Search results for: customer friendly washing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5519

Search results for: customer friendly washing machine

209 Biodegradation of Chlorophenol Derivatives Using Macroporous Material

Authors: Dmitriy Berillo, Areej K. A. Al-Jwaid, Jonathan L. Caplin, Andrew Cundy, Irina Savina

Abstract:

Chlorophenols (CPs) are used as a precursor in the production of higher CPs and dyestuffs, and as a preservative. Contamination by CPs of the ground water is located in the range from 0.15-100mg/L. The EU has set maximum concentration limits for pesticides and their degradation products of 0.1μg/L and 0.5μg/L, respectively. People working in industries which produce textiles, leather products, domestic preservatives, and petrochemicals are most heavily exposed to CPs. The International Agency for Research on Cancers categorized CPs as potential human carcinogens. Existing multistep water purification processes for CPs such as hydrogenation, ion exchange, liquid-liquid extraction, adsorption by activated carbon, forward and inverse osmosis, electrolysis, sonochemistry, UV irradiation, and chemical oxidation are not always cost effective and can cause the formation of even more toxic or mutagenic derivatives. Bioremediation of CPs derivatives utilizing microorganisms results in 60 to 100% decontamination efficiency and the process is more environmentally-friendly compared with existing physico-chemical methods. Microorganisms immobilized onto a substrate show many advantages over free bacteria systems, such as higher biomass density, higher metabolic activity, and resistance to toxic chemicals. They also enable continuous operation, avoiding the requirement for biomass-liquid separation. The immobilized bacteria can be reused several times, which opens the opportunity for developing cost-effective processes for wastewater treatment. In this study, we develop a bioremediation system for CPs based on macroporous materials, which can be efficiently used for wastewater treatment. Conditions for the preparation of the macroporous material from specific bacterial strains (Pseudomonas mendocina and Rhodococus koreensis) were optimized. The concentration of bacterial cells was kept constant; the difference was only the type of cross-linking agents used e.g. glutaraldehyde, novel polymers, which were utilized at concentrations of 0.5 to 1.5%. SEM images and rheology analysis of the material indicated a monolithic macroporous structure. Phenol was chosen as a model system to optimize the function of the cryogel material and to estimate its enzymatic activity, since it is relatively less toxic and harmful compared to CPs. Several types of macroporous systems comprising live bacteria were prepared. The viability of the cross-linked bacteria was checked using Live/Dead BacLight kit and Laser Scanning Confocal Microscopy, which revealed the presence of viable bacteria with the novel cross-linkers, whereas the control material cross-linked with glutaraldehyde(GA), contained mostly dead cells. The bioreactors based on bacteria were used for phenol degradation in batch mode at an initial concentration of 50mg/L, pH 7.5 and a temperature of 30°C. Bacterial strains cross-linked with GA showed insignificant ability to degrade phenol and for one week only, but a combination of cross-linking agents illustrated higher stability, viability and the possibility to be reused for at least five weeks. Furthermore, conditions for CPs degradation will be optimized, and the chlorophenol degradation rates will be compared to those for phenol. This is a cutting-edge bioremediation approach, which allows the purification of waste water from sustainable compounds without a separation step to remove free planktonic bacteria. Acknowledgments: Dr. Berillo D. A. is very grateful to Individual Fellowship Marie Curie Program for funding of the research.

Keywords: bioremediation, cross-linking agents, cross-linked microbial cell, chlorophenol degradation

Procedia PDF Downloads 216
208 IEEE802.15.4e Based Scheduling Mechanisms and Systems for Industrial Internet of Things

Authors: Ho-Ting Wu, Kai-Wei Ke, Bo-Yu Huang, Liang-Lin Yan, Chun-Ting Lin

Abstract:

With the advances in advanced technology, wireless sensor network (WSN) has become one of the most promising candidates to implement the wireless industrial internet of things (IIOT) architecture. However, the legacy IEEE 802.15.4 based WSN technology such as Zigbee system cannot meet the stringent QoS requirement of low powered, real-time, and highly reliable transmission imposed by the IIOT environment. Recently, the IEEE society developed IEEE 802.15.4e Time Slotted Channel Hopping (TSCH) access mode to serve this purpose. Furthermore, the IETF 6TiSCH working group has proposed standards to integrate IEEE 802.15.4e with IPv6 protocol smoothly to form a complete protocol stack for IIOT. In this work, we develop key network technologies for IEEE 802.15.4e based wireless IIoT architecture, focusing on practical design and system implementation. We realize the OpenWSN-based wireless IIOT system. The system architecture is divided into three main parts: web server, network manager, and sensor nodes. The web server provides user interface, allowing the user to view the status of sensor nodes and instruct sensor nodes to follow commands via user-friendly browser. The network manager is responsible for the establishment, maintenance, and management of scheduling and topology information. It executes centralized scheduling algorithm, sends the scheduling table to each node, as well as manages the sensing tasks of each device. Sensor nodes complete the assigned tasks and sends the sensed data. Furthermore, to prevent scheduling error due to packet loss, a schedule inspection mechanism is implemented to verify the correctness of the schedule table. In addition, when network topology changes, the system will act to generate a new schedule table based on the changed topology for ensuring the proper operation of the system. To enhance the system performance of such system, we further propose dynamic bandwidth allocation and distributed scheduling mechanisms. The developed distributed scheduling mechanism enables each individual sensor node to build, maintain and manage the dedicated link bandwidth with its parent and children nodes based on locally observed information by exchanging the Add/Delete commands via two processes. The first process, termed as the schedule initialization process, allows each sensor node pair to identify the available idle slots to allocate the basic dedicated transmission bandwidth. The second process, termed as the schedule adjustment process, enables each sensor node pair to adjust their allocated bandwidth dynamically according to the measured traffic loading. Such technology can sufficiently satisfy the dynamic bandwidth requirement in the frequently changing environments. Last but not least, we propose a packet retransmission scheme to enhance the system performance of the centralized scheduling algorithm when the packet delivery rate (PDR) is low. We propose a multi-frame retransmission mechanism to allow every single network node to resend each packet for at least the predefined number of times. The multi frame architecture is built according to the number of layers of the network topology. Performance results via simulation reveal that such retransmission scheme is able to provide sufficient high transmission reliability while maintaining low packet transmission latency. Therefore, the QoS requirement of IIoT can be achieved.

Keywords: IEEE 802.15.4e, industrial internet of things (IIOT), scheduling mechanisms, wireless sensor networks (WSN)

Procedia PDF Downloads 164
207 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)

Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli

Abstract:

Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.

Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence

Procedia PDF Downloads 18
206 Clubhouse: A Minor Rebellion against the Algorithmic Tyranny of the Majority

Authors: Vahid Asadzadeh, Amin Ataee

Abstract:

Since the advent of social media, there has been a wave of optimism among researchers and civic activists about the influence of virtual networks on the democratization process, which has gradually waned. One of the lesser-known concerns is how to increase the possibility of hearing the voices of different minorities. According to the theory of media logic, the media, using their technological capabilities, act as a structure through which events and ideas are interpreted. Social media, through the use of the learning machine and the use of algorithms, has formed a kind of structure in which the voices of minorities and less popular topics are lost among the commotion of the trends. In fact, the recommended systems and algorithms used in social media are designed to help promote trends and make popular content more popular, and content that belongs to minorities is constantly marginalized. As social networks gradually play a more active role in politics, the possibility of freely participating in the reproduction and reinterpretation of structures in general and political structures in particular (as Laclau‎ and Mouffe had in mind‎) can be considered as criteria to democracy in action. The point is that the media logic of virtual networks is shaped by the rule and even the tyranny of the majority, and this logic does not make it possible to design a self-foundation and self-revolutionary model of democracy. In other words, today's social networks, though seemingly full of variety But they are governed by the logic of homogeneity, and they do not have the possibility of multiplicity as is the case in immanent radical democracies (influenced by Gilles Deleuze). However, with the emergence and increasing popularity of Clubhouse as a new social media, there seems to be a shift in the social media space, and that is the diminishing role of algorithms and systems reconditioners as content delivery interfaces. This has led to the fact that in the Clubhouse, the voices of minorities are better heard, and the diversity of political tendencies manifests itself better. The purpose of this article is to show, first, how social networks serve the elimination of minorities in general, and second, to argue that the media logic of social networks must adapt to new interpretations of democracy that give more space to minorities and human rights. Finally, this article will show how the Clubhouse serves the new interpretations of democracy at least in a minimal way. To achieve the mentioned goals, in this article by a descriptive-analytical method, first, the relation between media logic and postmodern democracy will be inquired. The political economy popularity in social media and its conflict with democracy will be discussed. Finally, it will be explored how the Clubhouse provides a new horizon for the concepts embodied in radical democracy, a horizon that more effectively serves the rights of minorities and human rights in general.

Keywords: algorithmic tyranny, Clubhouse, minority rights, radical democracy, social media

Procedia PDF Downloads 147
205 Enabling Self-Care and Shared Decision Making for People Living with Dementia

Authors: Jonathan Turner, Julie Doyle, Laura O’Philbin, Dympna O’Sullivan

Abstract:

People living with dementia should be at the centre of decision-making regarding goals for daily living. These goals include basic activities (dressing, hygiene, and mobility), advanced activities (finances, transportation, and shopping), and meaningful activities that promote well-being (pastimes and intellectual pursuits). However, there is limited involvement of people living with dementia in the design of technology to support their goals. A project is described that is co-designing intelligent computer-based support for, and with, people affected by dementia and their carers. The technology will support self-management, empower participation in shared decision-making with carers and help people living with dementia remain healthy and independent in their homes for longer. It includes information from the patient’s care plan, which documents medications, contacts, and the patient's wishes on end-of-life care. Importantly for this work, the plan can outline activities that should be maintained or worked towards, such as exercise or social contact. The authors discuss how to integrate care goal information from such a care plan with data collected from passive sensors in the patient’s home in order to deliver individualized planning and interventions for persons with dementia. A number of scientific challenges are addressed: First, to co-design with dementia patients and their carers computerized support for shared decision-making about their care while allowing the patient to share the care plan. Second, to develop a new and open monitoring framework with which to configure sensor technologies to collect data about whether goals and actions specified for a person in their care plan are being achieved. This is developed top-down by associating care quality types and metrics elicited from the co-design activities with types of data that can be collected within the home, from passive and active sensors, and from the patient’s feedback collected through a simple co-designed interface. These activities and data will be mapped to appropriate sensors and technological infrastructure with which to collect the data. Third, the application of machine learning models to analyze data collected via the sensing devices in order to investigate whether and to what extent activities outlined via the care plan are being achieved. The models will capture longitudinal data to track disease progression over time; as the disease progresses and captured data show that activities outlined in the care plan are not being achieved, the care plan may recommend alternative activities. Disease progression may also require care changes, and a data-driven approach can capture changes in a condition more quickly and allow care plans to evolve and be updated.

Keywords: care goals, decision-making, dementia, self-care, sensors

Procedia PDF Downloads 172
204 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence

Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang

Abstract:

Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.

Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics

Procedia PDF Downloads 74
203 Assessment of Pedestrian Comfort in a Portuguese City Using Computational Fluid Dynamics Modelling and Wind Tunnel

Authors: Bruno Vicente, Sandra Rafael, Vera Rodrigues, Sandra Sorte, Sara Silva, Ana Isabel Miranda, Carlos Borrego

Abstract:

Wind comfort for pedestrians is an important condition in urban areas. In Portugal, a country with 900 km of coastline, the wind direction are predominantly from Nor-Northwest with an average speed of 2.3 m·s -1 (at 2 m height). As a result, a set of city authorities have been requesting studies of pedestrian wind comfort for new urban areas/buildings, as well as to mitigate wind discomfort issues related to existing structures. This work covers the efficiency evaluation of a set of measures to reduce the wind speed in an outdoor auditorium (open space) located in a coastal Portuguese urban area. These measures include the construction of barriers, placed at upstream and downstream of the auditorium, and the planting of trees, placed upstream of the auditorium. The auditorium is constructed in the form of a porch, aligned with North direction, driving the wind flow within the auditorium, promoting channelling effects and increasing its speed, causing discomfort in the users of this structure. To perform the wind comfort assessment, two approaches were used: i) a set of experiments using the wind tunnel (physical approach), with a representative mock-up of the study area; ii) application of the CFD (Computational Fluid Dynamics) model VADIS (numerical approach). Both approaches were used to simulate the baseline scenario and the scenarios considering a set of measures. The physical approach was conducted through a quantitative method, using hot-wire anemometer, and through a qualitative analysis (visualizations), using the laser technology and a fog machine. Both numerical and physical approaches were performed for three different velocities (2, 4 and 6 m·s-1 ) and two different directions (NorNorthwest and South), corresponding to the prevailing wind speed and direction of the study area. The numerical results show an effective reduction (with a maximum value of 80%) of the wind speed inside the auditorium, through the application of the proposed measures. A wind speed reduction in a range of 20% to 40% was obtained around the audience area, for a wind direction from Nor-Northwest. For southern winds, in the audience zone, the wind speed was reduced from 60% to 80%. Despite of that, for southern winds, the design of the barriers generated additional hot spots (high wind speed), namely, in the entrance to the auditorium. Thus, a changing in the location of the entrance would minimize these effects. The results obtained in the wind tunnel compared well with the numerical data, also revealing the high efficiency of the purposed measures (for both wind directions).

