Search results for: fault detection and diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5453

Search results for: fault detection and diagnosis

4973 A Centralized Architecture for Cooperative Air-Sea Vehicles Using UAV-USV

Authors: Salima Bella, Assia Belbachir, Ghalem Belalem

Abstract:

This paper deals with the problem of monitoring and cleaning dirty zones of oceans using unmanned vehicles. We present a centralized cooperative architecture for unmanned aerial vehicles (UAVs) to monitor ocean regions and clean dirty zones with the help of unmanned surface vehicles (USVs). Due to the rapid deployment of these unmanned vehicles, it is convenient to use them in oceanic regions where the water pollution zones are generally unknown. In order to optimize this process, our solution aims to detect and reduce the pollution level of the ocean zones while taking into account the problem of fault tolerance related to these vehicles.

Keywords: centralized architecture, fault tolerance, UAV, USV

Procedia PDF Downloads 329
4972 Real-Time Pedestrian Detection Method Based on Improved YOLOv3

Authors: Jingting Luo, Yong Wang, Ying Wang

Abstract:

Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.

Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3

Procedia PDF Downloads 142
4971 Information Visualization Methods Applied to Nanostructured Biosensors

Authors: Osvaldo N. Oliveira Jr.

Abstract:

The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.

Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique

Procedia PDF Downloads 337
4970 Parkinson’s Disease Detection Analysis through Machine Learning Approaches

Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee

Abstract:

Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.

Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier

Procedia PDF Downloads 129
4969 Comparison of Vessel Detection in Standard vs Ultra-WideField Retinal Images

Authors: Maher un Nisa, Ahsan Khawaja

Abstract:

Retinal imaging with Ultra-WideField (UWF) view technology has opened up new avenues in the field of retinal pathology detection. Recent developments in retinal imaging such as Optos California Imaging Device helps in acquiring high resolution images of the retina to help the Ophthalmologists in diagnosing and analyzing eye related pathologies more accurately. This paper investigates the acquired retinal details by comparing vessel detection in standard 450 color fundus images with the state of the art 2000 UWF retinal images.

Keywords: color fundus, retinal images, ultra-widefield, vessel detection

Procedia PDF Downloads 448
4968 Some Codes for Variants in Graphs

Authors: Sofia Ait Bouazza

Abstract:

We consider the problem of finding a minimum identifying code in a graph. This problem was initially introduced in 1998 and has been since fundamentally connected to a wide range of applications (fault diagnosis, location detection …). Suppose we have a building into which we need to place fire alarms. Suppose each alarm is designed so that it can detect any fire that starts either in the room in which it is located or in any room that shares a doorway with the room. We want to detect any fire that may occur or use the alarms which are sounding to not only to not only detect any fire but be able to tell exactly where the fire is located in the building. For reasons of cost, we want to use as few alarms as necessary. The first problem involves finding a minimum domination set of a graph. If the alarms are three state alarms capable of distinguishing between a fire in the same room as the alarm and a fire in an adjacent room, we are trying to find a minimum locating domination set. If the alarms are two state alarms that can only sound if there is a fire somewhere nearby, we are looking for a differentiating domination set of a graph. These three areas are the subject of much active research; we primarily focus on the third problem. An identifying code of a graph G is a dominating set C such that every vertex x of G is distinguished from other vertices by the set of vertices in C that are at distance at most r≥1 from x. When only vertices out of the code are asked to be identified, we get the related concept of a locating dominating set. The problem of finding an identifying code (resp a locating dominating code) of minimum size is a NP-hard problem, even when the input graph belongs to a number of specific graph classes. Therefore, we study this problem in some restricted classes of undirected graphs like split graph, line graph and path in a directed graph. Then we present some results on the identifying code by giving an exact value of upper total locating domination and a total 2-identifying code in directed and undirected graph. Moreover we determine exact values of locating dominating code and edge identifying code of thin headless spider and locating dominating code of complete suns.

