Search results for: solar tracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2273

Search results for: solar tracking

1793 Myosin-Driven Movement of Nanoparticles – An Approach to High-Speed Tracking

Authors: Sneha Kumari, Ravi Krishnan Elangovan

Abstract:

This abstract describes the development of a high-speed tracking method by modification in motor components for nanoparticle attachment. Myosin motors are nano-sized protein machines powering movement that defines life. These miniature molecular devices serve as engines utilizing chemical energy stored in ATP to produce useful mechanical energy in the form of a few nanometre displacement events leading to force generation that is required for cargo transport, cell division, cell locomotion, translated to macroscopic movements like running etc. With the advent of in vitro motility assay (IVMA), detailed functional studies of the actomyosin system could be performed. The major challenge with the currently available IVMA for tracking actin filaments is a resolution limitation of ± 50nm. To overcome this, we are trying to develop Single Molecule IVMA in which nanoparticle (GNP/QD) will be attached along or on the barbed end of actin filaments using CapZ protein and visualization by a compact TIRF module called ‘cTIRF’. The waveguide-based illumination by cTIRF offers a unique separation of excitation and collection optics, enabling imaging by scattering without emission filters. So, this technology is well equipped to perform tracking with high precision in temporal resolution of 2ms with significantly improved SNR by 100-fold as compared to conventional TIRF. Also, the nanoparticles (QD/GNP) attached to actin filament act as a point source of light coffering ease in filament tracking compared to conventional manual tracking. Moreover, the attachment of cargo (QD/GNP) to the thin filament paves the way for various nano-technological applications through their transportation to different predetermined locations on the chip

Keywords: actin, cargo, IVMA, myosin motors and single-molecule system

Procedia PDF Downloads 66
1792 Electrodeposition of NiO Films from Organic Solvent-Based Electrolytic Solutions for Solar Cell Application

Authors: Thierry Pauporté, Sana Koussi, Fabrice Odobel

Abstract:

The preparation of semiconductor oxide layers and structures by soft techniques is an important field of research. Higher performances are expected from the optimizing of the oxide films and then use of new methods of preparation for a better control of their chemical, morphological, electrical and optical properties. We present the preparation of NiO by electrodeposition from pure polar aprotic medium and mixtures with water. The effect of the solvent, of the electrochemical deposition parameters and post-deposition annealing treatment on the structural, morphological and optical properties of the films is investigated. We remarkably show that the solvent is inserted in the deposited layer and act as a blowing agent, giving rise to mesoporous films after elimination by thermal annealing. These layers of p-type oxide have been successfully used, after sensitization by a dye, in p-type dye-sensitized solar cells. The effects of the solvent on the layer properties and the application of these layers in p-type dye-sensitized solar cells are described.

Keywords: NiO, layer, p-type sensitized solar cells, electrodeposition

Procedia PDF Downloads 272
1791 Influence of Recombination of Free and Trapped Charge Carriers on the Efficiency of Conventional and Inverted Organic Solar Cells

Authors: Hooman Mehdizadeh Rad, Jai Singh

Abstract:

Organic solar cells (OSCs) have been actively investigated in the last two decades due to their several merits such as simple fabrication process, low-cost manufacturing, and lightweight. In this paper, using the optical transfer matrix method (OTMM) and solving the drift-diffusion equations processes of recombination are studied in inverted and conventional bulk heterojunction (BHJ) OSCs. Two types of recombination processes are investigated: 1) recombination of free charge carriers using the Langevin theory and 2) of trapped charge carriers in the tail states with exponential energy distribution. These recombination processes are incorporated in simulating the current- voltage characteristics of both conventional and inverted BHJ OSCs. The results of this simulation produces a higher power conversion efficiency in the inverted structure in comparison with conventional structure, which agrees well with the experimental results.