Keywords: urban microclimate, pedestrian comfort, numerical modelling, wind tunnel experiments

Procedia PDF Downloads 232
202 Ergonomic Assessment of Workplace Environment of Flour Mill Workers

Authors: Jayshree P. Zend, Ashatai B. Pawar

Abstract:

The study was carried out in Parbhani district of Maharashtra state, India with the objectives to study environmental problems faced by flour mill workers, prevalence of work-related health hazards and the physiological cost of workers while performing work in flour mill in traditional method as well as improved method. The use of flour presser, dust controlling bag and noise and dust controlling mask developed by AICRP College of Home Science, VNMKV, Parbhani was considered as an improved method. This investigation consisted survey and experiment which was conducted in the respective locations of flour mills. Healthy, non-smoking 30 flour mill workers ranged between the age group of 20-50 yrs comprising 16 female and 14 male working at flour mill for 4-8 hrs/ day and 6 days/ week and had minimum five years experience of work in flour mill were selected for the study. Pulmonary function test of flour mill workers was carried out by trained technician at Dr. ShankarraoChavan Government Medical College, Nanded by using Electronic Spirometer. The data regarding heart rate (resting, working and recovery), energy expenditure, musculoskeletal problems and occupational health hazards and accidents were recorded by using pretested questionnaire. Scientific equipment used in the experiment were polar sport test heart rate monitor, Hygrometer, Goniometer, Dialed Thermometer, Sound Level Meter, Lux Meter, Ambient Air Sampler and Air Quality Monitor. The collected data were subjected to appropriate statistical analysis such as 't' test and correlation coefficient test. Results indicated that improved method i.e. use of noise and dust controlling mask, flour presser and dust controlling bag were effective in reducing physiological cost of work of flour mill workers. Lung function test of flour mill workers showed decreased values of all parameters, hence the results of present study support paying attention to use of personal protective noise and dust controlling mask by flour mill workers and also to the working conditions in flour mill especially ventilation and illumination level needs to be enhanced in flour mill. The study also emphasizes the need to develop some mechanism for lifting load of grains and unloading in the hopper. It is also suggested that the flour mill workers should use flour presser suitable to their height to avoid frequent bending and should use dust controlling bag to flour outlet of machine to reduce inhalable flour dust level in the flour mill.

Keywords: physiological cost, energy expenditure, musculoskeletal problems

Procedia PDF Downloads 403
201 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification

Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens

Abstract:

Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.

Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage

Procedia PDF Downloads 190
200 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 285
199 Smart Interior Design: A Revolution in Modern Living

Authors: Fatemeh Modirzare

Abstract:

Smart interior design represents a transformative approach to creating living spaces that integrate technology seamlessly into our daily lives, enhancing comfort, convenience, and sustainability. This paper explores the concept of smart interior design, its principles, benefits, challenges, and future prospects. It also highlights various examples and applications of smart interior design to illustrate its potential in shaping the way we live and interact with our surroundings. In an increasingly digitized world, the boundaries between technology and interior design are blurring. Smart interior design, also known as intelligent or connected interior design, involves the incorporation of advanced technologies and automation systems into residential and commercial spaces. This innovative approach aims to make living environments more efficient, comfortable, and adaptable while promoting sustainability and user well-being. Smart interior design seamlessly integrates technology into the aesthetics and functionality of a space, ensuring that devices and systems do not disrupt the overall design. Sustainable materials, energy-efficient systems, and eco-friendly practices are central to smart interior design, reducing environmental impact. Spaces are designed to be adaptable, allowing for reconfiguration to suit changing needs and preferences. Smart homes and spaces offer greater comfort through features like automated climate control, adjustable lighting, and customizable ambiance. Smart interior design can significantly reduce energy consumption through optimized heating, cooling, and lighting systems. Smart interior design integrates security systems, fire detection, and emergency response mechanisms for enhanced safety. Sustainable materials, energy-efficient appliances, and waste reduction practices contribute to a greener living environment. Implementing smart interior design can be expensive, particularly when retrofitting existing spaces with smart technologies. The increased connectivity raises concerns about data privacy and cybersecurity, requiring robust measures to protect user information. Rapid advancements in technology may lead to obsolescence, necessitating updates and replacements. Users must be familiar with smart systems to fully benefit from them, requiring education and ongoing support. Residential spaces incorporate features like voice-activated assistants, automated lighting, and energy management systems. Intelligent office design enhances productivity and employee well-being through smart lighting, climate control, and meeting room booking systems. Hospitals and healthcare facilities use smart interior design for patient monitoring, wayfinding, and energy conservation. Smart retail design includes interactive displays, personalized shopping experiences, and inventory management systems. The future of smart interior design holds exciting possibilities, including AI-powered design tools that create personalized spaces based on user preferences. Smart interior design will increasingly prioritize factors that improve physical and mental health, such as air quality monitoring and mood-enhancing lighting. Smart interior design is revolutionizing the way we interact with our living and working spaces. By embracing technology, sustainability, and user-centric design principles, smart interior design offers numerous benefits, from increased comfort and convenience to energy efficiency and sustainability. Despite challenges, the future holds tremendous potential for further innovation in this field, promising a more connected, efficient, and harmonious way of living and working.

