Search results for: acoustic streaming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 572

Search results for: acoustic streaming

92 Experimental Study of Unconfined and Confined Isothermal Swirling Jets

Authors: Rohit Sharma, Fabio Cozzi

Abstract:

A 3C-2D PIV technique was applied to investigate the swirling flow generated by an axial plus tangential type swirl generator. This work is focused on the near-exit region of an isothermal swirling jet to characterize the effect of swirl on the flow field and to identify the large coherent structures both in unconfined and confined conditions for geometrical swirl number, Sg = 4.6. Effects of the Reynolds number on the flow structure were also studied. The experimental results show significant effects of the confinement on the mean velocity fields and its fluctuations. The size of the recirculation zone was significantly enlarged upon confinement compared to the free swirling jet. Increasing in the Reynolds number further enhanced the recirculation zone. The frequency characteristics have been measured with a capacitive microphone which indicates the presence of periodic oscillation related to the existence of precessing vortex core, PVC. Proper orthogonal decomposition of the jet velocity field was carried out, enabling the identification of coherent structures. The time coefficients of the first two most energetic POD modes were used to reconstruct the phase-averaged velocity field of the oscillatory motion in the swirling flow. The instantaneous minima of negative swirl strength values calculated from the instantaneous velocity field revealed the presence of two helical structures located in the inner and outer shear layers and this structure fade out at an axial location of approximately z/D = 1.5 for unconfined case and z/D = 1.2 for confined case. By phase averaging the instantaneous swirling strength maps, the 3D helical vortex structure was reconstructed.

Keywords: acoustic probes, 3C-2D particle image velocimetry (PIV), precessing vortex core (PVC), recirculation zone (RZ)

Procedia PDF Downloads 233
91 Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load

Authors: Behrang Tavousi Tehrani, Mohammad-Zaman Kabir

Abstract:

Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation shell theory (FSDT), the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force.

Keywords: airy stress function, cylindrical shell, Galerkin technique, load-deflection curve, recovery stress, shape memory alloy

Procedia PDF Downloads 188
90 Mechanical Properties and Microstructural Analyzes of Epoxy Resins Reinforced with Satin Tissue

Authors: Băilă Diana Irinel, Păcurar Răzvan, Păcurar Ancuța

Abstract:

Although the volumes of fibre reinforced polymer composites (FRPs) used for aircraft applications is a relatively small percentage of total use, the materials often find their most sophisticated applications in this industry. In aerospace, the performance criteria placed upon materials can be far greater than in other areas – key aspects are light-weight, high-strength, high-stiffness, and good fatigue resistance. Composites were first used by the military before the technology was applied to commercial planes. Nowadays, composites are widely used, and this has been the result of a gradual direct substitution of metal components followed by the development of integrated composite designs as confidence in FRPs has increased. The airplane uses a range of components made from composites, including the fin and tailplane. In the last years, composite materials are increasingly used in automotive applications due to the improvement of material properties. In the aerospace and automotive sector, the fuel consumption is proportional to the weight of the body of the vehicle. A minimum of 20% of the cost can be saved if it used polymer composites in place of the metal structures and the operating and maintenance costs are alco very low. Glass fiber-epoxy composites are widely used in the making of aircraft and automobile body parts and are not only limited to these fields but also used in ship building, structural applications in civil engineering, pipes for the transport of liquids, electrical insulators in reactors. This article was establish the high-performance of composite material, a type glass-epoxy used in automotive and aeronautic domains, concerning the tensile and flexural tests and SEM analyzes.