Keywords: conventional organic solar cells, exponential tail state recombination, inverted organic solar cells, Langevin recombination

Procedia PDF Downloads 166
1790 Study the effect of bulk traps on Solar Blind Photodetector Based on an IZTO/β Ga2O3/ITO Schottky Diode

Authors: Laboratory of Semiconducting, Metallic Materials (LMSM) Biskra Algeria

Abstract:

InZnSnO2 (IZTO)/β-Ga2O3 Schottky solar barrier photodetector (PhD) exposed to 255 nm was simulated and compared to the measurement. Numerical simulations successfully reproduced the photocurrent at reverse bias and response by taking into account several factors, such as conduction mechanisms and material parameters. By adopting reducing the density of the trap as an improvement. The effect of reducing the bulk trap densities on the photocurrent, response, and time-dependent (continuous conductivity) was studied. As the trap density decreased, the photocurrent increased. The response was 0.04 A/W for the low Ga2O3 trap density. The estimated decay time for the lowest intensity ET (0.74, 1.04 eV) is 0.05 s and is shorter at ∼0.015 s for ET (0.55 eV). This indicates that the shallow traps had the dominant effect (ET = 0.55 eV) on the continuous photoconductivity phenomenon. Furthermore, with decreasing trap densities, this PhD can be considered as a self-powered solar-blind photodiode (SBPhD).

Keywords: IZTO/β-Ga2O3, self-powered solar-blind photodetector, numerical simulation, bulk traps

Procedia PDF Downloads 72
1789 Multi Object Tracking for Predictive Collision Avoidance

Authors: Bruk Gebregziabher

Abstract:

The safe and efficient operation of Autonomous Mobile Robots (AMRs) in complex environments, such as manufacturing, logistics, and agriculture, necessitates accurate multiobject tracking and predictive collision avoidance. This paper presents algorithms and techniques for addressing these challenges using Lidar sensor data, emphasizing ensemble Kalman filter. The developed predictive collision avoidance algorithm employs the data provided by lidar sensors to track multiple objects and predict their velocities and future positions, enabling the AMR to navigate safely and effectively. A modification to the dynamic windowing approach is introduced to enhance the performance of the collision avoidance system. The overall system architecture encompasses object detection, multi-object tracking, and predictive collision avoidance control. The experimental results, obtained from both simulation and real-world data, demonstrate the effectiveness of the proposed methods in various scenarios, which lays the foundation for future research on global planners, other controllers, and the integration of additional sensors. This thesis contributes to the ongoing development of safe and efficient autonomous systems in complex and dynamic environments.

Keywords: autonomous mobile robots, multi-object tracking, predictive collision avoidance, ensemble Kalman filter, lidar sensors

Procedia PDF Downloads 62
1788 Dimensioning of a Solar Dryer with Application of an Experiment Design Method for Drying Food Products

Authors: B. Touati, A. Saad, B. Lips, A. Abdenbi, M. Mokhtari.

Abstract:

The purpose of this study is an application of experiment design method for dimensioning of a solar drying system. NIMROD software was used to build up the matrix of experiments and to analyze the results. The software has the advantages of being easy to use and consists of a forced way, with some choices about the number and range of variation of the parameters, and the desired polynomial shape. The first design of experiments performed concern the drying with constant input characteristics of the hot air in the dryer and a second design of experiments in which the drying chamber is coupled with a solar collector. The first design of experiments allows us to study the influence of various parameters and get the studied answers in a polynomial form. The correspondence between the polynomial thus determined, and the model results were good. The results of the polynomials of the second design of experiments and those of the model are worse than the results in the case of drying with constant input conditions. This is due to the strong link between all the input parameters, especially, the surface of the sensor and the drying chamber, and the mass of the product.

Keywords: solar drying, experiment design method, NIMROD, mint leaves

Procedia PDF Downloads 478
1787 Multiplayer RC-car Driving System in a Collaborative Augmented Reality Environment

Authors: Kikuo Asai, Yuji Sugimoto

Abstract:

We developed a prototype system for multiplayer RC-car driving in a collaborative Augmented Reality (AR) environment. The tele-existence environment is constructed by superimposing digital data onto images captured by a camera on an RC-car, enabling players to experience an augmented coexistence of the digital content and the real world. Marker-based tracking was used for estimating position and orientation of the camera. The plural RC-cars can be operated in a field where square markers are arranged. The video images captured by the camera are transmitted to a PC for visual tracking. The RC-cars are also tracked by using an infrared camera attached to the ceiling, so that the instability is reduced in the visual tracking. Multimedia data such as texts and graphics are visualized to be overlaid onto the video images in the geometrically correct manner. The prototype system allows a tele-existence sensation to be augmented in a collaborative AR environment.