Keywords: smart interior design, home automation, sustainable living spaces, technological integration, user-centric design

Procedia PDF Downloads 72
198 Finite Element Analysis of the Drive Shaft and Jacking Frame Interaction in Micro-Tunneling Method: Case Study of Tehran Sewerage

Authors: B. Mohammadi, A. Riazati, P. Soltan Sanjari, S. Azimbeik

Abstract:

The ever-increasing development of civic demands on one hand; and the urban constrains for newly establish of infrastructures, on the other hand, perforce the engineering committees to apply non-conflicting methods in order to optimize the results. One of these optimized procedures to establish the main sewerage networks is the pipe jacking and micro-tunneling method. The raw information and researches are based on the experiments of the slurry micro-tunneling project of the Tehran main sewerage network that it has executed by the KAYSON co. The 4985 meters route of the mentioned project that is located nearby the Azadi square and the most vital arteries of Tehran is faced to 45% physical progress nowadays. The boring machine is made by the Herrenknecht and the diameter of the using concrete-polymer pipes are 1600 and 1800 millimeters. Placing and excavating several shafts on the ground and direct Tunnel boring between the axes of issued shafts is one of the requirements of the micro-tunneling. Considering the stream of the ground located shafts should care the hydraulic circumstances, civic conditions, site geography, traffic cautions and etc. The profile length has to convert to many shortened segment lines so the generated angle between the segments will be based in the manhole centers. Each segment line between two continues drive and receive the shaft, displays the jack location, driving angle and the path straight, thus, the diversity of issued angle causes the variety of jack positioning in the shaft. The jacking frame fixing conditions and it's associated dynamic load direction produces various patterns of Stress and Strain distribution and creating fatigues in the shaft wall and the soil surrounded the shaft. This pattern diversification makes the shaft wall transformed, unbalanced subsidence and alteration in the pipe jacking Stress Contour. This research is based on experiments of the Tehran's west sewerage plan and the numerical analysis the interaction of the soil around the shaft, shaft walls and the Jacking frame direction and finally, the suitable or unsuitable location of the pipe jacking shaft will be determined.

Keywords: underground structure, micro-tunneling, fatigue analysis, dynamic-soil–structure interaction, underground water, finite element analysis

Procedia PDF Downloads 320
197 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System

Authors: Nareshkumar Harale, B. B. Meshram

Abstract:

The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.

Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design

Procedia PDF Downloads 228
196 Integrating Personality Traits and Travel Motivations for Enhanced Small and Medium-sized Tourism Enterprises (SMEs) Strategies: A Case Study of Cumbria, United Kingdom

Authors: Delia Gabriela Moisa, Demos Parapanos, Tim Heap

Abstract:

The tourism sector is mainly comprised of small and medium-sized tourism enterprises (SMEs), representing approximately 80% of global businesses in this field. These entities require focused attention and support to address challenges, ensuring their competitiveness and relevance in a dynamic industry characterized by continuously changing customer preferences. To address these challenges, it becomes imperative to consider not only socio-demographic factors but also delve into the intricate interplay of psychological elements influencing consumer behavior. This study investigates the impact of personality traits and travel motivations on visitor activities in Cumbria, United Kingdom, an iconic region marked by UNESCO World Heritage Sites, including The Lake District National Park and Hadrian's Wall. With a £4.1 billion tourism industry primarily driven by SMEs, Cumbria serves as an ideal setting for examining the relationship between tourist psychology and activities. Employing the Big Five personality model and the Travel Career Pattern motivation theory, this study aims to explain the relationship between psychological factors and tourist activities. The study further explores SME perspectives on personality-based market segmentation, providing strategic insights into addressing evolving tourist preferences.This pioneering mixed-methods study integrates quantitative data from 330 visitor surveys, subsequently complemented by qualitative insights from tourism SME representatives. The findings unveil that socio-demographic factors do not exhibit statistically significant variations in the activities pursued by visitors in Cumbria. However, significant correlations emerge between personality traits and motivations with preferred visitor activities. Open-minded tourists gravitate towards events and cultural activities, while Conscientious individuals favor cultural pursuits. Extraverted tourists lean towards adventurous, recreational, and wellness activities, while Agreeable personalities opt for lake cruises. Interestingly, a contrasting trend emerges as Extraversion increases, leading to a decrease in interest in cultural activities. Similarly, heightened Agreeableness corresponds to a decrease in interest in adventurous activities. Furthermore, travel motivations, including nostalgia and building relationships, drive event participation, while self-improvement and novelty-seeking lead to adventurous activities. Additionally, qualitative insights from tourism SME representatives underscore the value of targeted messaging aligned with visitor personalities for enhancing loyalty and experiences. This study contributes significantly to scholarship through its novel framework, integrating tourist psychology with activities and industry perspectives. The proposed conceptual model holds substantial practical implications for SMEs to formulate personalized offerings, optimize marketing, and strategically allocate resources tailored to tourist personalities. While the focus is on Cumbria, the methodology's universal applicability offers valuable insights for destinations globally seeking a competitive advantage. Future research addressing scale reliability and geographic specificity limitations can further advance knowledge on this critical relationship between visitor psychology, individual preferences, and industry imperatives. Moreover, by extending the investigation to other districts, future studies could draw comparisons and contrasts in the results, providing a more nuanced understanding of the factors influencing visitor psychology and preferences.

Keywords: personality trait, SME, tourist behaviour, tourist motivation, visitor activity

Procedia PDF Downloads 70
195 Data Analysis Tool for Predicting Water Scarcity in Industry

Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse

Abstract:

Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.

Keywords: data mining, industry, machine Learning, shortage, water resources

Procedia PDF Downloads 122
194 Biomedical Application of Green Biosynthesis Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract

Authors: Farideh Namvar, Rosfarizan Mohamed

Abstract:

In the field of nanotechnology, the use of various biological units instead of toxic chemicals for the reduction and stabilization of nanoparticles, has received extensive attention. This use of biological entities to create nanoparticles has designated as “Green” synthesis and it is considered to be far more beneficial due to being economical, eco-friendly and applicable for large-scale synthesis as it operates on low pressure, less input of energy and low temperatures. The lack of toxic byproducts and consequent decrease in degradation of the product renders this technique more preferable over physical and classical chemical methods. The variety of biomass having reduction properties to produce nanoparticles makes them an ideal candidate for fabrication. Metal oxide nanoparticles have been said to represent a "fundamental cornerstone of nanoscience and nanotechnology" due to their variety of properties and potential applications. However, this also provides evidence of the fact that metal oxides include many diverse types of nanoparticles with large differences in chemical composition and behaviour. In this study, iron oxide nanoparticles (Fe3O4-NPs) were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferric chloride solution with brown seaweed (Sargassum muticum) water extract containing polysaccharides as a main factor which acts as reducing agent and efficient stabilizer. Antimicrobial activity against six microorganisms was tested using well diffusion method. The resulting S-IONPs are crystalline in nature, with a cubic shape. The average particle diameter, as determined by TEM, was found to be 18.01 nm. The S-IONPs were efficiently inhibited the growth of Listeria monocytogenes, Escherichia coli and Candida species. Our favorable results suggest that S-IONPs could be a promising candidate for development of future antimicrobial therapies. The nature of biosynthesis and the therapeutic potential by S-IONPs could pave the way for further research on design of green synthesis therapeutic agents, particularly nanomedicine, to deal with treatment of infections. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial activity of these particles. Antioxidant activity of S-IONPs synthesized by green method was measured by ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (IC50= 1000µg) radical scavenging activity. Also, with the increasing concentration of S-IONPs, catalase gene expression compared to control gene GAPDH increased. For anti-angiogenesis study the Ross fertilized eggs were divided into four groups; the control and three experimental groups. The gelatin sponges containing albumin were placed on the chorioalantoic membrane and soaked with different concentrations of S-IONPs. All the cases were photographed using a photo stereomicroscope. The number and the lengths of the vessels were measured using Image J software. The crown rump (CR) and weight of the embryo were also recorded. According to the data analysis, the number and length of the blood vessels, as well as the CR and weight of the embryos reduced significantly compared to the control (p < 0.05), dose dependently. The total hemoglobin was quantified as an indicator of the blood vessel formation, and in the treated samples decreased, which showed its inhibitory effect on angiogenesis.