Keywords: identiying codes, locating dominating set, split graphs, thin headless spider

Procedia PDF Downloads 480
4967 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 73
4966 Detection of Clipped Fragments in Speech Signals

Authors: Sergei Aleinik, Yuri Matveev

Abstract:

In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented.

Keywords: clipping, clipped signal, speech signal processing, digital signal processing

Procedia PDF Downloads 393
4965 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module

Procedia PDF Downloads 343
4964 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 263
4963 Automatic Change Detection for High-Resolution Satellite Images of Urban and Suburban Areas

Authors: Antigoni Panagiotopoulou, Lemonia Ragia

Abstract:

High-resolution satellite images can provide detailed information about change detection on the earth. In the present work, QuickBird images of spatial resolution 60 cm/pixel and WorldView images of resolution 30 cm/pixel are utilized to perform automatic change detection in urban and suburban areas of Crete, Greece. There is a relative time difference of 13 years among the satellite images. Multiindex scene representation is applied on the images to classify the scene into buildings, vegetation, water and ground. Then, automatic change detection is made possible by pixel-per-pixel comparison of the classified multi-temporal images. The vegetation index and the water index which have been developed in this study prove effective. Furthermore, the proposed change detection approach not only indicates whether changes have taken place or not but also provides specific information relative to the types of changes. Experimentations with other different scenes in the future could help optimize the proposed spectral indices as well as the entire change detection methodology.

Keywords: change detection, multiindex scene representation, spectral index, QuickBird, WorldView

Procedia PDF Downloads 136
4962 The Laser Line Detection for Autonomous Mapping Based on Color Segmentation

Authors: Pavel Chmelar, Martin Dobrovolny

Abstract:

Laser projection or laser footprint detection is today widely used in many fields of robotics, measurement, or electronics. The system accuracy strictly depends on precise laser footprint detection on target objects. This article deals with the laser line detection based on the RGB segmentation and the component labeling. As a measurement device was used the developed optical rangefinder. The optical rangefinder is equipped with vertical sweeping of the laser beam and high quality camera. This system was developed mainly for automatic exploration and mapping of unknown spaces. In the first section is presented a new detection algorithm. In the second section are presented measurements results. The measurements were performed in variable light conditions in interiors. The last part of the article present achieved results and their differences between day and night measurements.

Keywords: color segmentation, component labelling, laser line detection, automatic mapping, distance measurement, vector map

Procedia PDF Downloads 432
4961 A Simple and Easy-To-Use Tool for Detecting Outer Contour of Leukocytes Based on Image Processing Techniques

Authors: Retno Supriyanti, Best Leader Nababan, Yogi Ramadhani, Wahyu Siswandari

Abstract:

Blood cell morphology is an important parameter in a hematology test. Currently, in developing countries, a lot of hematology is done manually, either by physicians or laboratory staff. According to the limitation of the human eye, examination based on manual method will result in a lower precision and accuracy. In addition, the hematology test by manual will further complicate the diagnosis in some areas that do not have competent medical personnel. This research aims to develop a simple tool in the detection of blood cell morphology-based computer. In this paper, we focus on the detection of the outer contour of leukocytes. The results show that the system that we developed is promising for detecting blood cell morphology automatically. It is expected, by implementing this method, the problem of accuracy, precision and limitations of the medical staff can be solved.

Keywords: morphology operation, developing countries, hematology test, limitation of medical personnel

Procedia PDF Downloads 338
4960 A Background Subtraction Based Moving Object Detection Around the Host Vehicle

Authors: Hyojin Lim, Cuong Nguyen Khac, Ho-Youl Jung

Abstract:

In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added.We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction.

Keywords: gaussian mixture model, background subtraction, moving object detection, color space, morphological filtering

Procedia PDF Downloads 617
4959 The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins

Authors: Xinyi Zhao, Furong Tian

Abstract:

Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. Forty-six papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow immunochromatographic strips on different types of mycotoxins. The papers were dated 2001-2021. Twenty five papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone:5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structure are usually used in large scale detection. In conclusion, the mycotoxin receives that most researches is aflatoxin B1 and its limit of detection is the lowest. Gold-nanopaticle based immunochromatographic test strips has the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles. In these papers, quantitative concentration results can be obtained when the user uploads the photograph of test lines using the smartphone application.