Keywords: multiplayer, RC-car, collaborative environment, augmented reality

Procedia PDF Downloads 266
1786 Mathematical Modeling and Simulation of Convective Heat Transfer System in Adjustable Flat Collector Orientation for Commercial Solar Dryers

Authors: Adeaga Ibiyemi Iyabo, Adeaga Oyetunde Adeoye

Abstract:

Interestingly, mechanical drying methods has played a major role in the commercialization of agricultural and agricultural allied sectors. In the overall, drying enhances the favorable storability and preservation of agricultural produce which in turn promotes its producibility, marketability, salability, and profitability. Recent researches have shown that solar drying is easier, affordable, controllable, and of course, cleaner and purer than other means of drying methods. It is, therefore, needful to persistently appraise solar dryers with a view to improving on the existing advantages. In this paper, mathematical equations were formulated for solar dryer using mass conservation law, material balance law and least cost savings method. Computer codes were written in Visual Basic.Net. The developed computer software, which considered Ibadan, a strategic south-western geographical location in Nigeria, was used to investigate the relationship between variable orientation angle of flat plate collector on solar energy trapped, derived monthly heat load, available energy supplied by solar and fraction supplied by solar energy when 50000 Kg/Month of produce was dried over a year. At variable collector tilt angle of 10°.13°,15°,18°, 20°, the derived monthly heat load, available energy supplied by solar were 1211224.63MJ, 102121.34MJ, 0.111; 3299274.63MJ, 10121.34MJ, 0.132; 5999364.706MJ, 171222.859MJ, 0.286; 4211224.63MJ, 132121.34MJ, 0.121; 2200224.63MJ, 112121.34MJ, 0.104, respectively .These results showed that if optimum collector angle is not reached, those factors needed for efficient and cost reduction drying will be difficult to attain. Therefore, this software has revealed that off - optimum collector angle in commercial solar drying does not worth it, hence the importance of the software in decision making as to the optimum collector angle of orientation.

Keywords: energy, ibadan, heat - load, visual-basic.net

Procedia PDF Downloads 391
1785 Maximum Power Point Tracking Using FLC Tuned with GA

Authors: Mohamed Amine Haraoubia, Abdelaziz Hamzaoui, Najib Essounbouli

Abstract:

The pursuit of the MPPT has led to the development of many kinds of controllers, one of which is the Fuzzy Logic Controller, which has proven its worth. To further tune this controller this paper will discuss and analyze the use of Genetic Algorithms to tune the Fuzzy Logic Controller. It will provide an introduction to both systems, and test their compatibility and performance.

Keywords: fuzzy logic controller, fuzzy logic, genetic algorithm, maximum power point, maximum power point tracking

Procedia PDF Downloads 351
1784 Passive Solar Distiller with Low Cost of Implementation, Operation and Maintenance

Authors: Valentina Alessandra Carvalho do Vale, Elmo Thiago Lins Cöuras Ford, Rudson de Sousa Lima

Abstract:

Around the planet Earth, access to clean water is a problem whose importance has increased due to population growth and its misuse. Thus, projects that seek to transform water sources improper (salty and brackish) in drinking water sources are current issues. However, this transformation generally requires a high cost of implementation, operation and maintenance. In this context, the aim of this work is the development of a passive solar distiller for brackish water, made from recycled and durable materials such as aluminum, cement, glass and PVC basins. The results reveal factors that influence the performance and viability of the expansion project.

Keywords: solar distiller, passive distiller, distiller with pyramidal roof, ecologically correct

Procedia PDF Downloads 385
1783 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance

Procedia PDF Downloads 134
1782 A Dual-Mode Infinite Horizon Predictive Control Algorithm for Load Tracking in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The PUSPATI TRIGA Reactor (RTP), Malaysia reached its first criticality on June 28, 1982, with power capacity 1MW thermal. The Feedback Control Algorithm (FCA) which is conventional Proportional-Integral (PI) controller, was used for present power control method to control fission process in RTP. It is important to ensure the core power always stable and follows load tracking within acceptable steady-state error and minimum settling time to reach steady-state power. At this time, the system could be considered not well-posed with power tracking performance. However, there is still potential to improve current performance by developing next generation of a novel design nuclear core power control. In this paper, the dual-mode predictions which are proposed in modelling Optimal Model Predictive Control (OMPC), is presented in a state-space model to control the core power. The model for core power control was based on mathematical models of the reactor core, OMPC, and control rods selection algorithm. The mathematical models of the reactor core were based on neutronic models, thermal hydraulic models, and reactivity models. The dual-mode prediction in OMPC for transient and terminal modes was based on the implementation of a Linear Quadratic Regulator (LQR) in designing the core power control. The combination of dual-mode prediction and Lyapunov which deal with summations in cost function over an infinite horizon is intended to eliminate some of the fundamental weaknesses related to MPC. This paper shows the behaviour of OMPC to deal with tracking, regulation problem, disturbance rejection and caters for parameter uncertainty. The comparison of both tracking and regulating performance is analysed between the conventional controller and OMPC by numerical simulations. In conclusion, the proposed OMPC has shown significant performance in load tracking and regulating core power for nuclear reactor with guarantee stabilising in the closed-loop.