Keywords: anti-angiogenesis, antimicrobial, antioxidant, biosynthesis, iron oxide (fe3o4) nanoparticles, sargassum muticum, seaweed

Procedia PDF Downloads 316
193 Mineralogical Study of the Triassic Clay of Maaziz and the Miocene Marl of Akrach in Morocco: Analysis and Evaluating of the Two Geomaterials for the Construction of Ceramic Bricks

Authors: Sahar El Kasmi, Ayoub Aziz, Saadia Lharti, Mohammed El Janati, Boubker Boukili, Nacer El Motawakil, Mayom Chol Luka Awan

Abstract:

Two types of geomaterials (Red Triassic clay from the Maaziz region and Yellow Pliocene clay from the Akrach region) were used to create different mixtures for the fabrication of ceramic bricks. This study investigated the influence of the Pliocene clay on the overall composition and mechanical properties of the Triassic clay. The red Triassic clay, sourced from Maaziz, underwent various mechanical processes and treatments to facilitate its transformation into ceramic bricks for construction. The triassic clay was subjected to a drying chamber and a heating chamber at 100°C to remove moisture. Subsequently, the dried clay samples were processed using a Planetary Babs ll Mill to reduce particle size and improve homogeneity. The resulting clay material was sieved, and the fine particles below 100 mm were collected for further analysis. In parallel, the Miocene marl obtained from the Akrach region was fragmented into finer particles and subjected to similar drying, grinding, and sieving procedures as the triassic clay. The two clay samples are then amalgamated and homogenized in different proportions. Precise measurements were taken using a weighing balance, and mixtures of 90%, 80%, and 70% Triassic clay with 10%, 20%, and 30% yellow clay were prepared, respectively. To evaluate the impact of Pliocene marl on the composition, the prepared clay mixtures were spread evenly and treated with a water modifier to enhance plasticity. The clay was then molded using a brick-making machine, and the initial manipulation process was observed. Additional batches were prepared with incremental amounts of Pliocene marl to further investigate its effect on the fracture behavior of the clay, specifically their resistance. The molded clay bricks were subjected to compression tests to measure their strength and resistance to deformation. Additional tests, such as water absorption tests, were also conducted to assess the overall performance of the ceramic bricks fabricated from the different clay mixtures. The results were analyzed to determine the influence of the Pliocene marl on the strength and durability of the Triassic clay bricks. The results indicated that the incorporation of Pliocene clay reduced the fracture of the triassic clay, with a noticeable reduction observed at 10% addition. No fractures were observed when 20% and 30% of yellow clay are added. These findings suggested that yellow clay can enhance the mechanical properties and structural integrity of red clay-based products.

Keywords: triassic clay, pliocene clay, mineralogical composition, geo-materials, ceramics, akach region, maaziz region, morocco.

Procedia PDF Downloads 90
192 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance

Authors: Eva Laryea, Clement Yeboah Authors

Abstract:

A pretest-posttest within subjects, experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising, as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers, and will continue to be a dynamic and rapidly evolving field for years to come.

Keywords: pretest-posttest within subjects, experimental design, achievement, statistics-related anxiety

Procedia PDF Downloads 59
191 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 122
190 Improving Data Completeness and Timely Reporting: A Joint Collaborative Effort between Partners in Health and Ministry of Health in Remote Areas, Neno District, Malawi

Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Moses Banda Aron, Julia Higgins, Manuel Mulwafu, Kondwani Mpinga, Mwayi Chunga, Grace Momba, Enock Ndarama, Dickson Sumphi, Atupere Phiri, Fabien Munyaneza

Abstract:

Background: Data is key to supporting health service delivery as stakeholders, including NGOs rely on it for effective service delivery, decision-making, and system strengthening. Several studies generated debate on data quality from national health management information systems (HMIS) in sub-Saharan Africa. This limits the utilization of data in resource-limited settings, which already struggle to meet standards set by the World Health Organization (WHO). We aimed to evaluate data quality improvement of Neno district HMIS over a 4-year period (2018 – 2021) following quarterly data reviews introduced in January 2020 by the district health management team and Partners In Health. Methods: Exploratory Mixed Research was used to examine report rates, followed by in-depth interviews using Key Informant Interviews (KIIs) and Focus Group Discussions (FGDs). We used the WHO module desk review to assess the quality of HMIS data in the Neno district captured from 2018 to 2021. The metrics assessed included the completeness and timeliness of 34 reports. Completeness was measured as a percentage of non-missing reports. Timeliness was measured as the span between data inputs and expected outputs meeting needs. We computed T-Test and recorded P-values, summaries, and percentage changes using R and Excel 2016. We analyzed demographics for key informant interviews in Power BI. We developed themes from 7 FGDs and 11 KIIs using Dedoose software, from which we picked perceptions of healthcare workers, interventions implemented, and improvement suggestions. The study was reviewed and approved by Malawi National Health Science Research Committee (IRB: 22/02/2866). Results: Overall, the average reporting completeness rate was 83.4% (before) and 98.1% (after), while timeliness was 68.1% and 76.4 respectively. Completeness of reports increased over time: 2018, 78.8%; 2019, 88%; 2020, 96.3% and 2021, 99.9% (p< 0.004). The trend for timeliness has been declining except in 2021, where it improved: 2018, 68.4%; 2019, 68.3%; 2020, 67.1% and 2021, 81% (p< 0.279). Comparing 2021 reporting rates to the mean of three preceding years, both completeness increased from 88% to 99% (in 2021), while timeliness increased from 68% to 81%. Sixty-five percent of reports have maintained meeting a national standard of 90%+ in completeness while only 24% in timeliness. Thirty-two percent of reports met the national standard. Only 9% improved on both completeness and timeliness, and these are; cervical cancer, nutrition care support and treatment, and youth-friendly health services reports. 50% of reports did not improve to standard in timeliness, and only one did not in completeness. On the other hand, factors associated with improvement included improved communications and reminders using internal communication, data quality assessments, checks, and reviews. Decentralizing data entry at the facility level was suggested to improve timeliness. Conclusion: Findings suggest that data quality in HMIS for the district has improved following collaborative efforts. We recommend maintaining such initiatives to identify remaining quality gaps and that results be shared publicly to support increased use of data. These results can inform Ministry of Health and its partners on some interventions and advise initiatives for improving its quality.

