Search results for: synchronous machine parameters
10938 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method
Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi
Abstract:
The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)
Procedia PDF Downloads 26010937 Comprehensive Study of Data Science
Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly
Abstract:
Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.Keywords: data science, machine learning, data analytics, artificial intelligence
Procedia PDF Downloads 8410936 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.Keywords: machine learning, text classification, NLP techniques, semantic representation
Procedia PDF Downloads 10210935 Parametrical Analysis of Stain Removal Performance of a Washing Machine: A Case Study of Sebum
Authors: Ozcan B., Koca B., Tuzcuoglu E., Cavusoglu S., Efe A., Bayraktar S.
Abstract:
A washing machine is mainly used for removing any types of dirt and stains and also eliminating malodorous substances from textile surfaces. Stains originate from various sources from the human body to environmental contamination. Therefore, there are various methods for removing them. They are roughly classified into four different groups: oily (greasy) stains, particulate stains, enzymatic stains and bleachable (oxidizable) stains. Oily stains on clothes surfaces are a common result of being in contact with organic substances of the human body (e.g. perspiration, skin shedding and sebum) or by being exposed to an oily environmental pollutant (e.g. oily foods). Studies showed that human sebum is major component of oily soil found on the garments, and if it is aged under the several environmental conditions, it can generate obstacle yellow stains on the textile surface. In this study, a parametric study was carried out to investigate the key factors affecting the cleaning performance (specifically sebum removal performance) of a washing machine. These parameters are mechanical agitation percentage of tumble, consumed water and total washing period. A full factorial design of the experiment is used to capture all the possible parametric interactions using Minitab 2021 statistical program. Tests are carried out with commercial liquid detergent and 2 different types of sebum-soiled cotton and cotton + polyester fabrics. Parametric results revealed that for both test samples, increasing the washing time and the mechanical agitation could lead to a much better removal result of sebum. However, for each sample, the water amount had different outcomes. Increasing the water amount decreases the performance of cotton + polyester fabrics, while it is favorable for cotton fabric. Besides this, it was also discovered that the type of textile can greatly affect the sebum removal performance. Results showed that cotton + polyester fabrics are much easier to clean compared to cotton fabricKeywords: laundry, washing machine, low-temperature washing, cold wash, washing efficiency index, sustainability, cleaning performance, stain removal, oily soil, sebum, yellowing
Procedia PDF Downloads 14610934 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines
Procedia PDF Downloads 10410933 Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 5410932 Machine Learning Approach to Project Control Threshold Reliability Evaluation
Authors: Y. Kim, H. Lee, M. Park, B. Lee
Abstract:
Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.Keywords: machine learning, project control, project progress monitoring, schedule
Procedia PDF Downloads 24410931 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer A. Aljohani
Abstract:
COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network
Procedia PDF Downloads 9410930 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation
Abstract:
Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning
Procedia PDF Downloads 12310929 Using AI for Analysing Political Leaders
Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu
Abstract:
This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence
Procedia PDF Downloads 8610928 Robustness of the Fuzzy Adaptive Speed Control of a Multi-Phase Asynchronous Machine
Authors: Bessaad Taieb, Benbouali Abderrahmen
Abstract:
Fuzzy controllers are a powerful tool for controlling complex processes. However, its robustness capacity remains moderately limited because it loses its property for large ranges of parametric variations. In this paper, the proposed control method is designed, based on a fuzzy adaptive controller used as a remedy for this problem. For increase the robustness of the vector control and to maintain the performance of the five-phase asynchronous machine despite the presence of disturbances (variation of rotor resistance, rotor inertia variations, sudden variations in the load etc.), by applying the method of behaviour model control (BMC). The results of simulation show that the fuzzy adaptive control provides best performance and has a more robustness as the fuzzy (FLC) and as a conventional (PI) controller.Keywords: fuzzy adaptive control, behaviour model control, vector control, five-phase asynchronous machine
Procedia PDF Downloads 9610927 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams
Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew
Abstract:
Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions
Procedia PDF Downloads 11710926 Potential Usefulness of Video Lectures as a Tool to Improve Synchronous and Asynchronous the Online Education
Authors: Omer Shujat Bhatti, Afshan Huma
Abstract:
Online educational system were considered a great opportunity for distance learning. In recent days of COVID19 pandemic, it enable the continuation of educational activities at all levels of education, from primary school to the top level universities. One of the key considered element in supporting the online educational system is video lectures. The current research explored the usefulness of the video lectures delivered to technical students of masters level with a focus on MSc Sustainable Environmental design students who have diverse backgrounds in the formal educational system. Hence they were unable to cope right away with the online system and faced communication and understanding issues in the lecture session due to internet and allied connectivity issues. Researcher used self prepared video lectures for respective subjects and provided them to the students using Youtube channel and subject based Whatsapp groups. Later, students were asked about the usefulness of the lectures towards a better understanding of the subject and an overall enhanced learning experience. More than 80% of the students appreciated the effort and requested it to be part of the overall system. Data collection was done using an online questionnaire which was prior briefed to the students with the purpose of research. It was concluded that video lectures should be considered an integral part of the lecture sessions and must be provided prior to the lecture session, ensuring a better quality of delivery. It was also recommended that the existing system must be upgraded to support the availability of these video lectures through the portal. Teachers training must be provided to help develop quality video content ensuring that is able to cover the content and courses taught.Keywords: video lectures, online distance education, synchronous instruction, asynchronous communication
Procedia PDF Downloads 11710925 Optimal Location of the I/O Point in the Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.Keywords: parking system, optimal location, response time, S/R machine
Procedia PDF Downloads 40910924 DAG Design and Tradeoff for Full Live Virtual Machine Migration over XIA Network
Authors: Dalu Zhang, Xiang Jin, Dejiang Zhou, Jianpeng Wang, Haiying Jiang
Abstract:
Traditional TCP/IP network is showing lots of shortages and research for future networks is becoming a hotspot. FIA (Future Internet Architecture) and FIA-NP (Next Phase) are supported by US NSF for future Internet designing. Moreover, virtual machine migration is a significant technique in cloud computing. As a network application, it should also be supported in XIA (expressive Internet Architecture), which is in both FIA and FIA-NP projects. This paper is an experimental study aims at verifying the feasibility of VM migration over XIA. We present three ways to maintain VM connectivity and communication states concerning DAG design and routing table modification. VM migration experiments are conducted intra-AD and inter-AD with KVM instances. The procedure is achieved by a migration control protocol which is suitable for the characters of XIA. Evaluation results show that our solutions can well supports full live VM migration over XIA network respectively, keeping services seamless.Keywords: DAG, downtime, virtual machine migration, XIA
Procedia PDF Downloads 85610923 Sensorless Machine Parameter-Free Control of Doubly Fed Reluctance Wind Turbine Generator
Authors: Mohammad R. Aghakashkooli, Milutin G. Jovanovic
Abstract:
The brushless doubly-fed reluctance generator (BDFRG) is an emerging, medium-speed alternative to a conventional wound rotor slip-ring doubly-fed induction generator (DFIG) in wind energy conversion systems (WECS). It can provide competitive overall performance and similar low failure rates of a typically 30% rated back-to-back power electronics converter in 2:1 speed ranges but with the following important reliability and cost advantages over DFIG: the maintenance-free operation afforded by its brushless structure, 50% synchronous speed with the same number of rotor poles (allowing the use of a more compact, and more efficient two-stage gearbox instead of a vulnerable three-stage one), and superior grid integration properties including simpler protection for the low voltage ride through compliance of the fractional converter due to the comparatively higher leakage inductances and lower fault currents. Vector controlled pulse-width-modulated converters generally feature a much lower total harmonic distortion relative to hysteresis counterparts with variable switching rates and as such have been a predominant choice for BDFRG (and DFIG) wind turbines. Eliminating a shaft position sensor, which is often required for control implementation in this case, would be desirable to address the associated reliability issues. This fact has largely motivated the recent growing research of sensorless methods and developments of various rotor position and/or speed estimation techniques for this purpose. The main limitation of all the observer-based control approaches for grid-connected wind power applications of the BDFRG reported in the open literature is the requirement for pre-commissioning procedures and prior knowledge of the machine inductances, which are usually difficult to accurately identify by off-line testing. A model reference adaptive system (MRAS) based sensor-less vector control scheme to be presented will overcome this shortcoming. The true machine parameter independence of the proposed field-oriented algorithm, offering robust, inherently decoupled real and reactive power control of the grid-connected winding, is achieved by on-line estimation of the inductance ratio, the underlying rotor angular velocity and position MRAS observer being reliant upon. Such an observer configuration will be more practical to implement and clearly preferable to the existing machine parameter dependent solutions, and especially bearing in mind that with very little modifications it can be adapted for commercial DFIGs with immediately obvious further industrial benefits and prospects of this work. The excellent encoder-less controller performance with maximum power point tracking in the base speed region will be demonstrated by realistic simulation studies using large-scale BDFRG design data and verified by experimental results on a small laboratory prototype of the WECS emulation facility.Keywords: brushless doubly fed reluctance generator, model reference adaptive system, sensorless vector control, wind energy conversion
Procedia PDF Downloads 6210922 Modification of a Human Powered Lawn Mower
Authors: Akinwale S. O., Koya O. A.