Keywords: core power control, dual-mode prediction, load tracking, optimal model predictive control

Procedia PDF Downloads 143
1781 Active Surface Tracking Algorithm for All-Fiber Common-Path Fourier-Domain Optical Coherence Tomography

Authors: Bang Young Kim, Sang Hoon Park, Chul Gyu Song

Abstract:

A conventional optical coherence tomography (OCT) system has limited imaging depth, which is 1-2 mm, and suffers unwanted noise such as speckle noise. The motorized-stage-based OCT system, using a common-path Fourier-domain optical coherence tomography (CP-FD-OCT) configuration, provides enhanced imaging depth and less noise so that we can overcome these limitations. Using this OCT systems, OCT images were obtained from an onion, and their subsurface structure was observed. As a result, the images obtained using the developed motorized-stage-based system showed enhanced imaging depth than the conventional system, since it is real-time accurate depth tracking. Consequently, the developed CP-FD-OCT systems and algorithms have good potential for the further development of endoscopic OCT for microsurgery.

Keywords: common-path OCT, FD-OCT, OCT, tracking algorithm

Procedia PDF Downloads 360
1780 Experimental Evaluation of Stand Alone Solar Driven Membrane Distillation System

Authors: Mejbri Sami, Zhani Khalifa, Zarzoum Kamel, Ben Bacha Habib, Koschikowski Joachim, Pfeifle Daniel

Abstract:

Many places worldwide, especially arid and semi-arid remote regions, are suffering from the lack of drinkable water and the situation will be aggravated in the near future. Furthermore, remote areas are characterised by lack of conventional energy sources, skilled personnel and maintenance facilities. Therefore, the development of small to medium size, stand-alone and robust solar desalination systems is needed to provide independent fresh water supply in remote areas. This paper is focused on experimental studies on compact membrane distillation (MD) solar desalination prototype located at the Mechanical Engineering Department site, Kairouan University, Kairouan, Tunisia. The pilot system is designed and manufactured as a part of a research and development project funded by the MESRS/BMBF. The pilot system is totally autonomous. The electrical energy required to operate the unit is generated through a field of 4 m² of photovoltaic panels, and the heating of feed water is provided by a field of 6 m² of solar collectors. The Kairouan plant performance of the first few months of operation is presented. The highest freshwater production of 150 L/d is obtained on a sunny day in July of 633 W/m²d.

Keywords: experimental, membrane distillation, solar desalination, Permeat gap

Procedia PDF Downloads 115
1779 Performance Analysis of Modified Solar Water Heating System for Climatic Condition of Allahabad, India

Authors: Kirti Tewari, Rahul Dev

Abstract:

Solar water heating is a thermodynamic process of heating water using sunlight with the help of solar water heater. Thus, solar water heater is a device used to harness solar energy. In this paper, a modified solar water heating system (MSWHS) has been proposed over flat plate collector (FPC) and Evacuated tube collector (ETC). The modifications include selection of materials other than glass, and glass wool which are conventionally used for fabricating FPC and ETC. Some modifications in design have also been proposed. Its collector is made of double layer of semi-cylindrical acrylic tubes and fibre reinforced plastic (FRP) insulation base. Water tank is made of double layer of acrylic sheet except base and north wall. FRP is used in base and north wall of the water tank. A concept of equivalent thickness has been utilised for calculating the dimensions of collector plate, acrylic tube and tank. A thermal model for the proposed design of MSWHS is developed and simulation is carried out on MATLAB for the capacity of 200L MSWHS having collector area of 1.6 m2, length of acrylic tubes of 2m at an inclination angle 25° which is taken nearly equal to the latitude of the given location. Latitude of Allahabad is 24.45° N. The results show that the maximum temperature of water in tank and tube has been found to be 71.2°C and 73.3°C at 17:00hr and 16:00hr respectively in March for the climatic data of Allahabad. Theoretical performance analysis has been carried out by varying number of tubes of collector, the tank capacity and climatic data for given months of winter and summer.