Keywords: aflatoxin B1, limit of detection, gold nanoparticle, lateral flow immunochromatographic strips, mycotoxins

Procedia PDF Downloads 195
4958 A Case of Umbilical Arterial Atresia in the Third Trimester of Pregnancy

Authors: Caixiu Pu, Zhen Chen

Abstract:

We present the rare case of umbilical arterial atresia, leading to a good outcome and provide clinical and pathological findings. A 27-year-old nulliparous first gravida with PGDM was found single umbilical artery(SUA) by routine ultrasound san at 30 weeeks of gestation. Fetal status was monitored weekly. A healthy male newborn was delivered by cesarean section at 39 weeks. The umbilical cord was overly twisted and no thrombus was found along the whole diseased vessel. The cause of umbilical arterial atresia was unclear, and the correct diagnosis was a challenge. Expected clinical management was recommended, in which sonographic diagnosis may play a very important part.

Keywords: pregnancy, single umbilical artery, umbilical arterial atresia, prenatal diagnosis

Procedia PDF Downloads 32
4957 Paper-Based Detection Using Synthetic Gene Circuits

Authors: Vanessa Funk, Steven Blum, Stephanie Cole, Jorge Maciel, Matthew Lux

Abstract:

Paper-based synthetic gene circuits offer a new paradigm for programmable, fieldable biodetection. We demonstrate that by freeze-drying gene circuits with in vitro expression machinery, we can use complimentary RNA sequences to trigger colorimetric changes upon rehydration. We have successfully utilized both green fluorescent protein and luciferase-based reporters for easy visualization purposes in solution. Through several efforts, we are aiming to use this new platform technology to address a variety of needs in portable detection by demonstrating several more expression and reporter systems for detection functions on paper. In addition to RNA-based biodetection, we are exploring the use of various mechanisms that cells use to respond to environmental conditions to move towards all-hazards detection. Examples include explosives, heavy metals for water quality, and toxic chemicals.

Keywords: cell-free lysates, detection, gene circuits, in vitro

Procedia PDF Downloads 395
4956 A Highly Sensitive Dip Strip for Detection of Phosphate in Water

Authors: Hojat Heidari-Bafroui, Amer Charbaji, Constantine Anagnostopoulos, Mohammad Faghri

Abstract:

Phosphorus is an essential nutrient for plant life which is most frequently found as phosphate in water. Once phosphate is found in abundance in surface water, a series of adverse effects on an ecosystem can be initiated. Therefore, a portable and reliable method is needed to monitor the phosphate concentrations in the field. In this paper, an inexpensive dip strip device with the ascorbic acid/antimony reagent dried on blotting paper along with wet chemistry is developed for the detection of low concentrations of phosphate in water. Ammonium molybdate and sulfuric acid are separately stored in liquid form so as to improve significantly the lifetime of the device and enhance the reproducibility of the device’s performance. The limit of detection and quantification for the optimized device are 0.134 ppm and 0.472 ppm for phosphate in water, respectively. The device’s shelf life, storage conditions, and limit of detection are superior to what has been previously reported for the paper-based phosphate detection devices.

Keywords: phosphate detection, paper-based device, molybdenum blue method, colorimetric assay

Procedia PDF Downloads 170
4955 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality

Procedia PDF Downloads 193
4954 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 138
4953 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution

Procedia PDF Downloads 355
4952 An Extraction of Cancer Region from MR Images Using Fuzzy Clustering Means and Morphological Operations

Authors: Ramandeep Kaur, Gurjit Singh Bhathal

Abstract:

Cancer diagnosis is very difficult task. Magnetic resonance imaging (MRI) scan is used to produce image of any part of the body and provides an efficient way for diagnosis of cancer or tumor. In existing method, fuzzy clustering mean (FCM) is used for the diagnosis of the tumor. In the proposed method FCM is used to diagnose the cancer of the foot. FCM finds the centroids of the clusters of the foot cancer obtained from MRI images. FCM thresholding result shows the extract region of the cancer. Morphological operations are applied to get extracted region of cancer.