Keywords: glass-epoxy composite, traction and flexion tests, SEM analysis, acoustic emission (AE) signals

Procedia PDF Downloads 103
89 Perceptual and Ultrasound Articulatory Training Effects on English L2 Vowels Production by Italian Learners

Authors: I. Sonia d’Apolito, Bianca Sisinni, Mirko Grimaldi, Barbara Gili Fivela

Abstract:

The American English contrast /ɑ-ʌ/ (cop-cup) is difficult to be produced by Italian learners since they realize L2-/ɑ-ʌ/ as L1-/ɔ-a/ respectively, due to differences in phonetic-phonological systems and also in grapheme-to-phoneme conversion rules. In this paper, we try to answer the following research questions: Can a short training improve the production of English /ɑ-ʌ/ by Italian learners? Is a perceptual training better than an articulatory (ultrasound - US) training? Thus, we compare a perceptual training with an US articulatory one to observe: 1) the effects of short trainings on L2-/ɑ-ʌ/ productions; 2) if the US articulatory training improves the pronunciation better than the perceptual training. In this pilot study, 9 Salento-Italian monolingual adults participated: 3 subjects performed a 1-hour perceptual training (ES-P); 3 subjects performed a 1-hour US training (ES-US); and 3 control subjects did not receive any training (CS). Verbal instructions about the phonetic properties of L2-/ɑ-ʌ/ and L1-/ɔ-a/ and their differences (representation on F1-F2 plane) were provided during both trainings. After these instructions, the ES-P group performed an identification training based on the High Variability Phonetic Training procedure, while the ES-US group performed the articulatory training, by means of US video of tongue gestures in L2-/ɑ-ʌ/ production and dynamic view of their own tongue movements and position using a probe under their chin. The acoustic data were analyzed and the first three formants were calculated. Independent t-tests were run to compare: 1) /ɑ-ʌ/ in pre- vs. post-test respectively; /ɑ-ʌ/ in pre- and post-test vs. L1-/a-ɔ/ respectively. Results show that in the pre-test all speakers realize L2-/ɑ-ʌ/ as L1-/ɔ-a/ respectively. Contrary to CS and ES-P groups, the ES-US group in the post-test differentiates the L2 vowels from those produced in the pre-test as well as from the L1 vowels, although only one ES-US subject produces both L2 vowels accurately. The articulatory training seems more effective than the perceptual one since it favors the production of vowels in the correct direction of L2 vowels and differently from the similar L1 vowels.

Keywords: L2 vowel production, perceptual training, articulatory training, ultrasound

Procedia PDF Downloads 256
88 Non-Destructive Technique for Detection of Voids in the IC Package Using Terahertz-Time Domain Spectrometer

Authors: Sung-Hyeon Park, Jin-Wook Jang, Hak-Sung Kim

Abstract:

In recent years, Terahertz (THz) time-domain spectroscopy (TDS) imaging method has been received considerable interest as a promising non-destructive technique for detection of internal defects. In comparison to other non-destructive techniques such as x-ray inspection method, scanning acoustic tomograph (SAT) and microwave inspection method, THz-TDS imaging method has many advantages: First, it can measure the exact thickness and location of defects. Second, it doesn’t require the liquid couplant while it is very crucial to deliver that power of ultrasonic wave in SAT method. Third, it didn’t damage to materials and be harmful to human bodies while x-ray inspection method does. Finally, it exhibits better spatial resolution than microwave inspection method. However, this technology couldn’t be applied to IC package because THz radiation can penetrate through a wide variety of materials including polymers and ceramics except of metals. Therefore, it is difficult to detect the defects in IC package which are composed of not only epoxy and semiconductor materials but also various metals such as copper, aluminum and gold. In this work, we proposed a special method for detecting the void in the IC package using THz-TDS imaging system. The IC package specimens for this study are prepared by Packaging Engineering Team in Samsung Electronics. Our THz-TDS imaging system has a special reflection mode called pitch-catch mode which can change the incidence angle in the reflection mode from 10 o to 70 o while the others have transmission and the normal reflection mode or the reflection mode fixed at certain angle. Therefore, to find the voids in the IC package, we investigated the appropriate angle as changing the incidence angle of THz wave emitter and detector. As the results, the voids in the IC packages were successfully detected using our THz-TDS imaging system.