Keywords: acrylic, fibre reinforced plastic, solar water heating, thermal model, conventional water heaters

Procedia PDF Downloads 321
1778 Human Motion Capture: New Innovations in the Field of Computer Vision

Authors: Najm Alotaibi

Abstract:

Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.

Keywords: human motion capture, computer vision, vision-based, tracking

Procedia PDF Downloads 296
1777 The Follower Robots Tested in Different Lighting Condition and Improved Capabilities

Authors: Sultan Muhammed Fatih Apaydin

Abstract:

In this study, two types of robot were examined as being pioneer robot and follower robot for improving of the capabilities of tracking robots. Robots continue to tracking each other and measurement of the follow-up distance between them is very important for improvements to be applied. It was achieved that the follower robot follows the pioneer robot in line with intended goals. The tests were applied to the robots in various grounds and environments in point of performance and necessary improvements were implemented by measuring the results of these tests.

Keywords: mobile robot, remote and autonomous control, infra-red sensors, arduino

Procedia PDF Downloads 550
1776 GIS-Driven Analysis for Locating Suitable Areas for Renewable Energy

Authors: Saleh Nabiyev

Abstract:

Renewable energy is becoming increasingly important in today's world due to its significant impact on the green economy, ecology, environment, and climate change. Renewable energy sources, such as solar and wind, are clean and sustainable, making them an ideal solution to reduce carbon emissions and mitigate the effects of climate change. The Karabakh region is located in the South Caucasus and covers an area of approximately 11,500 km². The region has a mountainous terrain, which can affect the availability of wind and solar resources. The Karabakh region has significant wind power potential, particularly in its mountainous areas where wind speeds are typically higher. According to a study conducted by the European Commission Joint Research Centre, the average wind speed in the Karabakh region is between 4 and 6 meters per second (m/s) at a height of 50 meters above ground level (AGL). However, wind speeds can be higher in some areas, reaching up to 10 m/s in some mountainous areas. The region also has significant solar power potential, with an average of 2,000 to 2,200 hours of sunshine per year. The region's high altitude and clear skies make it particularly suitable for the development of solar power projects. In this research, the application of satellite images, solar radiation, wind speed and direction, as well as various other materials to determine suitable areas for alternative energy sources, is investigated. The methodology for selecting suitable locations for solar and wind energy consists of four main parts: identification of factors, evaluation of factors, data preparation, and application of suitability analysis. At the end of the research, the territory of the Kalbajar and Lachin districts is suitable for wind energy. The southern plain part of Karabakh is highly evaluated in terms of solar energy potential, especially Jabrayil district. Generally, outcomes taken from this research are essential data for increasing of rational using natural resources, as well as combating climate change.

Keywords: GIS, remote sensing, suitability analysis, solar energy, wind energy

Procedia PDF Downloads 12
1775 Assessing Building Rooftop Potential for Solar Photovoltaic Energy and Rainwater Harvesting: A Sustainable Urban Plan for Atlantis, Western Cape

Authors: Adedayo Adeleke, Dineo Pule

Abstract:

The ongoing load-shedding in most parts of South Africa, combined with climate change causing severe drought conditions in Cape Town, has left electricity consumers seeking alternative sources of power and water. Solar energy, which is abundant in most parts of South Africa and is regarded as a clean and renewable source of energy, allows for the generation of electricity via solar photovoltaic systems. Rainwater harvesting is the collection and storage of rainwater from building rooftops, allowing people without access to water to collect it. The lack of dependable energy and water source must be addressed by shifting to solar energy via solar photovoltaic systems and rainwater harvesting. Before this can be done, the potential of building rooftops must be assessed to determine whether solar energy and rainwater harvesting will be able to meet or significantly contribute to Atlantis industrial areas' electricity and water demands. This research project presents methods and approaches for automatically extracting building rooftops in Atlantis industrial areas and evaluating their potential for solar photovoltaics and rainwater harvesting systems using Light Detection and Ranging (LiDAR) data and aerial imagery. The four objectives were to: (1) identify an optimal method of extracting building rooftops from aerial imagery and LiDAR data; (2) identify a suitable solar radiation model that can provide a global solar radiation estimate of the study area; (3) estimate solar photovoltaic potential overbuilding rooftop; and (4) estimate the amount of rainwater that can be harvested from the building rooftop in the study area. Mapflow, a plugin found in Quantum Geographic Information System(GIS) was used to automatically extract building rooftops using aerial imagery. The mean annual rainfall in Cape Town was obtained from a 29-year rainfall period (1991- 2020) and used to calculate the amount of rainwater that can be harvested from building rooftops. The potential for rainwater harvesting and solar photovoltaic systems was assessed, and it can be concluded that there is potential for these systems but only to supplement the existing resource supply and offer relief in times of drought and load-shedding.

