Search results for: maxim infringement recognition
1287 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)
Procedia PDF Downloads 221286 An Improved K-Means Algorithm for Gene Expression Data Clustering
Authors: Billel Kenidra, Mohamed Benmohammed
Abstract:
Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization
Procedia PDF Downloads 1901285 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.Keywords: clustering, unsupervised learning, pattern recognition, categorical datasets, knowledge discovery, k-means
Procedia PDF Downloads 2611284 Investigation of Interlayer Shear Effects in Asphalt Overlay on Existing Rigid Airfield Pavement Using Digital Image Correlation
Authors: Yuechao Lei, Lei Zhang
Abstract:
The interface shear between asphalt overlay and existing rigid airport pavements occurs due to differences in the mechanical properties of materials subjected to aircraft loading. Interlayer contact influences the mechanical characteristics of the asphalt overlay directly. However, the effective interlayer relative displacement obtained accurately using existing displacement sensors of the loading apparatus remains challenging. This study aims to utilize digital image correlation technology to enhance the accuracy of interfacial contact parameters by obtaining effective interlayer relative displacements. Composite structure specimens were prepared, and fixtures for interlayer shear tests were designed and fabricated. Subsequently, a digital image recognition scheme for required markers was designed and optimized. Effective interlayer relative displacement values were obtained through image recognition and calculation of surface markers on specimens. Finite element simulations validated the mechanical response of composite specimens with interlayer shearing. Results indicated that an optimized marking approach using the wall mending agent for surface application and color coding enhanced the image recognition quality of marking points on the specimen surface. Further image extraction provided effective interlayer relative displacement values during interlayer shear, thereby improving the accuracy of interface contact parameters. For composite structure specimens utilizing Styrene-Butadiene-Styrene (SBS) modified asphalt as the tack coat, the corresponding maximum interlayer shear stress strength was 0.6 MPa, and fracture energy was 2917 J/m2. This research provides valuable insights for investigating the impact of interlayer contact in composite pavement structures on the mechanical characteristics of asphalt overlay.Keywords: interlayer contact, effective relative displacement, digital image correlation technology, composite pavement structure, asphalt overlay
Procedia PDF Downloads 481283 Decoding the Construction of Identity and Struggle for Self-Assertion in Toni Morrison and Selected Indian Authors
Authors: Madhuri Goswami
Abstract:
The matrix of power establishes the hegemonic dominance and supremacy of one group through exercising repression and relegation upon the other. However, the injustice done to any race, ethnicity, or caste has instigated the protest and resistance through various modes -social campaigns, political movements, literary expression and so on. Consequently, the search for identity, the means of claiming it and strive for recognition have evolved as the persistent phenomena all through the world. In the discourse of protest and minority literature, these two discourses -African American and Indian Dalit- surprisingly, share wrath and anger, hope and aspiration, and quest for identity and struggle for self-assertion. African American and Indian Dalit are two geographically and culturally apart communities that stand together on a single platform. This paper has sought to comprehend the form and investigate the formation of identity in general and in the literary work of Toni Morrison and Indian Dalit writing, particular, i.e., Black identity and Dalit identity. The study has speculated two types of identity, namely, individual or self and social or collective identity in the literary province of these marginalized literature. Morrison’s work outsources that self-identity is not merely a reflection of an inner essence; it is constructed through social circumstances and relations. Likewise, Dalit writings too have a fair record of discovery of self-hood and formation of identity, which connects to the realization of self-assertion and worthiness of their culture among Dalit writers. Bama, Pawar, Limbale, Pawde, and Kamble investigate their true self concealed amid societal alienation. The study has found that the struggle for recognition is, in fact, the striving to become the definer, instead of just being defined; and, this striving eventually, leads to the introspection among them. To conclude, Morrison as well as Indian marginalized authors, despite being set quite distant, communicate the relation between individual and community in the context of self-consciousness, self-identification and (self) introspection. This research opens a scope for further research to find out similar phenomena and trace an analogy in other world literatures.Keywords: identity, introspection, self-access, struggle for recognition