Abstract:
The need to provide ecologically-friendly and effective lawn mowing solution is crucial for the well-being of humans. This study involved the modification of a human-powered lawn mower designed to cut tall grasses in residential areas. This study designed and fabricated a reel-type mower blade system and a pedal-powered test rig for the blade system. It also evaluated the performance of the machine. The machine was tested on some overgrown grass plots at College of Education Staff School Ilesa. Parameters such as theoretical field capacity, field efficiency and effective field capacity were determined from the data gathered. The quality of cut achieved by the unit was also documented. Test results showed that the fabricated cutting system produced a theoretical field capacity of 0.11 ha/h and an effective field capacity of 0.08ha/h. Moreover, the unit’s cutting system showed a substantial improvement over existing reel mower designs in its ability to cut on both the forward and reverse phases of its motion. This study established that the blade system described herein has the capacity to cut tall grasses. Hence, this device can therefore eliminate the need for powered mowers entirely on small residential lawns.Keywords: effective field capacity, field efficiency, theoretical field capacity, quality of cut
Procedia PDF Downloads 14810921 The Impact of Experiential Learning on the Success of Upper Division Mechanical Engineering Students
Authors: Seyedali Seyedkavoosi, Mohammad Obadat, Seantorrion Boyle
Abstract:
The purpose of this study is to assess the effectiveness of a nontraditional experiential learning strategy in improving the success and interest of mechanical engineering students, using the Kinematics/Dynamics of Machine course as a case study. This upper-division technical course covers a wide range of topics, including mechanism and machine system analysis and synthesis, yet the complexities of ideas like acceleration, motion, and machine component relationships are hard to explain using standard teaching techniques. To solve this problem, a thorough design project was created that gave students hands-on experience developing, manufacturing, and testing their inventions. The main goals of the project were to improve students' grasp of machine design and kinematics, to develop problem-solving and presenting abilities, and to familiarize them with professional software. A questionnaire survey was done to evaluate the effect of this technique on students' performance and interest in mechanical engineering. The outcomes of the study shed light on the usefulness of nontraditional experiential learning approaches in engineering education.Keywords: experiential learning, nontraditional teaching, hands-on design project, engineering education
Procedia PDF Downloads 9710920 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing
Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi
Abstract:
This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning
Procedia PDF Downloads 3410919 The Influence of Different Flux Patterns on Magnetic Losses in Electric Machine Cores
Authors: Natheer Alatawneh
Abstract:
The finite element analysis of magnetic fields in electromagnetic devices shows that the machine cores experience different flux patterns including alternating and rotating fields. The rotating fields are generated in different configurations range between circular and elliptical with different ratios between the major and minor axis of the flux locus. Experimental measurements on electrical steel exposed to different flux patterns disclose different magnetic losses in the samples under test. Consequently, electric machines require special attention during the cores loss calculation process to consider the flux patterns. In this study, a circular rotational single sheet tester is employed to measure the core losses in electric steel sample of M36G29. The sample was exposed to alternating field, circular field, and elliptical fields with axis ratios of 0.2, 0.4, 0.6 and 0.8. The measured data was implemented on 6-4 switched reluctance motor at three different frequencies of interest to the industry as 60 Hz, 400 Hz, and 1 kHz. The results disclose a high margin of error that may occur during the loss calculations if the flux patterns issue is neglected. The error in different parts of the machine associated with considering the flux patterns can be around 50%, 10%, and 2% at 60Hz, 400Hz, and 1 kHz, respectively. The future work will focus on the optimization of machine geometrical shape which has a primary effect on the flux pattern in order to minimize the magnetic losses in machine cores.Keywords: alternating core losses, electric machines, finite element analysis, rotational core losses
Procedia PDF Downloads 25210918 Endometriosis-Associated Ovarian Cancer: Clinical and Pathological Pattern
Authors: I. Ramalho, S. Campos, M. Dias
Abstract:
Introduction: Endometriosis may play a role in the pathogenesis of ovarian cancer (OC), however, the risk and prognosis have not been well established. The association between these two pathologies could have an important impact on prevention and early diagnosis of OC. Objective: To analyze the prevalence of endometriosis associated ovarian cancer and related clinical, epidemiological and histopathological issues. Design: We conducted a retrospective case series analysis of patients diagnosed with endometriosis and ovarian cancer in the Gynecology Department of Coimbra University Hospital Center since 2006 to 2015. Methods: We collected data from women diagnosed with ovarian cancer, with anatomopathology records reporting findings of endometriosis in ovarian cancer patients. Patients were retrieved from the pathological records and appropriate medical records were retrospectively reviewed. Statistical analysis was performed using SPSS 22.0. Results: Histological evidence of endometriosis was found in 17 out of 261 patients diagnosed with ovarian cancer (OC) (6.51%). The most usual symptoms were pelvic pain, abdominal distension, asthenia, ascites, weight loss and nausea. Mean age at diagnosis was 61.2 ± 15.1, 41-86 years old, 33.3% were pre-menopausal patients and cancer stage distribution was predominantly stage I (31.3%) and stage III (56.3%). OC occurred unilaterally in 14 patients and 2 patients were diagnosed with a synchronous ovarian and endometrial cancer. Regarding histological type, 10 OC were classified as clear cell carcinoma (CCC), 4 endometrioid carcinomas (EC) and 3 mixed type (clear cell and endometrioid). Four ovarian carcinomas presumably arose from endometriomas: 3 CCC and 1 EC. Conclusions: In accordance with previous studies, clear cell was the most common pathological type in endometriotic patients, followed by endometrioid carcinomas, and two rare synchronous ovarian and endometrial carcinomas were registered. Although endometriosis association to OC is uncommon, endometriosis should be managed with special care in order to early diagnosis.Keywords: endometriosis, histology, observational study, ovarian cancer
Procedia PDF Downloads 23010917 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 13410916 Direct Translation vs. Pivot Language Translation for Persian-Spanish Low-Resourced Statistical Machine Translation System
Authors: Benyamin Ahmadnia, Javier Serrano
Abstract:
In this paper we compare two different approaches for translating from Persian to Spanish, as a language pair with scarce parallel corpus. The first approach involves direct transfer using an statistical machine translation system, which is available for this language pair. The second approach involves translation through English, as a pivot language, which has more translation resources and more advanced translation systems available. The results show that, it is possible to achieve better translation quality using English as a pivot language in either approach outperforms direct translation from Persian to Spanish. Our best result is the pivot system which scores higher than direct translation by (1.12) BLEU points.Keywords: statistical machine translation, direct translation approach, pivot language translation approach, parallel corpus
Procedia PDF Downloads 48810915 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures
Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang
Abstract:
Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation
Procedia PDF Downloads 12310914 Autoignition Delay Characterstic of Hydrocarbon (n-Pentane) from Lean to Rich Mixtures
Authors: Sunil Verma
Abstract:
This report is concerned with study of autoignition delay characterstics of n-pentane. Experiments are done for different equivalents ratio on Rapid compression machine. Dependence of autoignition delay period is clearly explained from lean to rich mixtures. Equivalence ratio is varied from 0.33 to 0.6.Keywords: combustion, autoignition, ignition delay, rapid compression machine
Procedia PDF Downloads 35110913 Performances Analysis and Optimization of an Adsorption Solar Cooling System
Authors: Nadia Allouache
Abstract:
The use of solar energy in cooling systems is an interesting alternative to the increasing demand of energy in the world and more specifically in southern countries where the needs of refrigeration and air conditioning are tremendous. This technique is even more attractive with regards to environmental issues. This study focuses on performances analysis and optimization of solar reactor of an adsorption cooling machine working with activated carbon-methanol pair. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The results show the poor heat conduction inside the porous medium and the resistance between the metallic wall and the bed engender the important temperature gradient and a great difference between the metallic wall and the bed temperature; this is considered as the essential causes decreasing the performances of the machine. For fixed conditions of functioning, the total desorbed mass presents a maximum for an optimal value of the height of the adsorber; this implies the existence of an optimal dimensioning of the adsorber.Keywords: solar cooling system, performances Analysis, optimization, heat and mass transfer, activated carbon-methanol pair, numerical modeling
Procedia PDF Downloads 44010912 Design of Structure for a Heavy-Duty Mineral Tow Machine by Evaluating the Dynamic and Static Loads
Authors: M. Akhondizadeh, Mohsen Khajoei, Mojtaba Khajoei
Abstract:
The purpose of the present work was the design of a towing machine which was decided to be manufactured by Arman Gohar-e-Sirjan company in the Gol-e-Gohar iron ore complex in Iran. The load analysis has been conducted to determine the static and dynamic loads at the critical conditions. The inertial forces due to the velocity increment and road bump have been considered in load evaluation. The form of loading of the present machine is hauling and/or conveying the mineral machines on the mini ramp. Several stages of these forms of loading, from the initial touch of the tow and carried machine to the final position, have been assessed to determine the critical state. The stress analysis has been performed by the ANSYS software. Several geometries for the main load-carrying elements have been analyzed to have the optimum design by the minimum weight of the structure. Finally, a structure with a total weight of 38 tons has been designed with a static load-carrying capacity of 80 tons by considering the 40 tons additional capacity for dynamic effects. The stress analysis for 120 tons load gives the minimum safety factor of 1.18.Keywords: mechanical design, stress analysis, tow structure, dynamic load, static load
Procedia PDF Downloads 10810911 A Textile-Based Scaffold for Skin Replacements
Authors: Tim Bolle, Franziska Kreimendahl, Thomas Gries, Stefan Jockenhoevel
Abstract:
The therapeutic treatment of extensive, deep wounds is limited. Autologous split-skin grafts are used as a so-called ‘gold standard’. Most common deficits are the defects at the donor site, the risk of scarring as well as the limited availability and quality of the autologous grafts. The aim of this project is a tissue engineered dermal-epidermal skin replacement to overcome the limitations of the gold standard. A key requirement for the development of such a three-dimensional implant is the formation of a functional capillary-like network inside the implant to ensure a sufficient nutrient and gas supply. Tailored three-dimensional warp knitted spacer fabrics are used to reinforce the mechanically week fibrin gel-based scaffold and further to create a directed in vitro pre-vascularization along the parallel-oriented pile yarns within a co-culture. In this study various three-dimensional warp knitted spacer fabrics were developed in a factorial design to analyze the influence of the machine parameters such as the stitch density and the pattern of the fabric on the scaffold performance and further to determine suitable parameters for a successful fibrin gel-incorporation and a physiological performance of the scaffold. The fabrics were manufactured on a Karl Mayer double-bar raschel machine DR 16 EEC/EAC. A fine machine gauge of E30 was used to ensure a high pile yarn density for sufficient nutrient, gas and waste exchange. In order to ensure a high mechanical stability of the graft, the fabrics were made of biocompatible PVDF yarns. Key parameters such as the pore size, porosity and stress/strain behavior were investigated under standardized, controlled climate conditions. The influence of the input parameters on the mechanical and morphological properties as well as the ability of fibrin gel incorporation into the spacer fabric was analyzed. Subsequently, the pile yarns of the spacer fabrics were colonized with Human Umbilical Vein Endothelial Cells (HUVEC) to analyze the ability of the fabric to further function as a guiding structure for a directed vascularization. The cells were stained with DAPI and investigated using fluorescence microscopy. The analysis revealed that the stitch density and the binding pattern have a strong influence on both the mechanical and morphological properties of the fabric. As expected, the incorporation of the fibrin gel was significantly improved with higher pore sizes and porosities, whereas the mechanical strength decreases. Furthermore, the colonization trials revealed a high cell distribution and density on the pile yarns of the spacer fabrics. For a tailored reinforcing structure, the minimum porosity and pore size needs to be evaluated which still ensures a complete incorporation of the reinforcing structure into the fibrin gel matrix. That will enable a mechanically stable dermal graft with a dense vascular network for a sufficient nutrient and oxygen supply of the cells. The results are promising for subsequent research in the field of reinforcing mechanically weak biological scaffolds and develop functional three-dimensional scaffolds with an oriented pre-vascularization.Keywords: fibrin-gel, skin replacement, spacer fabric, pre-vascularization
Procedia PDF Downloads 25710910 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome
Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis
Abstract:
Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.Keywords: protein-interactions, machine-learning, metagenomics, microbiome
Procedia PDF Downloads 37610909 Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor
Authors: Youn-Sung Kim, Jin-Ho Jo, Mi-Sung Kim, Jae-Kun Lee
Abstract:
Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test.Keywords: accelerated life cycle test, reliability test, motor for washing machine, brushless dc motor test
Procedia PDF Downloads 613