Search results for: graph signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1437

Search results for: graph signals

957 Time Estimation of Return to Sports Based on Classification of Health Levels of Anterior Cruciate Ligament Using a Convolutional Neural Network after Reconstruction Surgery

Authors: Zeinab Jafari A., Ali Sharifnezhad B., Mohammad Razi C., Mohammad Haghpanahi D., Arash Maghsoudi

Abstract:

Background and Objective: Sports-related rupture of the anterior cruciate ligament (ACL) and following injuries have been associated with various disorders, such as long-lasting changes in muscle activation patterns in athletes, which might last after ACL reconstruction (ACLR). The rupture of the ACL might result in abnormal patterns of movement execution, extending the treatment period and delaying athletes’ return to sports (RTS). As ACL injury is especially prevalent among athletes, the lengthy treatment process and athletes’ absence from sports are of great concern to athletes and coaches. Thus, estimating safe time of RTS is of crucial importance. Therefore, using a deep neural network (DNN) to classify the health levels of ACL in injured athletes, this study aimed to estimate the safe time for athletes to return to competitions. Methods: Ten athletes with ACLR and fourteen healthy controls participated in this study. Three health levels of ACL were defined: healthy, six-month post-ACLR surgery and nine-month post-ACLR surgery. Athletes with ACLR were tested six and nine months after the ACLR surgery. During the course of this study, surface electromyography (sEMG) signals were recorded from five knee muscles, namely Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM), Biceps Femoris (BF), Semitendinosus (ST), during single-leg drop landing (SLDL) and forward hopping (SLFH) tasks. The Pseudo-Wigner-Ville distribution (PWVD) was used to produce three-dimensional (3-D) images of the energy distribution patterns of sEMG signals. Then, these 3-D images were converted to two-dimensional (2-D) images implementing the heat mapping technique, which were then fed to a deep convolutional neural network (DCNN). Results: In this study, we estimated the safe time of RTS by designing a DCNN classifier with an accuracy of 90 %, which could classify ACL into three health levels. Discussion: The findings of this study demonstrate the potential of the DCNN classification technique using sEMG signals in estimating RTS time, which will assist in evaluating the recovery process of ACLR in athletes.

Keywords: anterior cruciate ligament reconstruction, return to sports, surface electromyography, deep convolutional neural network

Procedia PDF Downloads 78
956 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models

Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo

Abstract:

Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.

Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps

Procedia PDF Downloads 98
955 Identifying Coloring in Graphs with Twins

Authors: Souad Slimani, Sylvain Gravier, Simon Schmidt

Abstract:

Recently, several vertex identifying notions were introduced (identifying coloring, lid-coloring,...); these notions were inspired by identifying codes. All of them, as well as original identifying code, is based on separating two vertices according to some conditions on their closed neighborhood. Therefore, twins can not be identified. So most of known results focus on twin-free graph. Here, we show how twins can modify optimal value of vertex-identifying parameters for identifying coloring and locally identifying coloring.

Keywords: identifying coloring, locally identifying coloring, twins, separating

Procedia PDF Downloads 148
954 Human Identification Using Local Roughness Patterns in Heartbeat Signal

Authors: Md. Khayrul Bashar, Md. Saiful Islam, Kimiko Yamashita, Yano Midori

Abstract:

Despite having some progress in human authentication, conventional biometrics (e.g., facial features, fingerprints, retinal scans, gait, voice patterns) are not robust against falsification because they are neither confidential nor secret to an individual. As a non-invasive tool, electrocardiogram (ECG) has recently shown a great potential in human recognition due to its unique rhythms characterizing the variability of human heart structures (chest geometry, sizes, and positions). Moreover, ECG has a real-time vitality characteristic that signifies the live signs, which ensure legitimate individual to be identified. However, the detection accuracy of the current ECG-based methods is not sufficient due to a high variability of the individual’s heartbeats at a different instance of time. These variations may occur due to muscle flexure, the change of mental or emotional states, and the change of sensor positions or long-term baseline shift during the recording of ECG signal. In this study, a new method is proposed for human identification, which is based on the extraction of the local roughness of ECG heartbeat signals. First ECG signal is preprocessed using a second order band-pass Butterworth filter having cut-off frequencies of 0.00025 and 0.04. A number of local binary patterns are then extracted by applying a moving neighborhood window along the ECG signal. At each instant of the ECG signal, the pattern is formed by comparing the ECG intensities at neighboring time points with the central intensity in the moving window. Then, binary weights are multiplied with the pattern to come up with the local roughness description of the signal. Finally, histograms are constructed that describe the heartbeat signals of individual subjects in the database. One advantage of the proposed feature is that it does not depend on the accuracy of detecting QRS complex, unlike the conventional methods. Supervised recognition methods are then designed using minimum distance to mean and Bayesian classifiers to identify authentic human subjects. An experiment with sixty (60) ECG signals from sixty adult subjects from National Metrology Institute of Germany (NMIG) - PTB database, showed that the proposed new method is promising compared to a conventional interval and amplitude feature-based method.

