooding and the second sowing made by some farmers to better control weeds. The temporal trajectories of remote sensing data were analyzed for various rice cultivars for defining the main parameters describing the phenological stages useful to calibrate two crop models (STICS and SAFY). Results were compared to surveys conducted with 10 farms. A large variability of LAI has been observed at farm scale (up to 2-3m²/m²) which induced a significant variability in the yields simulated (up to 2 ton/ha). Observations on more than 300 fields have also been collected on land use. Various maps were elaborated, land use, LAI, flooding and sowing, and harvest dates. All these maps allow proposing a new typology to classify these paddy crop systems. Key phenological dates can be estimated from inverse procedures and were validated against ground surveys. The proposed approach allowed to compare the years and to detect anomalies. The methods proposed here can be applied at different crops in various contexts and confirm the potential of remote sensing acquired at fine resolution such as the Sentinel2 system for agriculture applications and environment monitoring. This study was supported by the French national center of spatial studies (CNES, funded by the TOSCA).

Keywords: agricultural practices, remote sensing, rice, yield

Procedia PDF Downloads 271
1005 Optimal Operation of Bakhtiari and Roudbar Dam Using Differential Evolution Algorithms

Authors: Ramin Mansouri

Abstract:

Due to the contrast of rivers discharge regime with water demands, one of the best ways to use water resources is to regulate the natural flow of the rivers and supplying water needs to construct dams. Optimal utilization of reservoirs, consideration of multiple important goals together at the same is of very high importance. To study about analyzing this method, statistical data of Bakhtiari and Roudbar dam over 46 years (1955 until 2001) is used. Initially an appropriate objective function was specified and using DE algorithm, the rule curve was developed. In continue, operation policy using rule curves was compared to standard comparative operation policy. The proposed method distributed the lack to the whole year and lowest damage was inflicted to the system. The standard deviation of monthly shortfall of each year with the proposed algorithm was less deviated than the other two methods. The Results show that median values for the coefficients of F and Cr provide the optimum situation and cause DE algorithm not to be trapped in local optimum. The most optimal answer for coefficients are 0.6 and 0.5 for F and Cr coefficients, respectively. After finding the best combination of coefficients values F and CR, algorithms for solving the independent populations were examined. For this purpose, the population of 4, 25, 50, 100, 500 and 1000 members were studied in two generations (G=50 and 100). result indicates that the generation number 200 is suitable for optimizing. The increase in time per the number of population has almost a linear trend, which indicates the effect of population in the runtime algorithm. Hence specifying suitable population to obtain an optimal results is very important. Standard operation policy had better reversibility percentage, but inflicts severe vulnerability to the system. The results obtained in years of low rainfall had very good results compared to other comparative methods.

Keywords: reservoirs, differential evolution, dam, Optimal operation

Procedia PDF Downloads 73