Keywords: data quality, data utilization, HMIS, collaboration, completeness, timeliness, decision-making

Procedia PDF Downloads 85
189 Predictive Modelling of Curcuminoid Bioaccessibility as a Function of Food Formulation and Associated Properties

Authors: Kevin De Castro Cogle, Mirian Kubo, Maria Anastasiadi, Fady Mohareb, Claire Rossi

Abstract:

Background: The bioaccessibility of bioactive compounds is a critical determinant of the nutritional quality of various food products. Despite its importance, there is a limited number of comprehensive studies aimed at assessing how the composition of a food matrix influences the bioaccessibility of a compound of interest. This knowledge gap has prompted a growing need to investigate the intricate relationship between food matrix formulations and the bioaccessibility of bioactive compounds. One such class of bioactive compounds that has attracted considerable attention is curcuminoids. These naturally occurring phytochemicals, extracted from the roots of Curcuma longa, have gained popularity owing to their purported health benefits and also well known for their poor bioaccessibility Project aim: The primary objective of this research project is to systematically assess the influence of matrix composition on the bioaccessibility of curcuminoids. Additionally, this study aimed to develop a series of predictive models for bioaccessibility, providing valuable insights for optimising the formula for functional foods and provide more descriptive nutritional information to potential consumers. Methods: Food formulations enriched with curcuminoids were subjected to in vitro digestion simulation, and their bioaccessibility was characterized with chromatographic and spectrophotometric techniques. The resulting data served as the foundation for the development of predictive models capable of estimating bioaccessibility based on specific physicochemical properties of the food matrices. Results: One striking finding of this study was the strong correlation observed between the concentration of macronutrients within the food formulations and the bioaccessibility of curcuminoids. In fact, macronutrient content emerged as a very informative explanatory variable of bioaccessibility and was used, alongside other variables, as predictors in a Bayesian hierarchical model that predicted curcuminoid bioaccessibility accurately (optimisation performance of 0.97 R2) for the majority of cross-validated test formulations (LOOCV of 0.92 R2). These preliminary results open the door to further exploration, enabling researchers to investigate a broader spectrum of food matrix types and additional properties that may influence bioaccessibility. Conclusions: This research sheds light on the intricate interplay between food matrix composition and the bioaccessibility of curcuminoids. This study lays a foundation for future investigations, offering a promising avenue for advancing our understanding of bioactive compound bioaccessibility and its implications for the food industry and informed consumer choices.

Keywords: bioactive bioaccessibility, food formulation, food matrix, machine learning, probabilistic modelling

Procedia PDF Downloads 68
188 Applicability and Reusability of Fly Ash and Base Treated Fly Ash for Adsorption of Catechol from Aqueous Solution: Equilibrium, Kinetics, Thermodynamics and Modeling

Authors: S. Agarwal, A. Rani

Abstract:

Catechol is a natural polyphenolic compound that widely exists in higher plants such as teas, vegetables, fruits, tobaccos, and some traditional Chinese medicines. The fly ash-based zeolites are capable of absorbing a wide range of pollutants. But the process of zeolite synthesis is time-consuming and requires technical setups by the industries. The marketed costs of zeolites are quite high restricting its use by small-scale industries for the removal of phenolic compounds. The present research proposes a simple method of alkaline treatment of FA to produce an effective adsorbent for catechol removal from wastewater. The experimental parameter such as pH, temperature, initial concentration and adsorbent dose on the removal of catechol were studied in batch reactor. For this purpose the adsorbent materials were mixed with aqueous solutions containing catechol ranging in 50 – 200 mg/L initial concentrations and then shaken continuously in a thermostatic Orbital Incubator Shaker at 30 ± 0.1 °C for 24 h. The samples were withdrawn from the shaker at predetermined time interval and separated by centrifugation (Centrifuge machine MBL-20) at 2000 rpm for 4 min. to yield a clear supernatant for analysis of the equilibrium concentrations of the solutes. The concentrations were measured with Double Beam UV/Visible spectrophotometer (model Spectrscan UV 2600/02) at the wavelength of 275 nm for catechol. In the present study, the use of low-cost adsorbent (BTFA) derived from coal fly ash (FA), has been investigated as a substitute of expensive methods for the sequestration of catechol. The FA and BTFA adsorbents were well characterized by XRF, FE-SEM with EDX, FTIR, and surface area and porosity measurement which proves the chemical constituents, functional groups and morphology of the adsorbents. The catechol adsorption capacities of synthesized BTFA and native material were determined. The adsorption was slightly increased with an increase in pH value. The monolayer adsorption capacities of FA and BTFA for catechol were 100 mg g⁻¹ and 333.33 mg g⁻¹ respectively, and maximum adsorption occurs within 60 minutes for both adsorbents used in this test. The equilibrium data are fitted by Freundlich isotherm found on the basis of error analysis (RMSE, SSE, and χ²). Adsorption was found to be spontaneous and exothermic on the basis of thermodynamic parameters (ΔG°, ΔS°, and ΔH°). Pseudo-second-order kinetic model better fitted the data for both FA and BTFA. BTFA showed large adsorptive characteristics, high separation selectivity, and excellent recyclability than FA. These findings indicate that BTFA could be employed as an effective and inexpensive adsorbent for the removal of catechol from wastewater.