Keywords: roof potential, rainwater harvesting, urban plan, roof extraction

Procedia PDF Downloads 98
1774 Capacity Building on Small Automatic Tracking Antenna Development for Thailand Space Sustainability

Authors: Warinthorn Kiadtikornthaweeyot Evans, Nawattakorn Kaikaew

Abstract:

The communication system between the ground station and the satellite is very important to guarantee contact between both sides. Thailand, led by Geo-Informatics and Space Technology Development Agency (GISTDA), has received satellite images from other nation's satellites for a number of years. In 2008, Thailand Earth Observation Satellite (THEOS) was the first Earth observation satellite owned by Thailand. The mission was monitoring our country with affordable access to space-based Earth imagery. At this time, the control ground station was initially used to control the THEOS satellite by our Thai engineers. The Tele-commands were sent to the satellite according to requests from government and private sectors. Since then, GISTDA's engineers have gained their skill and experience to operate the satellite. Recently the desire to use satellite data is increasing rapidly due to space technology moving fast and giving us more benefits. It is essential to ensure that Thailand remains competitive in space technology. Thai Engineers have started to improve the performance of the control ground station in many different sections, also developing skills and knowledge in areas of satellite communication. Human resource skills are being enforced with development projects through capacity building. This paper focuses on the hands-on capacity building of GISTDA's engineers to develop a small automatic tracking antenna. The final achievement of the project is the first phase prototype of a small automatic tracking antenna to support the new technology of the satellites. There are two main subsystems that have been developed and tested; the tracking system and the monitoring and control software. The prototype first phase functions testing has been performed with Two Line Element (TLE) and the mission planning plan (MPP) file calculated from THEOS satellite by GISTDA.

Keywords: capacity building, small tracking antenna, automatic tracking system, project development procedure

Procedia PDF Downloads 55
1773 Detailed Feasibility and Design of a Grid-Tied PV and Building Integrated Photovoltaic System for a Commercial Healthcare Building

Authors: Muhammad Ali Tariq

Abstract:

Grid-connected PV systems have drawn tremendous attention of researchers in the past recent years. The report elucidates the development of efficient and stable solar PV energy conversion systems after thorough analysis at various facets like PV module characteristics, its arrangement, power electronics and MPPT topologies, the stability of the grid, and economic viability over its lifetime. This report and feasibility study will try to bring all optimizing approaches and design calculations which are required for generating energy from BIPV and roof-mounted solar PV in a convenient, sustainable, and user-friendly way.

Keywords: building integrated photovoltaic system, grid integration, solar resource assessment, return on investment, multi MPPT-inverter, levelised cost of electricity

Procedia PDF Downloads 115
1772 Improving Short-Term Forecast of Solar Irradiance

Authors: Kwa-Sur Tam, Byung O. Kang

Abstract:

By using different ranges of daily sky clearness index defined in this paper, any day can be classified as a clear sky day, a partly cloudy day or a cloudy day. This paper demonstrates how short-term forecasting of solar irradiation can be improved by taking into consideration the type of day so defined. The source of day type dependency has been identified. Forecasting methods that take into consideration of day type have been developed and their efficacy have been established. While all methods that implement some form of adjustment to the cloud cover forecast provided by the U.S. National Weather Service provide accuracy improvement, methods that incorporate day type dependency provides even further improvement in forecast accuracy.