Procedia PDF Downloads 1551282 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning
Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor
Abstract:
Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH
Procedia PDF Downloads 1761281 Passengers’ Willingness to Use Soft Biometric at Airports
Authors: Jin-Ru Yen, Chi-Che Hsieh
Abstract:
Up to date, the automated border control system has been used at many airports, which features biometric technology to identify passengers. In spite of its efficiency, failures or extra time could occur sometimes. To improve recognition performance, some scholars proposed the idea of using soft biometrics to support facial recognition systems at checkpoints in airports. The result showed that the efficiency and accuracy are improved. This study aims to explore passengers’ acceptance of soft biometric technology (SBT). We developed a survey to discover factors that affect passengers’ acceptance. An online survey was conducted, and an ANOVA (Analysis of variances) was performed. Our results found that passengers of different genders, ages, education levels, and average monthly incomes do not have significant differences in usage attitude. However, in terms of preferred top style on board and average flying frequency per year, passengers with preferences for wearing T-shirts and less flying frequency tend to have better attitudes toward the SBT. On the other hand, factors such as performance expectancy, social influence, facilitating condition, and hedonic motivation have positive influences on either usage attitude or behavioral intention. Behavioral intention is driven by usage attitude as well.Keywords: smart airport, biometrics, soft biometric technology, willingness to use
Procedia PDF Downloads 61280 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 2811279 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions
Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez
Abstract:
In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval
Procedia PDF Downloads 2341278 Identifying the Structural Components of Old Buildings from Floor Plans
Authors: Shi-Yu Xu
Abstract:
The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes.Keywords: structural vulnerability detection, object recognition, seismic capacity assessment, old buildings, artificial intelligence
Procedia PDF Downloads 901277 Co-Design of Accessible Speech Recognition for Users with Dysarthric Speech
Authors: Elizabeth Howarth, Dawn Green, Sean Connolly, Geena Vabulas, Sara Smolley
Abstract:
Through the EU Horizon 2020 Nuvoic Project, the project team recruited 70 individuals in the UK and Ireland to test the Voiceitt speech recognition app and provide user feedback to developers. The app is designed for people with dysarthric speech, to support communication with unfamiliar people and access to speech-driven technologies such as smart home equipment and smart assistants. Participants with atypical speech, due to a range of conditions such as cerebral palsy, acquired brain injury, Down syndrome, stroke and hearing impairment, were recruited, primarily through organisations supporting disabled people. Most had physical or learning disabilities in addition to dysarthric speech. The project team worked with individuals, their families and local support teams, to provide access to the app, including through additional assistive technologies where needed. Testing was user-led, with participants asked to identify and test use cases most relevant to their daily lives over a period of three months or more. Ongoing technical support and training were provided remotely and in-person throughout the testing period. Structured interviews were used to collect feedback on users' experiences, with delivery adapted to individuals' needs and preferences. Informal feedback was collected through ongoing contact between participants, their families and support teams and the project team. Focus groups were held to collect feedback on specific design proposals. User feedback shared with developers has led to improvements to the user interface and functionality, including faster voice training, simplified navigation, the introduction of gamification elements and of switch access as an alternative to touchscreen access, with other feature requests from users still in development. This work offers a case-study in successful and inclusive co-design with the disabled community.Keywords: co-design, assistive technology, dysarthria, inclusive speech recognition
Procedia PDF Downloads 1111276 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals
Authors: Naser Safdarian, Nader Jafarnia Dabanloo
Abstract:
In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition
Procedia PDF Downloads 4561275 The Recognition of Exclusive Choice of Court Agreements: United Arab Emirates Perspective and the 2005 Hague Convention on Choice of Court Agreements