Keywords: human identification, ECG biometrics, local roughness patterns, supervised classification

Procedia PDF Downloads 404
953 Isolation and Structural Elucidation of 20 Hydroxyecdystone from Vitex doniana Sweet Stem Bark

Authors: Mustapha A. Tijjani, Fanna I. Abdulrahman, Irfan Z. Khan, Umar K. Sandabe, Cong Li

Abstract:

Air dried sample V. doniana after collection and identification was extracted with ethanol and further partition with chloroform, ethyl acetate and n-butanol. Ethanolic extract (11.9g) was fractionated on a silica gel accelerated column chromatography using solvents such as n-hexane, ethyl acetate and methanol. Each eluent fractions (150ml aliquots) were collected and monitored with thin layer chromatography. Fractions with similar Rf values from same solvents system were pooled together. Phytochemical test of all the fractions were performed using standard procedure. Complete elution yielded 48 fractions (150ml/fraction) which were pooled to 24 fractions base on the Rf values. It was further recombined and 12 fractions were obtained on the basis on Rf values and coded Vd1 to Vd12 fractions. Vd8 was further eluted with ethylacetate and methanol and gave fourteen sub fractions Vd8-a, -Vd8-m. Fraction Vd8-a (56mg) gave a white crystal compound coded V1. It was further checked on TLC and observed under ultraviolet lamp and was found to give a single spot. The Rf values were calculated to be 0.433. The melting point was determined using Gallenkamp capillary melting point apparatus and found to be 241-243°C uncorrected. Characterization of the isolated compound coded V1 was done using FT-infra-red spectroscopy, HNMR, 13CNMR(1and 2D) and HRESI-MS. The IR spectrum of compound V1 shows prominent peaks that corresponds to OHstr (3365cm-1) and C=0 (1652cm-1) etc. This spectrum suggests that among the functional moiety in compound V1 are the carbonyl and hydroxyl group. The 1H NMR (400 MHz) spectrum of compound V1 in DMSO-d6 displayed five singlet signals at δ 0.72 (3H, s, H-18), 0.79 (3H, s, H-19), 1.03 (3H, s, H-21), 1.04 (3H, s, H-26), 1.06 (3H, s, H-27) each integrating for three protons indicating the five methyl functional groups present in the compound. It further showed a broad singlet at δ 5.58 integrated for 1 H due to an olefinic H-atom adjacent to the carbonyl carbon atom. Three signals at δ 3.10 (d, J = 9.0 Hz, H-22), 3.59 (m, 1H, 2H-a) and 3.72 (m, 1H, 3H-e), each integrating for one proton is due to oxymethine protons indicating that three oxymethine H-atoms are present in the compound. These all signals are characteristic to the ecdysteroid skeletons. The 13C-NMR spectrum showed the presence of 27 carbon atoms, suggesting that may be steroid skeleton. The DEPT-135 experiment showed the presence of five CH3, eight CH2, and seven CH groups, and seven quaternary C-atoms. The molecular formula was established as C27H44O7 by high resolution electron spray ionization-mass spectroscopy (HRESI-MS) positive ion mode m/z 481.3179. The signals in mass spectrum are 463, 445, and 427 peaks corresponding to losses of one, two, three, or four water molecules characteristic for ecdysterone skeleton reported in the literature. Based on the spectral analysis (HNMR, 13CNMR, DEPT, HMQC, IR, HRESI-MS) the compound V1 is thus concluded to have ecdysteriod skeleton and conclusively conforms with 2β, 3β 14α, 20R, 22R, 25-hexahydroxy-5 β cholest-7-ene-6- one, or 2, 3, 14, 20, 22, 25 hexahydroxy cholest-7-ene-6-one commonly known as 20-hydroxyecdysone.

Keywords: vitex, phytochemical, purification, isolation, chromatography, spectroscopy

Procedia PDF Downloads 356
952 A Computational Framework for Decoding Hierarchical Interlocking Structures with SL Blocks

Authors: Yuxi Liu, Boris Belousov, Mehrzad Esmaeili Charkhab, Oliver Tessmann

Abstract:

This paper presents a computational solution for designing reconfigurable interlocking structures that are fully assembled with SL Blocks. Formed by S-shaped and L-shaped tetracubes, SL Block is a specific type of interlocking puzzle. Analogous to molecular self-assembly, the aggregation of SL blocks will build a reversible hierarchical and discrete system where a single module can be numerously replicated to compose semi-interlocking components that further align, wrap, and braid around each other to form complex high-order aggregations. These aggregations can be disassembled and reassembled, responding dynamically to design inputs and changes with a unique capacity for reconfiguration. To use these aggregations as architectural structures, we developed computational tools that automate the configuration of SL blocks based on architectural design objectives. There are three critical phases in our work. First, we revisit the hierarchy of the SL block system and devise a top-down-type design strategy. From this, we propose two key questions: 1) How to translate 3D polyominoes into SL block assembly? 2) How to decompose the desired voxelized shapes into a set of 3D polyominoes with interlocking joints? These two questions can be considered the Hamiltonian path problem and the 3D polyomino tiling problem. Then, we derive our solution to each of them based on two methods. The first method is to construct the optimal closed path from an undirected graph built from the voxelized shape and translate the node sequence of the resulting path into the assembly sequence of SL blocks. The second approach describes interlocking relationships of 3D polyominoes as a joint connection graph. Lastly, we formulate the desired shapes and leverage our methods to achieve their reconfiguration within different levels. We show that our computational strategy will facilitate the efficient design of hierarchical interlocking structures with a self-replicating geometric module.

Keywords: computational design, SL-blocks, 3D polyomino puzzle, combinatorial problem

Procedia PDF Downloads 129
951 Experimental Study of Energy Absorption Efficiency (EAE) of Warp-Knitted Spacer Fabric Reinforced Foam (WKSFRF) Under Low-Velocity Impact

Authors: Amirhossein Dodankeh, Hadi Dabiryan, Saeed Hamze

Abstract:

Using fabrics to reinforce composites considerably leads to improved mechanical properties, including resistance to the impact load and the energy absorption of composites. Warp-knitted spacer fabrics (WKSF) are fabrics consisting of two layers of warp-knitted fabric connected by pile yarns. These connections create a space between the layers filled by pile yarns and give the fabric a three-dimensional shape. Today because of the unique properties of spacer fabrics, they are widely used in the transportation, construction, and sports industries. Polyurethane (PU) foams are commonly used as energy absorbers, but WKSF has much better properties in moisture transfer, compressive properties, and lower heat resistance than PU foam. It seems that the use of warp-knitted spacer fabric reinforced PU foam (WKSFRF) can lead to the production and use of composite, which has better properties in terms of energy absorption from the foam, its mold formation is enhanced, and its mechanical properties have been improved. In this paper, the energy absorption efficiency (EAE) of WKSFRF under low-velocity impact is investigated experimentally. The contribution of the effect of each of the structural parameters of the WKSF on the absorption of impact energy has also been investigated. For this purpose, WKSF with different structures such as two different thicknesses, small and large mesh sizes, and position of the meshes facing each other and not facing each other were produced. Then 6 types of composite samples with different structural parameters were fabricated. The physical properties of samples like weight per unit area and fiber volume fraction of composite were measured for 3 samples of any type of composites. Low-velocity impact with an initial energy of 5 J was carried out on 3 samples of any type of composite. The output of the low-velocity impact test is acceleration-time (A-T) graph with a lot deviation point, in order to achieve the appropriate results, these points were removed using the FILTFILT function of MATLAB R2018a. Using Newtonian laws of physics force-displacement (F-D) graph was drawn from an A-T graph. We know that the amount of energy absorbed is equal to the area under the F-D curve. Determination shows the maximum energy absorption is 2.858 J which is related to the samples reinforced with fabric with large mesh, high thickness, and not facing of the meshes relative to each other. An index called energy absorption efficiency was defined, which means absorption energy of any kind of our composite divided by its fiber volume fraction. With using this index, the best EAE between the samples is 21.6 that occurs in the sample with large mesh, high thickness, and meshes facing each other. Also, the EAE of this sample is 15.6% better than the average EAE of other composite samples. Generally, the energy absorption on average has been increased 21.2% by increasing the thickness, 9.5% by increasing the size of the meshes from small to big, and 47.3% by changing the position of the meshes from facing to non-facing.

Keywords: composites, energy absorption efficiency, foam, geometrical parameters, low-velocity impact, warp-knitted spacer fabric

Procedia PDF Downloads 169
950 A Virtual Set-Up to Evaluate Augmented Reality Effect on Simulated Driving

Authors: Alicia Yanadira Nava Fuentes, Ilse Cervantes Camacho, Amadeo José Argüelles Cruz, Ana María Balboa Verduzco

Abstract:

Augmented reality promises being present in future driving, with its immersive technology let to show directions and maps to identify important places indicating with graphic elements when the car driver requires the information. On the other side, driving is considered a multitasking activity and, for some people, a complex activity where different situations commonly occur that require the immediate attention of the car driver to make decisions that contribute to avoid accidents; therefore, the main aim of the project is the instrumentation of a platform with biometric sensors that allows evaluating the performance in driving vehicles with the influence of augmented reality devices to detect the level of attention in drivers, since it is important to know the effect that it produces. In this study, the physiological sensors EPOC X (EEG), ECG06 PRO and EMG Myoware are joined in the driving test platform with a Logitech G29 steering wheel and the simulation software City Car Driving in which the level of traffic can be controlled, as well as the number of pedestrians that exist within the simulation obtaining a driver interaction in real mode and through a MSP430 microcontroller achieves the acquisition of data for storage. The sensors bring a continuous analog signal in time that needs signal conditioning, at this point, a signal amplifier is incorporated due to the acquired signals having a sensitive range of 1.25 mm/mV, also filtering that consists in eliminating the frequency bands of the signal in order to be interpretative and without noise to convert it from an analog signal into a digital signal to analyze the physiological signals of the drivers, these values are stored in a database. Based on this compilation, we work on the extraction of signal features and implement K-NN (k-nearest neighbor) classification methods and decision trees (unsupervised learning) that enable the study of data for the identification of patterns and determine by classification methods different effects of augmented reality on drivers. The expected results of this project include are a test platform instrumented with biometric sensors for data acquisition during driving and a database with the required variables to determine the effect caused by augmented reality on people in simulated driving.

Keywords: augmented reality, driving, physiological signals, test platform

Procedia PDF Downloads 141
949 Denoising Convolutional Neural Network Assisted Electrocardiogram Signal Watermarking for Secure Transmission in E-Healthcare Applications

Authors: Jyoti Rani, Ashima Anand, Shivendra Shivani

Abstract:

In recent years, physiological signals obtained in telemedicine have been stored independently from patient information. In addition, people have increasingly turned to mobile devices for information on health-related topics. Major authentication and security issues may arise from this storing, degrading the reliability of diagnostics. This study introduces an approach to reversible watermarking, which ensures security by utilizing the electrocardiogram (ECG) signal as a carrier for embedding patient information. In the proposed work, Pan-Tompkins++ is employed to convert the 1D ECG signal into a 2D signal. The frequency subbands of a signal are extracted using RDWT(Redundant discrete wavelet transform), and then one of the subbands is subjected to MSVD (Multiresolution singular valued decomposition for masking. Finally, the encrypted watermark is embedded within the signal. The experimental results show that the watermarked signal obtained is indistinguishable from the original signals, ensuring the preservation of all diagnostic information. In addition, the DnCNN (Denoising convolutional neural network) concept is used to denoise the retrieved watermark for improved accuracy. The proposed ECG signal-based watermarking method is supported by experimental results and evaluations of its effectiveness. The results of the robustness tests demonstrate that the watermark is susceptible to the most prevalent watermarking attacks.