Keywords: catechol, fly ash, isotherms, kinetics, thermodynamic parameters

Procedia PDF Downloads 127
187 Effect of Pre-bonding Storage Period on Laser-treated Al Surfaces

Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig

Abstract:

In recent years, the use of aluminium has further expanded and is expected to replace steel in the future as vehicles become lighter and more recyclable in order to reduce greenhouse gas (GHG) emissions and improve fuel economy. In line with this, structures and components are becoming increasingly multi-material, with different materials, including aluminium, being used in combination to improve mechanical utility and performance. A common method of assembling dissimilar materials is mechanical fastening, but it has several drawbacks, such as increased manufacturing processes and the influence of substrate-specific mechanical properties. Adhesive bonding and fusion bonding are methods that overcome the above disadvantages. In these two joining methods, surface pre-treatment of the substrate is always necessary to ensure the strength and durability of the joint. Previous studies have shown that laser surface treatment improves the strength and durability of the joint. Yan et al. showed that laser surface treatment of aluminium alloys changes α-Al2O3 in the oxide layer to γ-Al2O3. As γ-Al2O3 has a large specific surface area, is very porous and chemically active, laser-treated aluminium surfaces are expected to undergo physico-chemical changes over time and adsorb moisture and organic substances from the air or storage atmosphere. The impurities accumulated on the laser-treated surface may be released at the adhesive and bonding interface by the heat input to the bonding system during the joining phase, affecting the strength and durability of the joint. However, only a few studies have discussed the effect of such storage periods on laser-treated surfaces. This paper, therefore, investigates the ageing of laser-treated aluminium alloy surfaces through thermal analysis, electrochemical analysis and microstructural observations.AlMg3 of 0.5 mm and 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fibre laser at 1060 nm wavelength, 70 W maximum power and 55 kHz repetition frequency. The aluminium surface was then analysed using SEM, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV) after storage in air for various periods ranging from one day to several months TGA and FTIR analysed impurities adsorbed on the aluminium surface, while CV revealed changes in the true electrochemically active surface area. SEM also revealed visual changes on the treated surface. In summary, the changes in the laser-treated aluminium surface with storage time were investigated, and the final results were used to determine the appropriate storage period.

Keywords: laser surface treatment, pre-treatment, adhesion, bonding, corrosion, durability, dissimilar material interface, automotive, aluminium alloys

Procedia PDF Downloads 80
186 Dual-use UAVs in Armed Conflicts: Opportunities and Risks for Cyber and Electronic Warfare

Authors: Piret Pernik

Abstract:

Based on strategic, operational, and technical analysis of the ongoing armed conflict in Ukraine, this paper will examine the opportunities and risks of using small commercial drones (dual-use unmanned aerial vehicles, UAV) for military purposes. The paper discusses the opportunities and risks in the information domain, encompassing both cyber and electromagnetic interference and attacks. The paper will draw conclusions on a possible strategic impact to the battlefield outcomes in the modern armed conflicts by the widespread use of dual-use UAVs. This article will contribute to filling the gap in the literature by examining based on empirical data cyberattacks and electromagnetic interference. Today, more than one hundred states and non-state actors possess UAVs ranging from low cost commodity models, widely are dual-use, available and affordable to anyone, to high-cost combat UAVs (UCAV) with lethal kinetic strike capabilities, which can be enhanced with Artificial Intelligence (AI) and Machine Learning (ML). Dual-use UAVs have been used by various actors for intelligence, reconnaissance, surveillance, situational awareness, geolocation, and kinetic targeting. Thus they function as force multipliers enabling kinetic and electronic warfare attacks and provide comparative and asymmetric operational and tactical advances. Some go as far as argue that automated (or semi-automated) systems can change the character of warfare, while others observe that the use of small drones has not changed the balance of power or battlefield outcomes. UAVs give considerable opportunities for commanders, for example, because they can be operated without GPS navigation, makes them less vulnerable and dependent on satellite communications. They can and have been used to conduct cyberattacks, electromagnetic interference, and kinetic attacks. However, they are highly vulnerable to those attacks themselves. So far, strategic studies, literature, and expert commentary have overlooked cybersecurity and electronic interference dimension of the use of dual use UAVs. The studies that link technical analysis of opportunities and risks with strategic battlefield outcomes is missing. It is expected that dual use commercial UAV proliferation in armed and hybrid conflicts will continue and accelerate in the future. Therefore, it is important to understand specific opportunities and risks related to the crowdsourced use of dual-use UAVs, which can have kinetic effects. Technical countermeasures to protect UAVs differ depending on a type of UAV (small, midsize, large, stealth combat), and this paper will offer a unique analysis of small UAVs both from the view of opportunities and risks for commanders and other actors in armed conflict.

Keywords: dual-use technology, cyber attacks, electromagnetic warfare, case studies of cyberattacks in armed conflicts

Procedia PDF Downloads 102
185 An Analytical Metric and Process for Critical Infrastructure Architecture System Availability Determination in Distributed Computing Environments under Infrastructure Attack

Authors: Vincent Andrew Cappellano

Abstract:

In the early phases of critical infrastructure system design, translating distributed computing requirements to an architecture has risk given the multitude of approaches (e.g., cloud, edge, fog). In many systems, a single requirement for system uptime / availability is used to encompass the system’s intended operations. However, when architected systems may perform to those availability requirements only during normal operations and not during component failure, or during outages caused by adversary attacks on critical infrastructure (e.g., physical, cyber). System designers lack a structured method to evaluate availability requirements against candidate system architectures through deep degradation scenarios (i.e., normal ops all the way down to significant damage of communications or physical nodes). This increases risk of poor selection of a candidate architecture due to the absence of insight into true performance for systems that must operate as a piece of critical infrastructure. This research effort proposes a process to analyze critical infrastructure system availability requirements and a candidate set of systems architectures, producing a metric assessing these architectures over a spectrum of degradations to aid in selecting appropriate resilient architectures. To accomplish this effort, a set of simulation and evaluation efforts are undertaken that will process, in an automated way, a set of sample requirements into a set of potential architectures where system functions and capabilities are distributed across nodes. Nodes and links will have specific characteristics and based on sampled requirements, contribute to the overall system functionality, such that as they are impacted/degraded, the impacted functional availability of a system can be determined. A machine learning reinforcement-based agent will structurally impact the nodes, links, and characteristics (e.g., bandwidth, latency) of a given architecture to provide an assessment of system functional uptime/availability under these scenarios. By varying the intensity of the attack and related aspects, we can create a structured method of evaluating the performance of candidate architectures against each other to create a metric rating its resilience to these attack types/strategies. Through multiple simulation iterations, sufficient data will exist to compare this availability metric, and an architectural recommendation against the baseline requirements, in comparison to existing multi-factor computing architectural selection processes. It is intended that this additional data will create an improvement in the matching of resilient critical infrastructure system requirements to the correct architectures and implementations that will support improved operation during times of system degradation due to failures and infrastructure attacks.

Keywords: architecture, resiliency, availability, cyber-attack

Procedia PDF Downloads 110
184 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 232
183 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures

Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang

Abstract:

Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.

Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation

Procedia PDF Downloads 124
182 Optimization of MAG Welding Process Parameters Using Taguchi Design Method on Dead Mild Steel

Authors: Tadele Tesfaw, Ajit Pal Singh, Abebaw Mekonnen Gezahegn

Abstract:

Welding is a basic manufacturing process for making components or assemblies. Recent welding economics research has focused on developing the reliable machinery database to ensure optimum production. Research on welding of materials like steel is still critical and ongoing. Welding input parameters play a very significant role in determining the quality of a weld joint. The metal active gas (MAG) welding parameters are the most important factors affecting the quality, productivity and cost of welding in many industrial operations. The aim of this study is to investigate the optimization process parameters for metal active gas welding for 60x60x5mm dead mild steel plate work-piece using Taguchi method to formulate the statistical experimental design using semi-automatic welding machine. An experimental study was conducted at Bishoftu Automotive Industry, Bishoftu, Ethiopia. This study presents the influence of four welding parameters (control factors) like welding voltage (volt), welding current (ampere), wire speed (m/min.), and gas (CO2) flow rate (lit./min.) with three different levels for variability in the welding hardness. The objective functions have been chosen in relation to parameters of MAG welding i.e., welding hardness in final products. Nine experimental runs based on an L9 orthogonal array Taguchi method were performed. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the welding characteristics of dead mild steel plate and used in order to obtain optimum levels for every input parameter at 95% confidence level. The optimal parameters setting was found is welding voltage at 22 volts, welding current at 125 ampere, wire speed at 2.15 m/min and gas flow rate at 19 l/min by using the Taguchi experimental design method within the constraints of the production process. Finally, six conformations welding have been carried out to compare the existing values; the predicated values with the experimental values confirm its effectiveness in the analysis of welding hardness (quality) in final products. It is found that welding current has a major influence on the quality of welded joints. Experimental result for optimum setting gave a better hardness of welding condition than initial setting. This study is valuable for different material and thickness variation of welding plate for Ethiopian industries.

Keywords: Weld quality, metal active gas welding, dead mild steel plate, orthogonal array, analysis of variance, Taguchi method

Procedia PDF Downloads 482
181 Airon Project: IoT-Based Agriculture System for the Optimization of Irrigation Water Consumption

Authors: África Vicario, Fernando J. Álvarez, Felipe Parralejo, Fernando Aranda

Abstract:

The irrigation systems of traditional agriculture, such as gravity-fed irrigation, produce a great waste of water because, generally, there is no control over the amount of water supplied in relation to the water needed. The AIRON Project tries to solve this problem by implementing an IoT-based system to sensor the irrigation plots so that the state of the crops and the amount of water used for irrigation can be known remotely. The IoT system consists of a sensor network that measures the humidity of the soil, the weather conditions (temperature, relative humidity, wind and solar radiation) and the irrigation water flow. The communication between this network and a central gateway is conducted by means of long-range wireless communication that depends on the characteristics of the irrigation plot. The main objective of the AIRON project is to deploy an IoT sensor network in two different plots of the irrigation community of Aranjuez in the Spanish region of Madrid. The first plot is 2 km away from the central gateway, so LoRa has been used as the base communication technology. The problem with this plot is the absence of mains electric power, so devices with energy-saving modes have had to be used to maximize the external batteries' use time. An ESP32 SOC board with a LoRa module is employed in this case to gather data from the sensor network and send them to a gateway consisting of a Raspberry Pi with a LoRa hat. The second plot is located 18 km away from the gateway, a range that hampers the use of LoRa technology. In order to establish reliable communication in this case, the long-term evolution (LTE) standard is used, which makes it possible to reach much greater distances by using the cellular network. As mains electric power is available in this plot, a Raspberry Pi has been used instead of the ESP32 board to collect sensor data. All data received from the two plots are stored on a proprietary server located at the irrigation management company's headquarters. The analysis of these data by means of machine learning algorithms that are currently under development should allow a short-term prediction of the irrigation water demand that would significantly reduce the waste of this increasingly valuable natural resource. The major finding of this work is the real possibility of deploying a remote sensing system for irrigated plots by using Commercial-Off-The-Shelf (COTS) devices, easily scalable and adaptable to design requirements such as the distance to the control center or the availability of mains electrical power at the site.

Keywords: internet of things, irrigation water control, LoRa, LTE, smart farming

Procedia PDF Downloads 87
180 Ethicality of Algorithmic Pricing and Consumers’ Resistance

Authors: Zainab Atia, Hongwei He, Panagiotis Sarantopoulos

Abstract:

Over the past few years, firms have witnessed a massive increase in sophisticated algorithmic deployment, which has become quite pervasive in today’s modern society. With the wide availability of data for retailers, the ability to track consumers using algorithmic pricing has become an integral option in online platforms. As more companies are transforming their businesses and relying more on massive technological advancement, pricing algorithmic systems have brought attention and given rise to its wide adoption, with many accompanying benefits and challenges to be found within its usage. With the overall aim of increasing profits by organizations, algorithmic pricing is becoming a sound option by enabling suppliers to cut costs, allowing better services, improving efficiency and product availability, and enhancing overall consumer experiences. The adoption of algorithms in retail has been pioneered and widely used in literature across varied fields, including marketing, computer science, engineering, economics, and public policy. However, what is more, alarming today is the comprehensive understanding and focus of this technology and its associated ethical influence on consumers’ perceptions and behaviours. Indeed, due to algorithmic ethical concerns, consumers are found to be reluctant in some instances to share their personal data with retailers, which reduces their retention and leads to negative consumer outcomes in some instances. This, in its turn, raises the question of whether firms can still manifest the acceptance of such technologies by consumers while minimizing the ethical transgressions accompanied by their deployment. As recent modest research within the area of marketing and consumer behavior, the current research advances the literature on algorithmic pricing, pricing ethics, consumers’ perceptions, and price fairness literature. With its empirical focus, this paper aims to contribute to the literature by applying the distinction of the two common types of algorithmic pricing, dynamic and personalized, while measuring their relative effect on consumers’ behavioural outcomes. From a managerial perspective, this research offers significant implications that pertain to providing a better human-machine interactive environment (whether online or offline) to improve both businesses’ overall performance and consumers’ wellbeing. Therefore, by allowing more transparent pricing systems, businesses can harness their generated ethical strategies, which fosters consumers’ loyalty and extend their post-purchase behaviour. Thus, by defining the correct balance of pricing and right measures, whether using dynamic or personalized (or both), managers can hence approach consumers more ethically while taking their expectations and responses at a critical stance.

Keywords: algorithmic pricing, dynamic pricing, personalized pricing, price ethicality

Procedia PDF Downloads 92