Keywords: terahertz, non-destructive technique, void, IC package

Procedia PDF Downloads 473
87 Parametric Optimization of High-Performance Electric Vehicle E-Gear Drive for Radiated Noise Using 1-D System Simulation

Authors: Sanjai Sureshkumar, Sathish G. Kumar, P. V. V. Sathyanarayana

Abstract:

For e-gear drivetrain, the transmission error and the resulting variation in mesh stiffness is one of the main source of excitation in High performance Electric Vehicle. These vibrations are transferred through the shaft to the bearings and then to the e-Gear drive housing eventually radiating noise. A parametrical model developed in 1-D system simulation by optimizing the micro and macro geometry along with bearing properties and oil filtration to achieve least transmission error and high contact ratio. Histogram analysis is performed to condense the actual road load data into condensed duty cycle to find the bearing forces. The structural vibration generated by these forces will be simulated in a nonlinear solver obtaining the normal surface velocity of the housing and the results will be carried forward to Acoustic software wherein a virtual environment of the surrounding (actual testing scenario) with accurate microphone position will be maintained to predict the sound pressure level of radiated noise and directivity plot of the e-Gear Drive. Order analysis will be carried out to find the root cause of the vibration and whine noise. Broadband spectrum will be checked to find the rattle noise source. Further, with the available results, the design will be optimized, and the next loop of simulation will be performed to build a best e-Gear Drive on NVH aspect. Structural analysis will be also carried out to check the robustness of the e-Gear Drive.

Keywords: 1-D system simulation, contact ratio, e-Gear, mesh stiffness, micro and macro geometry, transmission error, radiated noise, NVH

Procedia PDF Downloads 149
86 Sensor Registration in Multi-Static Sonar Fusion Detection

Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin

Abstract:

In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.

Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem

Procedia PDF Downloads 169
85 Decision Support System for the Management of the Shandong Peninsula, China

Authors: Natacha Fery, Guilherme L. Dalledonne, Xiangyang Zheng, Cheng Tang, Roberto Mayerle

Abstract:

A Decision Support System (DSS) for supporting decision makers in the management of the Shandong Peninsula has been developed. Emphasis has been given to coastal protection, coastal cage aquaculture and harbors. The investigations were done in the framework of a joint research project funded by the German Ministry of Education and Research (BMBF) and the Chinese Academy of Sciences (CAS). In this paper, a description of the DSS, the development of its components, and results of its application are presented. The system integrates in-situ measurements, process-based models, and a database management system. Numerical models for the simulation of flow, waves, sediment transport and morphodynamics covering the entire Bohai Sea are set up based on the Delft3D modelling suite (Deltares). Calibration and validation of the models were realized based on the measurements of moored Acoustic Doppler Current Profilers (ADCP) and High Frequency (HF) radars. In order to enable cost-effective and scalable applications, a database management system was developed. It enhances information processing, data evaluation, and supports the generation of data products. Results of the application of the DSS to the management of coastal protection, coastal cage aquaculture and harbors are presented here. Model simulations covering the most severe storms observed during the last decades were carried out leading to an improved understanding of hydrodynamics and morphodynamics. Results helped in the identification of coastal stretches subjected to higher levels of energy and improved support for coastal protection measures.

Keywords: coastal protection, decision support system, in-situ measurements, numerical modelling

Procedia PDF Downloads 195
84 Imaging 255nm Tungsten Thin Film Adhesion with Picosecond Ultrasonics

Authors: A. Abbas, X. Tridon, J. Michelon

Abstract:

In the electronic or in the photovoltaic industries, components are made from wafers which are stacks of thin film layers of a few nanometers to serval micrometers thickness. Early evaluation of the bounding quality between different layers of a wafer is one of the challenges of these industries to avoid dysfunction of their final products. Traditional pump-probe experiments, which have been developed in the 70’s, give a partial solution to this problematic but with a non-negligible drawback. In fact, on one hand, these setups can generate and detect ultra-high ultrasounds frequencies which can be used to evaluate the adhesion quality of wafer layers. But, on the other hand, because of the quiet long acquisition time they need to perform one measurement, these setups remain shut in punctual measurement to evaluate global sample quality. This last point can lead to bad interpretation of the sample quality parameters, especially in the case of inhomogeneous samples. Asynchronous Optical Sampling (ASOPS) systems can perform sample characterization with picosecond acoustics up to 106 times faster than traditional pump-probe setups. This last point allows picosecond ultrasonic to unlock the acoustic imaging field at the nanometric scale to detect inhomogeneities regarding sample mechanical properties. This fact will be illustrated by presenting an image of the measured acoustical reflection coefficients obtained by mapping, with an ASOPS setup, a 255nm thin-film tungsten layer deposited on a silicone substrate. Interpretation of the coefficient reflection in terms of bounding quality adhesion will also be exposed. Origin of zones which exhibit good and bad quality bounding will be discussed.

Keywords: adhesion, picosecond ultrasonics, pump-probe, thin film

Procedia PDF Downloads 159
83 Rumination Time and Reticuloruminal Temperature around Calving in Eutocic and Dystocic Dairy Cows

Authors: Levente Kovács, Fruzsina Luca Kézér, Ottó Szenci

Abstract:

Prediction of the onset of calving and recognizing difficulties at calving has great importance in decreasing neonatal losses and reducing the risk of health problems in the early postpartum period. In this study, changes of rumination time, reticuloruminal pH and temperature were investigated in eutocic (EUT, n = 10) and dystocic (DYS, n = 8) dairy cows around parturition. Rumination time was continuously recorded using an acoustic biotelemetry system, whereas reticuloruminal pH and temperature were recorded using an indwelling and wireless data transmitting system. The recording period lasted from 3 d before calving until 7 days in milk. For the comparison of rumination time and reticuloruminal characteristics between groups, time to return to baseline (the time interval required to return to baseline from the delivery of the calf) and area under the curve (AUC, both for prepartum and postpartum periods) were calculated for each parameter. Rumination time decreased from baseline 28 h before calving both for EUT and DYS cows (P = 0.023 and P = 0.017, respectively). After 20 h before calving, it decreased onwards to reach 32.4 ± 2.3 and 13.2 ± 2.0 min/4 h between 8 and 4 h before delivery in EUT and DYS cows, respectively, and then it decreased below 10 and 5 min during the last 4 h before calving (P = 0.003 and P = 0.008, respectively). Until 12 h after delivery rumination time reached 42.6 ± 2.7 and 51.0 ± 3.1 min/4 h in DYS and EUT dams, respectively, however, AUC and time to return to baseline suggested lower rumination activity in DYS cows than in EUT dams for the 168-h postpartum observational period (P = 0.012 and P = 0.002, respectively). Reticuloruminal pH decreased from baseline 56 h before calving both for EUT and DYS cows (P = 0.012 and P = 0.016, respectively), but did not differ between groups before delivery. In DYS cows, reticuloruminal temperature decreased from baseline 32 h before calving by 0.23 ± 0.02 °C (P = 0.012), whereas in EUT cows such a decrease was found only 20 h before delivery (0.48 ± 0.05 °C, P < 0.01). AUC of reticuloruminal temperature calculated for the prepartum period was greater in EUT cows than in DYS cows (P = 0.042). During the first 4 h after calving, it decreased from 39.7 ± 0.1 to 39.00 ± 0.1 °C and from 39.8 ± 0.1 to 38.8 ± 0.1 °C in EUT and DYS cows, respectively (P < 0.01 for both groups) and reached baseline levels after 35.4 ± 3.4 and 37.8 ± 4.2 h after calving in EUT and DYS cows, respectively. Based on our results, continuous monitoring of changes in rumination time and reticuloruminal temperature seems to be promising in the early detection of cows with a higher risk of dystocia. Depressed postpartum rumination time of DYS cows highlights the importance of the monitoring of cows experiencing difficulties at calving.