Keywords: ECG, VMD, watermarking, PanTompkins++, RDWT, DnCNN, MSVD, chaotic encryption, attacks

Procedia PDF Downloads 101
948 Activation of Mirror Neuron System Response to Drumming Training: A Functional Magnetic Resonance Imaging Study

Authors: Manal Alosaimi

Abstract:

Many rehabilitation strategies exist to aid persons with neurological disorders relearn motor skills through intensive training. Evidence supporting the theory that cortical areas involved in motor execution can be triggered by observing actions performed by others is attributed to the function of the mirror neuron system (MNS) indicates that activation of the MNS is associated with improvements in physical action and motor learning. Therefore, it is important to investigate the relationship between motor training (in this case, playing the drums) and the activation of the MNS. To achieve this, 15 healthy right-handed participants received drum-kit training for 21 weeks, during which time blood oxygen level-dependent (BOLD) signals were monitored in the brain using functional magnetic resonance imaging (fMRI). Participants were required to perform action–observation and action–execution fMRI tasks. The main results are that BOLD signals in classical regions of the MNS such as supramarginal gyri, inferior parietal lobule, and supplementary motor area increase significantly over the training period. Activation of these areas indicates that passive-observation of others performing these same skills may facilitate recovery of persons suffering from neurological disorders, and complement conventional rehabilitation programs that focus on action execution or intense training.

Keywords: fMRI, mirror neuron system, magnetic resonance imaging, neuroplasticity, drumming, learning, music, action observation, action execution

Procedia PDF Downloads 37
947 Psychophysiological Synchronization between the Manager and the Subordinate during a Performance Review Discussion

Authors: Mikko Salminen, Niklas Ravaja

Abstract:

Previous studies have shown that emotional intelligence (EI) has an important role in leadership and social interaction. On the other hand, physiological synchronization between two interacting participants has been related to, for example, intensity of the interaction, and interestingly also to empathy. It is suggested that the amount of covariation in physiological signals between the two interacting persons would also be related to how the discussion is perceived subjectively. To study the interrelations between physiological synchronization, emotional intelligence, and subjective perception of the interaction, performance review discussions between real manager – subordinate dyads were studied using psychophysiological measurements and self-reports. The participants consisted of 40 managers, of which 24 were female, and 78 of their subordinates, of which 45 were female. The participants worked in various fields, for example banking, education, and engineering. The managers had a normal performance review discussion with two subordinates, except two managers who, due to scheduling issues, had discussion with only one subordinate. The managers were on average 44.5 years old, and the subordinates on average 45.5 years old. Written consent, in accordance with the Declaration of Helsinki, was obtained from all the participants. After the discussion, the participants filled a questionnaire assessing their emotions during the discussion. This included a self-assessment manikin (SAM) scale for the emotional valence during the discussion, with a 9-point graphical scale representing a manikin whose facial expressions ranged from smiling and happy to frowning and unhappy. In addition, the managers filled EI360, a 37-item self-report trait emotional intelligence questionnaire. The psychophysiological activity of the participants was recorded using two Varioport-B portable recording devices. Cardiac activity (ECG, electrocardiogram) was measured with two electrodes placed on the torso. Inter-beat interval (IBI, time between two successive heart beats) was calculated from the ECG signals. The facial muscle activation (EMG, electromyography) was recorded on three sites of the left side of the face: zygomaticus major (cheek muscle), orbicularis oculi (periocular muscle), and corrugator supercilii (frowning muscle). The facial-EMG signals were rectified and smoothed, and cross-coherences were calculated between members of each dyad, for all the three EMG signals, for the baseline and discussion periods. The values were natural-log transformed to normalize the distributions. Higher cross-coherence during the discussion between the manager’s and the subordinate’s zygomatic muscles was related to more positive valence self-reported emotions, F(1; 66,137) = 7,051; p=0,01. Thus, synchronized cheek muscle activation, either due to synchronous smiling or talking, was related to more positive perception of the discussion. In addition, higher IBI synchronization between the manager and the subordinate during the discussion was related to the manager’s higher self-reported emotional intelligence, F(1; 27,981)=4,58; p=0,041. That is, the EI was related to synchronous cardiac activity and possibly to similar physiological arousal levels. The results imply that the psychophysiological synchronization could be a potentially useful index in the study of social interaction and a valuable tool in the coaching of leadership skills in organizational contexts.

Keywords: emotional intelligence, leadership, psychophysiology, social interaction, synchronization

Procedia PDF Downloads 319
946 An EEG-Based Scale for Comatose Patients' Vigilance State

Authors: Bechir Hbibi, Lamine Mili

Abstract:

Understanding the condition of comatose patients can be difficult, but it is crucial to their optimal treatment. Consequently, numerous scoring systems have been developed around the world to categorize patient states based on physiological assessments. Although validated and widely adopted by medical communities, these scores still present numerous limitations and obstacles. Even with the addition of additional tests and extensions, these scoring systems have not been able to overcome certain limitations, and it appears unlikely that they will be able to do so in the future. On the other hand, physiological tests are not the only way to extract ideas about comatose patients. EEG signal analysis has helped extensively to understand the human brain and human consciousness and has been used by researchers in the classification of different levels of disease. The use of EEG in the ICU has become an urgent matter in several cases and has been recommended by medical organizations. In this field, the EEG is used to investigate epilepsy, dementia, brain injuries, and many other neurological disorders. It has recently also been used to detect pain activity in some regions of the brain, for the detection of stress levels, and to evaluate sleep quality. In our recent findings, our aim was to use multifractal analysis, a very successful method of handling multifractal signals and feature extraction, to establish a state of awareness scale for comatose patients based on their electrical brain activity. The results show that this score could be instantaneous and could overcome many limitations with which the physiological scales stock. On the contrary, multifractal analysis stands out as a highly effective tool for characterizing non-stationary and self-similar signals. It demonstrates strong performance in extracting the properties of fractal and multifractal data, including signals and images. As such, we leverage this method, along with other features derived from EEG signal recordings from comatose patients, to develop a scale. This scale aims to accurately depict the vigilance state of patients in intensive care units and to address many of the limitations inherent in physiological scales such as the Glasgow Coma Scale (GCS) and the FOUR score. The results of applying version V0 of this approach to 30 patients with known GCS showed that the EEG-based score similarly describes the states of vigilance but distinguishes between the states of 8 sedated patients where the GCS could not be applied. Therefore, our approach could show promising results with patients with disabilities, injected with painkillers, and other categories where physiological scores could not be applied.