Authors: Hasan Alrashid
Abstract:
The 2005 Hague Convention seeks to ensure legal certainty and predictability between parties in international business transactions. It harmonies exclusive choice of court agreements at the international level between parties to commercial transactions and to govern the recognition and enforcement of judgments resulting from proceedings based on such agreements to promote international trade and investment. Although the choice of court agreements is significant in international business transactions, the United Arab Emirates refuse to recognise it by Article 24 of the Federal Law No. 11 of 1992 of the Civil Procedure Code. A review of judicial judgments in United Arab Emirates up to the present day has revealed that several cases appeared before the Court in different states of United Arab Emirates regarding the recognition of exclusive choice of court agreements. In all the cases, the courts regarded the exclusive choice of court agreements as a direct assault on state authority and sovereignty and refused categorically to recognize choice of court agreements by refusing to stay proceedings in favor of the foreign chosen court. This has created uncertainty and unpredictability in international business transaction in the United Arab Emirates. In June 2011, the first Gulf Judicial Seminar on Cross-Frontier Legal Cooperation in Civil and Commercial Matters was held in Doha, Qatar. The Permanent Bureau of the Hague Conference attended the conference and invited the states of the Gulf Cooperation Council (GCC) namely, The United Arab Emirates, Bahrain, Saudi Arabia, Oman, Qatar and Kuwait to adopt some of the Hague Conventions, one of which was the Hague Convention on Choice of Court Agreements. One of the recommendations of the conference was that the GCC states should research ‘the benefits of predictability and legal certainty provided by the 2005 Convention on Choice of Court Agreements and its resulting advantages for cross-border trade and investment’ for possible adoption of the Hague Convention. Up to today, no further step has been taken by the any of the GCC states to adapt the Hague Convention nor did they conduct research on the benefits of predictability and legal certainty in international business transactions. This paper will argue that the approach regarding the recognition of choice of court agreements in United Arab Emirates states can be improved in order to help the parties in international business transactions avoid parallel litigation and ensure legal certainty and predictability. The focus will be the uncertainty and gaps regarding the choice of court agreements in the United Arab Emirates states. The Hague Convention on choice of court agreements and the importance of harmonisation of the rules of choice of court agreements at international level will also be discussed. Finally, The feasibility and desirability of recognizing choice of court agreements in United Arab Emirates legal system by becoming a party to the Hague Convention will be evaluated.Keywords: choice of court agreements, party autonomy, public authority, sovereignty
Procedia PDF Downloads 2471274 Novel Marketing Strategy To Increase Sales Revenue For SMEs Through Social Media
Authors: Kruti Dave
Abstract:
Social media marketing is an essential component of 21st-century business. Social media platforms enable small and medium-sized businesses to enhance brand recognition, generate leads and sales. However, the research on social media marketing is still fragmented and focuses on specific topics, such as effective communication techniques. Since the various ways in which social media impacts individuals and companies alike, the authors of this article focus on the origin, impacts, and current state of Social Media, emphasizing their significance as customer empowerment agents. It illustrates their potential and current responsibilities as part of the corporate business strategy and also suggests several methods to engage them as marketing tools. The focus of social media marketing ranges from defenders to explorers, the culture of Social media marketing encompasses the poles of conservatism and modernity, social media marketing frameworks lie between hierarchies and networks, and its management goes from autocracy to anarchy. This research proposes an integrative framework for small and medium-sized businesses through social media, and the influence of the same will be measured. This strategy will help industry experts to understand this new era. We propose an axiom: Social Media is always a function of marketing as a revenue generator.Keywords: social media, marketing strategy, media marketing, brand awareness, customer engagement, revenue generator, brand recognition
Procedia PDF Downloads 1981273 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System
Authors: Kay Thinzar Phu, Lwin Lwin Oo
Abstract:
In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection
Procedia PDF Downloads 3131272 Challenges and Recommendations for Medical Device Tracking and Traceability in Singapore: A Focus on Nursing Practices
Authors: Zhuang Yiwen
Abstract:
The paper examines the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. One of the major challenges identified is the lack of a standard coding system for medical devices, which makes it difficult to track them effectively. The paper suggests the use of the Unique Device Identifier (UDI) as a single standard for medical devices to improve tracking and reduce errors. The paper also explores the use of barcoding and image recognition to identify and document medical devices in nursing practices. In nursing practices, the use of barcodes for identifying medical devices is common. However, the information contained in these barcodes is often inconsistent, making it challenging to identify which segment contains the model identifier. Moreover, the use of barcodes may be improved with the use of UDI, but many subsidized accessories may still lack barcodes. The paper suggests that the readiness for UDI and barcode standardization requires standardized information, fields, and logic in electronic medical record (EMR), operating theatre (OT), and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. Nursing workflow and data flow also need to be taken into account. The paper also explores the use of image recognition, specifically the Tesseract OCR engine, to identify and document implants in public hospitals due to limitations in barcode scanning. The study found that the solution requires an implant information database and checking output against the database. The solution also requires customization of the algorithm, cropping out objects affecting text recognition, and applying adjustments. The solution requires additional resources and costs for a mobile/hardware device, which may pose space constraints and require maintenance of sterile criteria. The integration with EMR is also necessary, and the solution require changes in the user's workflow. The paper suggests that the long-term use of Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) as a supporting terminology to improve clinical documentation and data exchange in healthcare. SNOMED CT provides a standardized way of documenting and sharing clinical information with respect to procedure, patient and device documentation, which can facilitate interoperability and data exchange. In conclusion, the paper highlights the challenges facing the Singapore healthcare system related to the tracking and traceability of medical devices. The paper suggests the use of UDI and barcode standardization to improve tracking and reduce errors. It also explores the use of image recognition to identify and document medical devices in nursing practices. The paper emphasizes the importance of standardized information, fields, and logic in EMR, OT, and billing systems, as well as barcode scanners that can read various formats and selectively parse barcode segments. These recommendations could help the Singapore healthcare system to improve tracking and traceability of medical devices and ultimately enhance patient safety.Keywords: medical device tracking, unique device identifier, barcoding and image recognition, systematized nomenclature of medicine clinical terms
Procedia PDF Downloads 791271 Pattern Recognition Approach Based on Metabolite Profiling Using In vitro Cancer Cell Line
Authors: Amanina Iymia Jeffree, Reena Thriumani, Mohammad Iqbal Omar, Ammar Zakaria, Yumi Zuhanis Has-Yun Hashim, Ali Yeon Md Shakaff
Abstract:
Metabolite profiling is a strategy to be approached in the pattern recognition method focused on three types of cancer cell line that driving the most to death specifically lung, breast, and colon cancer. The purpose of this study was to discriminate the VOCs pattern among cancerous and control group based on metabolite profiling. The sampling was executed utilizing the cell culture technique. All culture flasks were incubated till 72 hours and data collection started after 24 hours. Every running sample took 24 minutes to be completed accordingly. The comparative metabolite patterns were identified by the implementation of headspace-solid phase micro-extraction (HS-SPME) sampling coupled with gas chromatography-mass spectrometry (GCMS). The optimizations of the main experimental variables such as oven temperature and time were evaluated by response surface methodology (RSM) to get the optimal condition. Volatiles were acknowledged through the National Institute of Standards and Technology (NIST) mass spectral database and retention time libraries. To improve the reliability of significance, it is of crucial importance to eliminate background noise which data from 3rd minutes to 17th minutes were selected for statistical analysis. Targeted metabolites, of which were annotated as known compounds with the peak area greater than 0.5 percent were highlighted and subsequently treated statistically. Volatiles produced contain hundreds to thousands of compounds; therefore, it will be optimized by chemometric analysis, such as principal component analysis (PCA) as a preliminary analysis before subjected to a pattern classifier for identification of VOC samples. The volatile organic compound profiling has shown to be significantly distinguished among cancerous and control group based on metabolite profiling.Keywords: in vitro cancer cell line, metabolite profiling, pattern recognition, volatile organic compounds