Keywords: day types, forecast methods, National Weather Service, sky cover, solar energy

Procedia PDF Downloads 449
1771 Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink

Authors: Wisam K. Hussam, Ali Alfeeli, Gergory J. Sheard

Abstract:

Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively.

Keywords: photovoltaic cell, natural convection, heat sink, efficiency

Procedia PDF Downloads 129
1770 The Use of Eye Tracking in Evaluating the Success of Golfers in Putting

Authors: Klára Gajdošíková

Abstract:

The aim of this study was to examine the quiet eye method and its components using the mobile eye tracking device. Quiet eye training was proven to be beneficial for different sports, including golf. The main idea of this method is to prolong your fixations on a specific place in order to improve your performance. The shot examined in this study is called putt. Its importance is based on its role on a golf course because, many times, it is the last putt that decides whether you win or lose. Quiet eye training helps players be more focused under pressure, control their attention and overall improve their putting success. Six highly skilled golfers with a handicap ranging from - 4 to + 4, aged 23 to 26, participated in a pilot study with the usage of an eye-tracking device. The study took place in an indoor training area at the golf club Hostivař. Crosstabs showed significant differences between individuals' laterality and their gaze into AOI - areas of interest (middle part of the ball, top of the ball, bottom of the ball, back side of the ball). Statistically significant differences were also discovered between the mean fixation duration of participants with AOI on the middle part of the ball and all other AOIs. The results of this study helped us understand the examined phenomena and showed us the next aim in future quiet eye research. Future research should focus on examining a quiet eye on the golf course. Applying a quiet eye and therefore changing the way we concentrate might be beneficial for coaches and players themselves.

Keywords: eye tracking, golf, laterality, quiet eye

Procedia PDF Downloads 93
1769 Study of Two Adsorbent-Refrigerant Pairs for the Application of Solar-Powered Adsorption Refrigeration System

Authors: Mohammed Ali Hadj Ammar, Fethi Bouras, Kamel Sahlaoui

Abstract:

This article presents a detailed study of two working pairs intended for use in solar adsorption refrigeration (SAR) system. The study was based on two indicators: the daily production and coefficient of performance (COP). The thermodynamic cycle of the system is based on the adsorption phenomena at a constant temperature. A computer simulation program has been developed for modeling and performance evaluation for the solar-powered adsorption refrigeration cycle. It was found that maximal cycled mass is obtained by S40/water (0.280kg/kg) followed by CarboTech C40/1/methanol (0.260kg/kg). At a condenser temperature of 30°C, with an adsorbent mass of 38.59 kg, and an integrated collector/bed configuration, the couple CarboTech C40/1/methanol for the ice-maker purpose can reach cycle COP of 0.63 and can produce about 13.6kg ice per day, while the couple S40/water for the air-conditioning can reach cycle COP of 0.66 and 212kg as daily cold-water production. Additionally, adequate indicators are evaluated addressing the economic and environmental associated with each working pair.

Keywords: solar adsorption, refrigeration, activated carbon, silica gel

Procedia PDF Downloads 106
1768 Piaui Solar: State Development Impulsed by Solar Photovoltaic Energy

Authors: Amanda Maria Rodrigues Barroso, Ary Paixao Borges Santana Junior, Caio Araujo Damasceno

Abstract:

In Piauí, the Brazilian state, solar energy has become one of the renewable sources targeted by internal and external investments, with the intention of leveraging the development of society. However, for a residential or business consumer to be able to deploy this source, there is usually a need for a high initial investment due to its high cost. The countless high taxes on equipment and services are one of the factors that contribute to this cost and ultimately fall on the consumer. Through analysis, a way of reducing taxes is sought in order to encourage consumer adhesion to the use of photovoltaic solar energy. Thus, the objective is to implement the Piauí Solar Program in the state of Piauí in order to stimulate the deployment of photovoltaic solar energy, through benefits granted to users, providing state development by boosting the diversification of the state's energy matrix. The research method adopted was based on the analysis of data provided by the Teresina City Hall, by the Brazilian Institute of Geography and Statistics and by a private company in the capital of Piauí. The account was taken of the total amount paid in Property and Urban Territorial Property Tax (IPTU), in electricity and in the service of installing photovoltaic panels in a residence with 6 people. Through Piauí Solar, a discount of 80% would be applied to the taxes present in the budgets regarding the implementation of these photovoltaic plates in homes and businesses, as well as in the IPTU. In addition, another factor also taken into account is the energy savings generated after the implementation of these boards. In the studied residence, the annual payment of IPTU went from R $ 99.83 reais to R $ 19.96, the reduction of taxes present in the budget for the implantation of solar panels, caused the value to increase from R $ 42,744.22 to R $ 37,241.98. The annual savings in electricity bills were estimated at around R $ 6,000. Therefore, there is a reduction of approximately 24% in the total invested. The trend of the Piauí Solar program, then, is to bring benefits to the state, providing an improvement in the living conditions of the population, through the savings generated by this program. In addition, an increase in the diversification of the Piauí energy matrix can be seen with the advancement of the use of this renewable energy.