Keywords: magnetic resonance imaging (MRI), fuzzy C mean clustering, segmentation, morphological operations

Procedia PDF Downloads 399
4951 Adaptive Nonparametric Approach for Guaranteed Real-Time Detection of Targeted Signals in Multichannel Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

An adaptive nonparametric method is proposed for stable real-time detection of seismoacoustic sources in multichannel C-OTDR systems with a significant number of channels. This method guarantees given upper boundaries for probabilities of Type I and Type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this report.

Keywords: guaranteed detection, multichannel monitoring systems, change point, interval estimation, adaptive detection

Procedia PDF Downloads 448
4950 An Accurate Computer-Aided Diagnosis: CAD System for Diagnosis of Aortic Enlargement by Using Convolutional Neural Networks

Authors: Mahdi Bazarganigilani

Abstract:

Aortic enlargement, also known as an aortic aneurysm, can occur when the walls of the aorta become weak. This disease can become deadly if overlooked and undiagnosed. In this paper, a computer-aided diagnosis (CAD) system was introduced to accurately diagnose aortic enlargement from chest x-ray images. An enhanced convolutional neural network (CNN) was employed and then trained by transfer learning by using three different main areas from the original images. The areas included the left lung, heart, and right lung. The accuracy of the system was then evaluated on 1001 samples by using 4-fold cross-validation. A promising accuracy of 90% was achieved in terms of the F-measure indicator. The results showed using different areas from the original image in the training phase of CNN could increase the accuracy of predictions. This encouraged the author to evaluate this method on a larger dataset and even on different CAD systems for further enhancement of this methodology.

Keywords: computer-aided diagnosis systems, aortic enlargement, chest X-ray, image processing, convolutional neural networks

Procedia PDF Downloads 162
4949 Intrusion Detection Using Dual Artificial Techniques

Authors: Rana I. Abdulghani, Amera I. Melhum

Abstract:

With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.

Keywords: IDS, SI, BP, NSL_KDD, PSO

Procedia PDF Downloads 382
4948 Fingerprint on Ballistic after Shooting

Authors: Narong Kulnides

Abstract:

This research involved fingerprints on ballistics after shooting. Two objectives of research were as follows; (1) to study the duration of the existence of latent fingerprints on .38, .45, 9 mm and .223 cartridge case after shooting, and (2) to compare the effectiveness of the detection of latent fingerprints by Black Powder, Super Glue, Perma Blue and Gun Bluing. The latent fingerprint appearance were studied on .38, .45, 9 mm. and .223 cartridge cases before and after shooting with Black Powder, Super Glue, Perma Blue and Gun Bluing. The detection times were 3 minute, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78 and 84 hours respectively. As a result of the study, it can be conclude that: (1) Before shooting, the detection of latent fingerprints on 38, .45, and 9 mm. and .223 cartridge cases with Black Powder, Super Glue, Perma Blue and Gun Bluing can detect the fingerprints at all detection times. (2) After shooting, the detection of latent fingerprints on .38, .45, 9 mm. and .223 cartridge cases with Black Powder, Super Glue did not appear. The detection of latent fingerprints on .38, .45, 9 mm. cartridge cases with Perma Blue and Gun Bluing were found 100% of the time and the detection of latent fingerprints on .223 cartridge cases with Perma Blue and Gun Bluing were found 40% and 46.67% of the time, respectively.

Keywords: ballistic, fingerprint, shooting, detection times

Procedia PDF Downloads 418
4947 Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs

Authors: K. N. Dinesh Babu, P. K. Gargava

Abstract:

Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.