Keywords: coma, vigilance state, EEG, multifractal analysis, feature extraction

Procedia PDF Downloads 67
945 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations

Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay

Abstract:

Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.

Keywords: machining, milling operation, tool condition monitoring, tool wear prediction

Procedia PDF Downloads 303
944 Classification of EEG Signals Based on Dynamic Connectivity Analysis

Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović

Abstract:

In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.

Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients

Procedia PDF Downloads 214
943 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering  

Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi

Abstract:

In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.

Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering

Procedia PDF Downloads 150
942 Ultra-Wideband Antennas for Ultra-Wideband Communication and Sensing Systems

Authors: Meng Miao, Jeongwoo Han, Cam Nguyen

Abstract:

Ultra-wideband (UWB) time-domain impulse communication and radar systems use ultra-short duration pulses in the sub-nanosecond regime, instead of continuous sinusoidal waves, to transmit information. The pulse directly generates a very wide-band instantaneous signal with various duty cycles depending on specific usages. In UWB systems, the total transmitted power is spread over an extremely wide range of frequencies; the power spectral density is extremely low. This effectively results in extremely small interference to other radio signals while maintains excellent immunity to interference from these signals. UWB devices can therefore work within frequencies already allocated for other radio services, thus helping to maximize this dwindling resource. Therefore, impulse UWB technique is attractive for realizing high-data-rate, short-range communications, ground penetrating radar (GPR), and military radar with relatively low emission power levels. UWB antennas are the key element dictating the transmitted and received pulse shape and amplitude in both time and frequency domain. They should have good impulse response with minimal distortion. To facilitate integration with transmitters and receivers employing microwave integrated circuits, UWB antennas enabling direct integration are preferred. We present the development of two UWB antennas operating from 3.1 to 10.6 GHz and 0.3-6 GHz for UWB systems that provide direct integration with microwave integrated circuits. The operation of these antennas is based on the principle of wave propagation on a non-uniform transmission line. Time-domain EM simulation is conducted to optimize the antenna structures to minimize reflections occurring at the open-end transition. Calculated and measured results of these UWB antennas are presented in both frequency and time domains. The antennas have good time-domain responses. They can transmit and receive pulses effectively with minimum distortion, little ringing, and small reflection, clearly demonstrating the signal fidelity of the antennas in reproducing the waveform of UWB signals which is critical for UWB sensors and communication systems. Good performance together with seamless microwave integrated-circuit integration makes these antennas good candidates not only for UWB applications but also for integration with printed-circuit UWB transmitters and receivers.

Keywords: antennas, ultra-wideband, UWB, UWB communication systems, UWB radar systems

Procedia PDF Downloads 238
941 Electronic Raman Scattering Calibration for Quantitative Surface-Enhanced Raman Spectroscopy and Improved Biostatistical Analysis

Authors: Wonil Nam, Xiang Ren, Inyoung Kim, Masoud Agah, Wei Zhou

Abstract:

Despite its ultrasensitive detection capability, surface-enhanced Raman spectroscopy (SERS) faces challenges as a quantitative biochemical analysis tool due to the significant dependence of local field intensity in hotspots on nanoscale geometric variations of plasmonic nanostructures. Therefore, despite enormous progress in plasmonic nanoengineering of high-performance SERS devices, it is still challenging to quantitatively correlate the measured SERS signals with the actual molecule concentrations at hotspots. A significant effort has been devoted to developing SERS calibration methods by introducing internal standards. It has been achieved by placing Raman tags at plasmonic hotspots. Raman tags undergo similar SERS enhancement at the same hotspots, and ratiometric SERS signals for analytes of interest can be generated with reduced dependence on geometrical variations. However, using Raman tags still faces challenges for real-world applications, including spatial competition between the analyte and tags in hotspots, spectral interference, laser-induced degradation/desorption due to plasmon-enhanced photochemical/photothermal effects. We show that electronic Raman scattering (ERS) signals from metallic nanostructures at hotspots can serve as the internal calibration standard to enable quantitative SERS analysis and improve biostatistical analysis. We perform SERS with Au-SiO₂ multilayered metal-insulator-metal nano laminated plasmonic nanostructures. Since the ERS signal is proportional to the volume density of electron-hole occupation in hotspots, the ERS signals exponentially increase when the wavenumber is approaching the zero value. By a long-pass filter, generally used in backscattered SERS configurations, to chop the ERS background continuum, we can observe an ERS pseudo-peak, IERS. Both ERS and SERS processes experience the |E|⁴ local enhancements during the excitation and inelastic scattering transitions. We calibrated IMRS of 10 μM Rhodamine 6G in solution by IERS. The results show that ERS calibration generates a new analytical value, ISERS/IERS, insensitive to variations from different hotspots and thus can quantitatively reflect the molecular concentration information. Given the calibration capability of ERS signals, we performed label-free SERS analysis of living biological systems using four different breast normal and cancer cell lines cultured on nano-laminated SERS devices. 2D Raman mapping over 100 μm × 100 μm, containing several cells, was conducted. The SERS spectra were subsequently analyzed by multivariate analysis using partial least square discriminant analysis. Remarkably, after ERS calibration, MCF-10A and MCF-7 cells are further separated while the two triple-negative breast cancer cells (MDA-MB-231 and HCC-1806) are more overlapped, in good agreement with the well-known cancer categorization regarding the degree of malignancy. To assess the strength of ERS calibration, we further carried out a drug efficacy study using MDA-MB-231 and different concentrations of anti-cancer drug paclitaxel (PTX). After ERS calibration, we can more clearly segregate the control/low-dosage groups (0 and 1.5 nM), the middle-dosage group (5 nM), and the group treated with half-maximal inhibitory concentration (IC50, 15 nM). Therefore, we envision that ERS calibrated SERS can find crucial opportunities in label-free molecular profiling of complicated biological systems.