Procedia PDF Downloads 3681270 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks
Authors: Jérémie Ochin
Abstract:
Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition
Procedia PDF Downloads 291269 Impact of Environmental Rule of Law towards Positive Environmental Outcomes in Nigeria
Authors: Kate N. Okeke
Abstract:
The ever-growing needs of man requiring satisfaction have pushed him strongly towards industrialization which has and is still leaving environmental degradation and its attendant negative impacts in its wake. It is, therefore, not surprising that the enjoyment of fundamental rights like food supply, security of lives and property, freedom of worship, health and education have been drastically affected by such degradation. In recognition of the imperative need to protect the environment and human rights, many global instruments and constitutions have recognized the right to a healthy and sustainable environment. Some environmental advocates and quite a number of literatures on the subject matter call for the recognition of environmental rights via rule of law as a vital means of achieving positive outcomes on the subject matter. However, although there are numerous countries with constitutional environmental provisions, most of them such as Nigeria, have shown poor environmental performance. A notable problem is the fact that the constitution which recognizes environmental rights appears in its other provisions to contradict its provisions by making enforceability of the environmental rights unattainable. While adopting a descriptive, analytical, comparative and explanatory study design in reviewing a successful positive environmental outcome via the rule of law, this article argues that rule of law on a balance of scale, weighs more than just environmental rights recognition and therefore should receive more attention by environmental lawyers and advocates. This is because with rule of law, members of a society are sure of getting the most out of the environmental rights existing in their legal system. Members of Niger-Delta communities of Nigeria will benefit from the environmental rights existing in Nigeria. They are exposed to environmental degradation and pollution with effects such as acidic rainfall, pollution of farmlands and clean water sources. These and many more are consequences of oil and gas exploration. It will also pave way for solving the violence between cattle herdsmen and farmers in the Middle Belt and other regions of Nigeria. Their clashes are over natural resource control. Having seen that environmental rule of law is vital to sustainable development, this paper aims to contribute to discussions on how best the vehicle of rule law can be driven towards achieving positive environmental outcomes. This will be in reliance on other enforceable provisions in the Nigerian Constitution. Other domesticated international instruments will also be considered to attain sustainable environment and development.Keywords: environment, rule of law, constitution, sustainability
Procedia PDF Downloads 1561268 Telecontrolled Service Robots for Increasing the Quality of Life of Elderly and Disabled
Authors: Nayden Chivarov, Denis Chikurtev, Kaloyan Yovchev, Nedko Shivarov
Abstract:
This paper represents methods for improving the efficiency and precision of service mobile robot. This robot is used for increasing the quality of life of elderly and disabled people. The key concept of the proposed Intelligent Service Mobile Robot is its easier adaptability to achieve services for a wide range of Elderly or Disabled Person’s needs, by performing different tasks for supporting Elderly or Disabled Persons care. We developed robot autonomous navigation and computer vision systems in order to recognize different objects and bring them to the people. Web based user interface is developed to provide easy access and tele-control of the robot by any device through the internet. In this study algorithms for object recognition and localization are proposed for providing successful object recognition and accuracy in the positioning. Different methods for sending movement commands to the mobile robot system are proposed and evaluated. After executing some experiments to show the results of the research, we can summarize that these systems and algorithms provide good control of the service mobile robot and it will be more useful to help the elderly and disabled persons.Keywords: service robot, mobile robot, autonomous navigation, computer vision, web user interface, ROS
Procedia PDF Downloads 3401267 One Way to Address the Complications of Dental Implantology