Keywords: differential protection, intelligent electronic device (IED), 2nd harmonic inhibit, inrush inhibit

Procedia PDF Downloads 300
4946 Proof of Concept Design and Development of a Computer-Aided Medical Evaluation of Symptoms Web App: An Expert System for Medical Diagnosis in General Practice

Authors: Ananda Perera

Abstract:

Computer-Assisted Medical Evaluation of Symptoms (CAMEOS) is a medical expert system designed to help General Practices (GPs) make an accurate diagnosis. CAMEOS comprises a knowledge base, user input, inference engine, reasoning module, and output statement. The knowledge base was developed by the author. User input is an Html file. The physician user collects data in the consultation. Data is sent to the inference engine at servers. CAMEOS uses set theory to simulate diagnostic reasoning. The program output is a list of differential diagnoses, the most probable diagnosis, and the diagnostic reasoning.

Keywords: CDSS, computerized decision support systems, expert systems, general practice, diagnosis, diagnostic systems, primary care diagnostic system, artificial intelligence in medicine

Procedia PDF Downloads 155
4945 Utility of the Loop-Mediated Isothermal Amplification Assay for the Diagnosis of Visceral Leishmaniasis from Blood Samples in Ethiopia

Authors: Dawit Gebreegzabher Hagos, Yazezew Kebede Kiro, Mahmud Abdulkader, Henk H. D. F. Schallig, Dawit Wolday

Abstract:

Rapid and accurate visceral leishmaniasis (VL) diagnosis is needed to initiate prompt treatment to reduce morbidity and mortality. Here, we evaluated the performance of loop-mediated isothermal amplification (LAMP) assay for the diagnosis of VL from blood in an endemic area in Ethiopia. LAMP was positive in 117/122 confirmed VL cases and negative in 149/152 controls, resulting in a sensitivity of 95.9% (95% CI: 90.69–98.66) and a specificity of 98.0% (95% CI: 94.34–99.59), respectively. The sensitivity of the LAMP assay was 95.0% (95% CI: 88.61–98.34) in HIV-negatives and 100% (95% CI: 85.18–100.0) in HIV-positives. Compared with microscopy, LAMP detected 82/87 (94.3%, 95% CI: 87.10–98.11) of the microscopy1 cases and was negative in 11/27 (40.7%, 95% CI: 22.39–61.20) of the microscopy2 cases. Compared with the rK39 serology, LAMP detected 113/120 (94.2%, 95% CI: 88.35–97.62) of the rK391 cases and was negative in 149/154 (96.8%, 95% CI: 92.59–98.94) of the rK392 cases. However, when compared with microscopy only, rK39 detected 83/87 (95.4%, 95% CI: 88.64–98.73) of the microscopy1 cases and negative in only 12/27 (44.4%, 95% CI: 25.48–64.67) of the microscopy– cases. There was an excellent agreement between rK39 and LAMP (Kappa 5 0.91, 95% CI: 0.86–0.96). Furthermore, an algorithm using rK39 followed by LAMP would yield a sensitivity of 99.2% (95%CI: 95.52–99.89) and a specificity of 98.0% (95% CI: 94.34–99.59). The findings demonstrate that the LAMP assay is an accurate and rapid molecular assay for VL diagnosis, including in HIV-1 co-infected patients, in an endemic setting.

Keywords: visceral leishmaniasis, HIV, diagnosis, LAMP, Ethiopia

Procedia PDF Downloads 98
4944 Post-Earthquake Road Damage Detection by SVM Classification from Quickbird Satellite Images

Authors: Moein Izadi, Ali Mohammadzadeh

Abstract:

Detection of damaged parts of roads after earthquake is essential for coordinating rescuers. In this study, an approach is presented for the semi-automatic detection of damaged roads in a city using pre-event vector maps and both pre- and post-earthquake QuickBird satellite images. Damage is defined in this study as the debris of damaged buildings adjacent to the roads. Some spectral and texture features are considered for SVM classification step to detect damages. Finally, the proposed method is tested on QuickBird pan-sharpened images from the Bam City earthquake and the results show that an overall accuracy of 81% and a kappa coefficient of 0.71 are achieved for the damage detection. The obtained results indicate the efficiency and accuracy of the proposed approach.

Keywords: SVM classifier, disaster management, road damage detection, quickBird images

Procedia PDF Downloads 623