Keywords: cancer cell drug efficacy, plasmonics, surface-enhanced Raman spectroscopy (SERS), SERS calibration

Procedia PDF Downloads 137
940 Implementation of a Paraconsistent-Fuzzy Digital PID Controller in a Level Control Process

Authors: H. M. Côrtes, J. I. Da Silva Filho, M. F. Blos, B. S. Zanon

Abstract:

In a modern society the factor corresponding to the increase in the level of quality in industrial production demand new techniques of control and machinery automation. In this context, this work presents the implementation of a Paraconsistent-Fuzzy Digital PID controller. The controller is based on the treatment of inconsistencies both in the Paraconsistent Logic and in the Fuzzy Logic. Paraconsistent analysis is performed on the signals applied to the system inputs using concepts from the Paraconsistent Annotated Logic with annotation of two values (PAL2v). The signals resulting from the paraconsistent analysis are two values defined as Dc - Degree of Certainty and Dct - Degree of Contradiction, which receive a treatment according to the Fuzzy Logic theory, and the resulting output of the logic actions is a single value called the crisp value, which is used to control dynamic system. Through an example, it was demonstrated the application of the proposed model. Initially, the Paraconsistent-Fuzzy Digital PID controller was built and tested in an isolated MATLAB environment and then compared to the equivalent Digital PID function of this software for standard step excitation. After this step, a level control plant was modeled to execute the controller function on a physical model, making the tests closer to the actual. For this, the control parameters (proportional, integral and derivative) were determined for the configuration of the conventional Digital PID controller and of the Paraconsistent-Fuzzy Digital PID, and the control meshes in MATLAB were assembled with the respective transfer function of the plant. Finally, the results of the comparison of the level control process between the Paraconsistent-Fuzzy Digital PID controller and the conventional Digital PID controller were presented.

Keywords: fuzzy logic, paraconsistent annotated logic, level control, digital PID

Procedia PDF Downloads 284
939 Analyze the Effect of TETRA, Terrestrial Trunked Radio, Signal on the Health of People Working in the Gas Refinery

Authors: Mohammad Bagher Heidari, Hefzollah Mohammadian

Abstract:

TETRA (Terrestrial Trunked Radio) is a digital radio communication standard, which has been implemented in several different parts of the gas refinery ninth (phase 12th) by South Pars Gas Complex. Studies on possible impacts on the users' health considering different exposure conditions are missing. Objectives: To investigate possible acute effects of electromagnetic fields (EMF) of two different levels of TETRA hand-held transmitter signals on cognitive function and well-being in healthy young males. Methods: In the present double-blind cross-over study possible effects of short-term (2.5 h) EMF exposure of handset-like signals of TETRA (450 - 470 MHz) were studied in 30 healthy male participants (mean ± SD: 25.4 ±2.6 years). Individuals were tested on nine study days, on which they were exposed to three different exposure conditions (Sham, TETRA 1.5 W/kg and TETRA 10.0 W/kg) in a randomly assigned and balanced order. Participants were tested in the afternoon at a fixed timeframe. Results: Attention remained unchanged in two out of three tasks. In the working memory, significant changes were observed in two out of four subtasks. Significant results were found in 5 out of 35 tested parameters, four of them led to an improvement in performance. Mood, well-being and subjective somatic complaints were not affected by TETRA exposure. Conclusions: The results of the present study do not indicate a negative impact of a short-term EMF- effect of TETRA on cognitive function and well-being in healthy young men.

Keywords: TETRA (terrestrial trunked radio), electromagnetic fields (EMF), mobile telecommunication health research (MTHR), antenna

Procedia PDF Downloads 296
938 Computational Team Dynamics and Interaction Patterns in New Product Development Teams

Authors: Shankaran Sitarama

Abstract:

New Product Development (NPD) is invariably a team effort and involves effective teamwork. NPD team has members from different disciplines coming together and working through the different phases all the way from conceptual design phase till the production and product roll out. Creativity and Innovation are some of the key factors of successful NPD. Team members going through the different phases of NPD interact and work closely yet challenge each other during the design phases to brainstorm on ideas and later converge to work together. These two traits require the teams to have a divergent and a convergent thinking simultaneously. There needs to be a good balance. The team dynamics invariably result in conflicts among team members. While some amount of conflict (ideational conflict) is desirable in NPD teams to be creative as a group, relational conflicts (or discords among members) could be detrimental to teamwork. Team communication truly reflect these tensions and team dynamics. In this research, team communication (emails) between the members of the NPD teams is considered for analysis. The email communication is processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. The amount of communication (content and not frequency of communication) defines the interaction strength between the members. Social network adjacency matrix is thus obtained for the team. Standard social network analysis techniques based on the Adjacency Matrix (AM) and Dichotomized Adjacency Matrix (DAM) based on network density yield network graphs and network metrics like centrality. The social network graphs are then rendered for visual representation using a Metric Multi-Dimensional Scaling (MMDS) algorithm for node placements and arcs connecting the nodes (representing team members) are drawn. The distance of the nodes in the placement represents the tie-strength between the members. Stronger tie-strengths render nodes closer. Overall visual representation of the social network graph provides a clear picture of the team’s interactions. This research reveals four distinct patterns of team interaction that are clearly identifiable in the visual representation of the social network graph and have a clearly defined computational scheme. The four computational patterns of team interaction defined are Central Member Pattern (CMP), Subgroup and Aloof member Pattern (SAP), Isolate Member Pattern (IMP), and Pendant Member Pattern (PMP). Each of these patterns has a team dynamics implication in terms of the conflict level in the team. For instance, Isolate member pattern, clearly points to a near break-down in communication with the member and hence a possible high conflict level, whereas the subgroup or aloof member pattern points to a non-uniform information flow in the team and some moderate level of conflict. These pattern classifications of teams are then compared and correlated to the real level of conflict in the teams as indicated by the team members through an elaborate self-evaluation, team reflection, feedback form and results show a good correlation.