Keywords: development, economy, energy, taxes

Procedia PDF Downloads 114
1767 Photocatalytic Degradation of Phenol by Fe-Doped Tio2 under Solar Simulated Light

Authors: Mohamed Gar Alalm, Shinichi Ookawara, Ahmed Tawfik

Abstract:

In the present work, photocatalytic oxidation of phenol by iron (Fe+2) doped titanium dioxide (TiO2) was studied. The source of irradiation was solar simulated light under measured UV flux. The effect of light intensity, pH, catalyst loading, and initial concentration of phenol were investigated. The maximum removal of phenol at optimum conditions was 78%. The optimum pH was 5.3. The most effective degradation occurred when the catalyst dosage was 600 mg/L. increasing the initial concentration of phenol decreased the degradation efficiency due to the deactivation of active sites by additional intermediates. Phenol photocatalytic degradation moderately fitted to the pseudo-first order kinetic equation approximated from Langmuir–Hinshelwood model.

Keywords: phenol, photocatalytic, solar, titanium dioxide

Procedia PDF Downloads 378
1766 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment

Authors: Said Alshukri, Mazhar Hussain Malik

Abstract:

Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.

Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest

Procedia PDF Downloads 53
1765 The Experimental Measurement of the LiBr Concentration of a Solar Absorption Machine

Authors: N. Hatraf, L. Merabti, Z. Neffah, W. Taane

Abstract:

The excessive consumption of fossil energies (electrical energy) during summer caused by the technological development involves more and more climate warming. In order to reduce the worst impact of gas emissions produced from classical air conditioning, heat driven solar absorption chiller is pretty promising; it consists on using solar as motive energy which is clean and environmentally friendly to provide cold. Solar absorption machine is composed by four components using Lithium Bromide /water as a refrigerating couple. LiBr- water is the most promising in chiller applications due to high safety, high volatility ratio, high affinity, high stability and its high latent heat. The lithium bromide solution is constitute by the salt lithium bromide which absorbs water under certain conditions of pressure and temperature however if the concentration of the solution is high in the absorption chillers; which exceed 70%, the solution will crystallize. The main aim of this article is to study the phenomena of the crystallization and to evaluate how the dependence between the electric conductivity and the concentration which should be controlled.

Keywords: absorption, crystallization, experimental results, lithium bromide solution

Procedia PDF Downloads 289
1764 Design and Fabrication of a Parabolic trough Collector and Experimental Investigation of Direct Steam Production in Tehran

Authors: M. Bidi, H. Akhbari, S. Eslami, A. Bakhtiari

Abstract:

Due to the high potential of solar energy utilization in Iran, development of related technologies is of great necessity. Linear parabolic collectors are among the most common and most efficient means to harness the solar energy. The main goal of this paper is design and construction of a parabolic trough collector to produce hot water and steam in Tehran. To provide precise and practical plans, 3D models of the collector under consideration were developed using Solidworks software. This collector was designed in a way that the tilt angle can be adjusted manually. To increase concentraion ratio, a small diameter absorber tube is selected and to enhance solar absorbtion, a shape of U-tube is used. One of the outstanding properties of this collector is its simple design and use of low cost metal and plastic materials in its manufacturing procedure. The collector under consideration was installed in Shahid Beheshti University of Tehran and the values of solar irradiation, ambient temperature, wind speed and collector steam production rate were measured in different days and hours of July. Results revealed that a 1×2 m parabolic trough collector located in Tehran is able to produce steam by the rate of 300ml/s under the condition of atmospheric pressure and without using a vacuum cover over the absorber tube.

Keywords: desalination, parabolic trough collector, direct steam production, solar water heater, design and construction

Procedia PDF Downloads 292