Authors: Predrag Kavaric, Vladimir L. Jubic, Maxim Cadenovic
Abstract:
The patient was transferred from his dentist to our tertiary medical institution. In anamnesis, we got information that his dental intervention was two years ago when he got dental implants but because of the coronavirus pandemic event, he didn’t finish the whole procedure. After two years, he decided that he will continue his work at his dentist, then his dentist noticed that there is no earlier inserted implant in the upper jaw on the right side. They do Panoramic X-ray and find that the implant is all in the maxillary sinus cavity. The flour of the maxilla was intact without any fistula on the place where the implant was inserted in the maxilla bone, After that initial diagnostic they sent the patient to maxillofacial surgery and otorhinolaryngology. We asked for a CT scan of paranasal sinuses, which confirmed the foreign body in the right maxillary sinus. The plan was that in general anesthesia we do FESS and try to find a foreign body in the maxillary sinus or in case of failure to do Caldwel Luc on that side. After preoperative preparation in GA, we do FESS. In inspection, we find small polyps and chronically changed mucosa of osteomeatal complex and right maxillary sinus. After removing polyps we did uncinectomy and medial maxillectomy. With Heuweiser Antrum grasping forceps after several attempts we managed to extract a foreign body from the bottom of the right maxillary sinus. On the first postoperative day we did detamponade, and then we discharge the patient from hospital. The Covid pandemic has contributed to the postponement of a large number of planned operations, which has resulted in various complications in the treatment of a number of patients. In this case, it happened that the implant was most likely rejected by the bone but in the direction of the maxillary sinus, which is not a common cause. On the other hand, the success was that less traumatic intervention was able to remove the foreign body from the maxillary sinus in which it was located. Since the sinus floor is free of bone defects, it can be continued relatively quickly with dental procedures.Keywords: x-ray, surgery, maxillar sinus, complication, fees
Procedia PDF Downloads 1471266 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 411265 Providing a Proposed Framework for the Copyright of Library Resources in Iran: A Comparative Study of the Copyright Laws of Iran, Australia and U.S.
Authors: Zeinab Papi
Abstract:
This study was aimed at analyzing the copyright laws of Iran, Australia, the U.S., and library portals, thereby providing a proposed framework for the copyright of library resources for the NLAI and other Iranian libraries while considering the current situation and the internal Iranian laws. This is an applied study falling in the category of qualitative approach research. Documentary analysis method and comparative method were used to resolve the problem and answer the questions of the research. The two National Library of Australia (NLA) and Library of Congress (LC), together with the NLAI formed the research community. In addition, the Iranian Law for the Protection of Authors, Composers and Artists Rights (1970); the Australian Copyright Act (1968), and the U.S. Copyright Law (1976) were purposefully selected as three main resources among other documents and resources. Findings revealed that the dimensions of fair and non-profit use, duration of copyright, license, and agreement, copyright policy, moral rights, economic rights, and infringement of copyright were the main dimensions that, along with 49 main components, formed the proposed framework for the copyright of information resources for the NLAI and other Iranian libraries. It should be acknowledged that there are some differences in different copyright fields between countries' laws, and each country takes into account its internal conditions to compile and revise the laws. By following the laws of other countries, it is possible to effectively improve and develop copyright laws. The researcher hopes that this research can have its effects in creating awareness and ability among librarians, formulating a copyright policy in Iranian libraries, and helping legislators in revising copyright laws regarding library exceptions and exemptions.Keywords: copyright, library resources, National Library and Archives of the I.R. of Iran, National Library of Australia, Library of Congress, copyright law
Procedia PDF Downloads 761264 Symo-syl: A Meta-Phonological Intervention to Support Italian Pre-Schoolers’ Emergent Literacy Skills
Authors: Tamara Bastianello, Rachele Ferrari, Marinella Majorano
Abstract:
The adoption of the syllabic approach in preschool programmes could support and reinforce meta-phonological awareness and literacy skills in children. The introduction of a meta-phonological intervention in preschool could facilitate the transition to primary school, especially for children with learning fragilities. In the present contribution, we want to investigate the efficacy of "Simo-syl" intervention in enhancing emergent literacy skills in children (especially for reading). Simo-syl is a 12 weeks multimedia programme developed for children to improve their language and communication skills and later literacy development in preschool. During the intervention, Simo-syl, an invented character, leads children in a series of meta-phonological games. Forty-six Italian preschool children (i.e., the Simo-syl group) participated in the programme; seventeen preschool children (i.e., the control group) did not participate in the intervention. Children in the two groups were between 4;10 and 5;9 years. They were assessed on their vocabulary, morpho-syntactical, meta-phonological, phonological, and phono-articulatory skills twice: 1) at the beginning of the last year of the preschool through standardised paper-based assessment tools and 2) one week after the intervention. All children in the Simo-syl group took part in the meta-phonological programme based on the syllabic approach. The intervention lasted 12 weeks (three activities per week; week 1: activities focused on syllable blending and spelling and a first approach to the written code; weeks 2-11: activities focused on syllables recognition; week 12: activities focused on vowels recognition). Very few children (Simo-syl group = 21, control group = 9) were tested again (post-test) one week after the intervention. Before starting the intervention programme, the Simo-syl and the control groups had similar meta-phonological, phonological, lexical skills (all ps > .05). One week after the intervention, a significant difference emerged between the two groups in their meta-phonological skills (syllable blending, p = .029; syllable spelling, p = .032), in their vowel recognition ability (p = .032) and their word reading skills (p = .05). An ANOVA confirmed the effect of the group membership on the developmental growth for the word reading task (F (1,28) = 6.83, p = .014, ηp2 = .196). Taking part in the Simo-syl intervention has a positive effect on the ability to read in preschool children.Keywords: intervention programme, literacy skills, meta-phonological skills, syllabic approach
Procedia PDF Downloads 1651263 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 6151262 A Study of Surface of Titanium Targets for Neutron Generators
Authors: Alexey Yu. Postnikov, Nikolay T. Kazakovskiy, Valery V. Mokrushin, Irina A. Tsareva, Andrey A. Potekhin, Valentina N. Golubeva, Yuliya V. Potekhina, Maxim V. Tsarev
Abstract:
The development of tritium and deuterium targets for neutron tubes and generators is a part of the activities in All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF). These items contain a metal substrate (for example, copper) with a titanium film with a few microns thickness deposited on it. Then these metal films are saturated with tritium, deuterium or their mixtures. The significant problem in neutron tubes and neutron generators is the characterization of substrate surface before a deposition of titanium film on it, and analysis of the deposited titanium film’s surface before hydrogenation and after a saturation of the film with hydrogen isotopes. The performance effectiveness of neutron tube and generator also depends on upon the quality parameters of the surface of the initial substrate, deposited metal film and hydrogenated target. The objective of our work is to study the target prototype samples, that have differ by various approaches to the preliminary chemical processing of a copper substrate, and to analyze the integrity of titanium film after its saturation with deuterium. The research results of copper substrate and the surface of deposited titanium film with the use of electron microscopy, X-ray spectral microanalysis and laser-spark methods of analyses are presented. The causes of surface defects appearance have been identified. The distribution of deuterium and some impurities (oxygen and nitrogen) along the surface and across the height of the hydrogenated film in the target has been established. This allows us to evaluate the composition homogeneity of the samples and consequently to estimate the quality of hydrogenated samples. As the result of this work the propositions on the advancement of production technology and characterization of target’s surface have been presented.Keywords: tritium and deuterium targets, titanium film, laser-spark methods, electron microscopy
Procedia PDF Downloads 4431261 The Right of Pregnant Girls to Remain in School: Conflicting Human Rights
Authors: Ronelle Prinsloo
Abstract:
Teenage pregnancy in South African schools is a growing concern. In South Africa, many young female learners end their schooling permanently, not because they have completed their studies, but due to pregnancy. The admission policy of public schools is determined by the governing body of such a school, and this policy can determine that a pregnant leaner may not attend school during pregnancy and for a certain period after the birth of the child. This can be seen as an infringement of the rights of the teenage mother to be allowed to attend school. It can also be argued that this conflicts with the best interest of the child as well as the rights of the governing body to determine policy in accordance with the mandate as given to them by the parents and community served by the school. A pregnant learner can argue that the admission policy of a school is discriminatory if it does not allow the pregnant learner to continue her schooling. She may also argue that she is being unfairly discriminated against based on gender because in many instances, the baby’s father is still allowed to go to school. The Constitution (Constitution of the Republic of South Africa, Act 108 of 1996), provides in section 9, that everyone is equal before the law; it goes on to provide that equality includes the full and equal enjoyment of all rights and freedoms and provides those grounds on which one may not be discriminated against including, gender, sex, and pregnancy. Schools should be encouraged to re-enroll students if they have a support system available to assist with the necessary childcare when they attend school. To dramatically increase the number of young people enrolled in alternative pathways such as Further Education and Training or Adult Basic Education and Training must be provided. In addition, alternative systems must offer viable exit opportunities for participants by cohering with further education and economic opportunities.Keywords: admission policy, Constitution of South Africa, human rights, teenage pregnancy
Procedia PDF Downloads 721260 Locating Speed Limit Signs for Highway Tunnel Entrance and Exit
Authors: Han Bai, Lemei Yu, Tong Zhang, Doudou Xie, Liang Zhao
Abstract:
The brightness changes at highway tunnel entrance and exit have an effect on the physical and psychological conditions of drivers. It is more conducive for examining driving safety with quantitative analysis of the physical and psychological characteristics of drivers to determine the speed limit sign locations at the tunnel entrance and exit sections. In this study, the physical and psychological effects of tunnels on traffic sign recognition of drivers are analyzed; subsequently, experiments with the assistant of Eyelink-II Type eye movement monitoring system are conducted in the typical tunnels in Ji-Qing freeway and Xi-Zha freeway, to collect the data of eye movement indexes “Fixation Duration” and “Eyeball Rotating Speed”, which typically represent drivers' mental load and visual characteristics. On this basis, the paper establishes a visual recognition model for the speed limit signs at the highway tunnel entrances and exits. In combination with related standards and regulations, it further presents the recommended values for locating speed limit signs under different tunnel conditions. A case application on Panlong tunnel in Ji-Qing freeway is given to generate the helpful improvement suggestions.Keywords: driver psychological load, eye movement index, speed limit sign location, tunnel entrance and exit
Procedia PDF Downloads 2971259 Bird-Adapted Filter for Avian Species and Individual Identification Systems Improvement
Authors: Ladislav Ptacek, Jan Vanek, Jan Eisner, Alexandra Pruchova, Pavel Linhart, Ludek Muller, Dana Jirotkova
Abstract:
One of the essential steps of avian song processing is signal filtering. Currently, the standard methods of filtering are the Mel Bank Filter or linear filter distribution. In this article, a new type of bank filter called the Bird-Adapted Filter is introduced; whereby the signal filtering is modifiable, based upon a new mathematical description of audiograms for particular bird species or order, which was named the Avian Audiogram Unified Equation. According to the method, filters may be deliberately distributed by frequency. The filters are more concentrated in bands of higher sensitivity where there is expected to be more information transmitted and vice versa. Further, it is demonstrated a comparison of various filters for automatic individual recognition of chiffchaff (Phylloscopus collybita). The average Equal Error Rate (EER) value for Linear bank filter was 16.23%, for Mel Bank Filter 18.71%, the Bird-Adapted Filter gave 14.29%, and Bird-Adapted Filter with 1/3 modification was 12.95%. This approach would be useful for practical use in automatic systems for avian species and individual identification. Since the Bird-Adapted Filter filtration is based on the measured audiograms of particular species or orders, selecting the distribution according to the avian vocalization provides the most precise filter distribution to date.Keywords: avian audiogram, bird individual identification, bird song processing, bird species recognition, filter bank
Procedia PDF Downloads 3881258 Recognizing Human Actions by Multi-Layer Growing Grid Architecture
Authors: Z. Gharaee
Abstract:
Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance
Procedia PDF Downloads 158