Keywords: team dynamics, team communication, team interactions, social network analysis, sna, new product development, latent semantic analysis, LSA, NPD teams

Procedia PDF Downloads 69
937 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction

Procedia PDF Downloads 184
936 Hidden Markov Model for Financial Limit Order Book and Its Application to Algorithmic Trading Strategy

Authors: Sriram Kashyap Prasad, Ionut Florescu

Abstract:

This study models the intraday asset prices as driven by Markov process. This work identifies the latent states of the Hidden Markov model, using limit order book data (trades and quotes) to continuously estimate the states throughout the day. This work builds a trading strategy using estimated states to generate signals. The strategy utilizes current state to recalibrate buy/ sell levels and the transition between states to trigger stop-loss when adverse price movements occur. The proposed trading strategy is tested on the Stevens High Frequency Trading (SHIFT) platform. SHIFT is a highly realistic market simulator with functionalities for creating an artificial market simulation by deploying agents, trading strategies, distributing initial wealth, etc. In the implementation several assets on the NASDAQ exchange are used for testing. In comparison to a strategy with static buy/ sell levels, this study shows that the number of limit orders that get matched and executed can be increased. Executing limit orders earns rebates on NASDAQ. The system can capture jumps in the limit order book prices, provide dynamic buy/sell levels and trigger stop loss signals to improve the PnL (Profit and Loss) performance of the strategy.

Keywords: algorithmic trading, Hidden Markov model, high frequency trading, limit order book learning

Procedia PDF Downloads 151
935 Marriage Domination and Divorce Domination in Graphs

Authors: Mark L. Caay, Rodolfo E. Maza

Abstract:

In this paper, the authors define two new variants of domination in graphs: the marriage and the divorce domination. A subset S ⊆ V (G) is said to be a marriage dominating set of G if for every e ∈ E(G), there exists a u ∈ V (G) such that u is one of the end vertex of e. A marriage dominating set S ⊆ V (G) is said to be a divorce dominating set of G if G\S is a disconnected graph. In this study, the authors present conditions of graphs for which the marriage and the divorce domination will take place and for which the two sets will coincide. Furthermore, the author gives the necessary and sufficient conditions for marriage domination to avoid divorce.

Keywords: domination, decomposition, marriage domination, divorce domination, marriage theorem

Procedia PDF Downloads 17
934 The Foundation Binary-Signals Mechanics and Actual-Information Model of Universe

Authors: Elsadig Naseraddeen Ahmed Mohamed

Abstract:

In contrast to the uncertainty and complementary principle, it will be shown in the present paper that the probability of the simultaneous occupation event of any definite values of coordinates by any definite values of momentum and energy at any definite instance of time can be described by a binary definite function equivalent to the difference between their numbers of occupation and evacuation epochs up to that time and also equivalent to the number of exchanges between those occupation and evacuation epochs up to that times modulus two, these binary definite quantities can be defined at all point in the time’s real-line so it form a binary signal represent a complete mechanical description of physical reality, the time of these exchanges represent the boundary of occupation and evacuation epochs from which we can calculate these binary signals using the fact that the time of universe events actually extends in the positive and negative of time’s real-line in one direction of extension when these number of exchanges increase, so there exists noninvertible transformation matrix can be defined as the matrix multiplication of invertible rotation matrix and noninvertible scaling matrix change the direction and magnitude of exchange event vector respectively, these noninvertible transformation will be called actual transformation in contrast to information transformations by which we can navigate the universe’s events transformed by actual transformations backward and forward in time’s real-line, so these information transformations will be derived as an elements of a group can be associated to their corresponded actual transformations. The actual and information model of the universe will be derived by assuming the existence of time instance zero before and at which there is no coordinate occupied by any definite values of momentum and energy, and then after that time, the universe begin its expanding in spacetime, this assumption makes the need for the existence of Laplace’s demon who at one moment can measure the positions and momentums of all constituent particle of the universe and then use the law of classical mechanics to predict all future and past of universe’s events, superfluous, we only need for the establishment of our analog to digital converters to sense the binary signals that determine the boundaries of occupation and evacuation epochs of the definite values of coordinates relative to its origin by the definite values of momentum and energy as present events of the universe from them we can predict approximately in high precision it's past and future events.

Keywords: binary-signal mechanics, actual-information model of the universe, actual-transformation, information-transformation, uncertainty principle, Laplace's demon

Procedia PDF Downloads 175
933 Design of SAE J2716 Single Edge Nibble Transmission Digital Sensor Interface for Automotive Applications

Authors: Jongbae Lee, Seongsoo Lee

Abstract:

Modern sensors often embed small-size digital controller for sensor control, value calibration, and signal processing. These sensors require digital data communication with host microprocessors, but conventional digital communication protocols are too heavy for price reduction. SAE J2716 SENT (single edge nibble transmission) protocol transmits direct digital waveforms instead of complicated analog modulated signals. In this paper, a SENT interface is designed in Verilog HDL (hardware description language) and implemented in FPGA (field-programmable gate array) evaluation board. The designed SENT interface consists of frame encoder/decoder, configuration register, tick period generator, CRC (cyclic redundancy code) generator/checker, and TX/RX (transmission/reception) buffer. Frame encoder/decoder is implemented as a finite state machine, and it controls whole SENT interface. Configuration register contains various parameters such as operation mode, tick length, CRC option, pause pulse option, and number of nibble data. Tick period generator generates tick signals from input clock. CRC generator/checker generates or checks CRC in the SENT data frame. TX/RX buffer stores transmission/received data. The designed SENT interface can send or receives digital data in 25~65 kbps at 3 us tick. Synthesized in 0.18 um fabrication technologies, it is implemented about 2,500 gates.

Keywords: digital sensor interface, SAE J2716, SENT, verilog HDL

Procedia PDF Downloads 300
932 Analyzing the Street Pattern Characteristics on Young People’s Choice to Walk or Not: A Study Based on Accelerometer and Global Positioning Systems Data

Authors: Ebru Cubukcu, Gozde Eksioglu Cetintahra, Burcin Hepguzel Hatip, Mert Cubukcu

Abstract:

Obesity and overweight cause serious health problems. Public and private organizations aim to encourage walking in various ways in order to cope with the problem of obesity and overweight. This study aims to understand how the spatial characteristics of urban street pattern, connectivity and complexity influence young people’s choice to walk or not. 185 public university students in Izmir, the third largest city in Turkey, participated in the study. Each participant had worn an accelerometer and a global positioning (GPS) device for a week. The accelerometer device records data on the intensity of the participant’s activity at a specified time interval, and the GPS device on the activities’ locations. Combining the two datasets, activity maps are derived. These maps are then used to differentiate the participants’ walk trips and motor vehicle trips. Given that, the frequency of walk and motor vehicle trips are calculated at the street segment level, and the street segments are then categorized into two as ‘preferred by pedestrians’ and ‘preferred by motor vehicles’. Graph Theory-based accessibility indices are calculated to quantify the spatial characteristics of the streets in the sample. Six different indices are used: (I) edge density, (II) edge sinuosity, (III) eta index, (IV) node density, (V) order of a node, and (VI) beta index. T-tests show that the index values for the ‘preferred by pedestrians’ and ‘preferred by motor vehicles’ are significantly different. The findings indicate that the spatial characteristics of the street network have a measurable effect on young people’s choice to walk or not. Policy implications are discussed. This study is funded by the Scientific and Technological Research Council of Turkey, Project No: 116K358.

Keywords: graph theory, walkability, accessibility, street network

Procedia PDF Downloads 225
931 Computational Fluid Dynamics Modeling of Flow Properties Fluctuations in Slug-Churn Flow through Pipe Elbow

Authors: Nkemjika Chinenye-Kanu, Mamdud Hossain, Ghazi Droubi

Abstract:

Prediction of multiphase flow induced forces, void fraction and pressure is crucial at both design and operating stages of practical energy and process pipe systems. In this study, transient numerical simulations of upward slug-churn flow through a vertical 90-degree elbow have been conducted. The volume of fluid (VOF) method was used to model the two-phase flows while the K-epsilon Reynolds-Averaged Navier-Stokes (RANS) equations were used to model turbulence in the flows. The simulation results were validated using experimental results. Void fraction signal, peak frequency and maximum magnitude of void fraction fluctuation of the slug-churn flow validation case studies compared well with experimental results. The x and y direction force fluctuation signals at the elbow control volume were obtained by carrying out force balance calculations using the directly extracted time domain signals of flow properties through the control volume in the numerical simulation. The computed force signal compared well with experiment for the slug and churn flow validation case studies. Hence, the present numerical simulation technique was able to predict the behaviours of the one-way flow induced forces and void fraction fluctuations.

Keywords: computational fluid dynamics, flow induced vibration, slug-churn flow, void fraction and force fluctuation

Procedia PDF Downloads 156
930 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 50
929 Digimesh Wireless Sensor Network-Based Real-Time Monitoring of ECG Signal

Authors: Sahraoui Halima, Dahani Ameur, Tigrine Abedelkader

Abstract:

DigiMesh technology represents a pioneering advancement in wireless networking, offering cost-effective and energy-efficient capabilities. Its inherent simplicity and adaptability facilitate the seamless transfer of data between network nodes, extending the range and ensuring robust connectivity through autonomous self-healing mechanisms. In light of these advantages, this study introduces a medical platform harnessed with DigiMesh wireless network technology characterized by low power consumption, immunity to interference, and user-friendly operation. The primary application of this platform is the real-time, long-distance monitoring of Electrocardiogram (ECG) signals, with the added capacity for simultaneous monitoring of ECG signals from multiple patients. The experimental setup comprises key components such as Raspberry Pi, E-Health Sensor Shield, and Xbee DigiMesh modules. The platform is composed of multiple ECG acquisition devices labeled as Sensor Node 1 and Sensor Node 2, with a Raspberry Pi serving as the central hub (Sink Node). Two communication approaches are proposed: Single-hop and multi-hop. In the Single-hop approach, ECG signals are directly transmitted from a sensor node to the sink node through the XBee3 DigiMesh RF Module, establishing peer-to-peer connections. This approach was tested in the first experiment to assess the feasibility of deploying wireless sensor networks (WSN). In the multi-hop approach, two sensor nodes communicate with the server (Sink Node) in a star configuration. This setup was tested in the second experiment. The primary objective of this research is to evaluate the performance of both Single-hop and multi-hop approaches in diverse scenarios, including open areas and obstructed environments. Experimental results indicate the DigiMesh network's effectiveness in Single-hop mode, with reliable communication over distances of approximately 300 meters in open areas. In the multi-hop configuration, the network demonstrated robust performance across approximately three floors, even in the presence of obstacles, without the need for additional router devices. This study offers valuable insights into the capabilities of DigiMesh wireless technology for real-time ECG monitoring in healthcare applications, demonstrating its potential for use in diverse medical scenarios.

Keywords: DigiMesh protocol, ECG signal, real-time monitoring, medical platform

Procedia PDF Downloads 79
928 The DAQ Debugger for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.

Keywords: DAQ Debugger, data acquisition system, FPGA, system signals, Qt framework

Procedia PDF Downloads 284