Keywords: reticuloruminal pH, reticuloruminal temperature, rumination time, dairy cows, dystocia

Procedia PDF Downloads 315
82 Hydrogeological Factors of the Ore Genesis in the Sedimentary Basins

Authors: O. Abramova, L. Abukova, A. Goreva, G. Isaeva

Abstract:

The present work was made for the purpose of evaluating the interstitial water’s role in the mobilization of metal elements of clay deposits and occurrences in sedimentary formation in the hydro-geological basins. The experiments were performed by using a special facility, which allows adjusting the pressure, temperature, and the frequency of the acoustic vibrations. The dates for study were samples of the oil shales (Baltic career, O2kk) and clay rocks, mainly montmorillonite composition (Borehole SG-12000, the depth of selection 1000–3600 m, the Azov-Kuban trough, N1). After interstitial water squeezing from the rock samples, decrease in the original content of the rock forming components including trace metals V, Cr, Co, Ni, Cu, Zn, Zr, Mo, Pb, W, Ti, and others was recorded. The experiments made it possible to evaluate the ore elements output and organic matters with the interstitial waters. Calculations have shown that, in standard conditions, from each ton of the oil shales, 5-6 kg of ore elements and 9-10 kg of organic matter can be escaped. A quantity of matter, migrating from clays in the process of solidification, is changed depending on the lithogenesis stage: more recent unrealized deposits lose more ore and organic materials than the clay rocks, selected from depth over 3000 m. Each ton of clays in the depth interval 1000-1500 m is able to generate 3-5 kg of the ore elements and 6-8 kg of the organic matters. The interstitial waters are a freight forwarder over transferring these matters in the reservoir beds. It was concluded that the interstitial waters which escaped from the study samples are solutions with abnormal high concentrations of the metals and organic matters. In the discharge zones of the sediment basins, such fluids can create paragenetic associations of the sedimentary-catagenetic ore and hydrocarbon mineral resources accumulations.

Keywords: hydrocarbons, ore genesis, paragenesis, pore water

Procedia PDF Downloads 258
81 The Acute Effects of a Warm-Up Including Different Dynamic Stretching on Hamstring Stiffness, Flexibility, and Strength

Authors: Che Hsiu Chen, Kuo Wei Tseng, Zih Jian Huang, Hon Wen Cheng

Abstract:

A typical warm-up contains both stretching exercises and jogging. The static stretching prior to training or competition may cause detrimental effects to athletic performance. However, it is unclear whether different types of dynamic stretching exercises had different acute effects on knee flexors stiffness, flexibility, and strength. The purpose of this study was to analyze the knee flexors stiffness, flexibility, and strength gains after dynamic straight leg raise (DSLR) and dynamic modified toe-touch (MTT) stretching. Sixteen healthy university active men (height 176.27 ± 4.03 cm; weight 72.27 ± 8.90 kg; age 22.09 ± 2.31 years). After 5 minutes (8km/h) of running subjects performed 2 randomly ordered stretching protocols: DSLR and MTT stretching protocols. There were a total of six, 30 seconds bouts of dynamic stretching (15 repetitions) with 30seconds rest between bouts. The outcome measures were maximal voluntary isokinetic concentric hamstring strength (60°/s), muscle flexibility test by passive straight leg raise (PSLR), active straight leg raise (ASLR), and muscle stiffness using ultrasound Acoustic Radiation Forced Impulse (ARFI) elastography before and immediately after stretching. The muscle stiffness and concentric strength decreased significantly (p < .05), the flexibility no significant change after DSLR protocol (p > .05). The concentric strength decreased significantly (p < .05), the flexibility and muscle stiffness no significant change after MTT protocol (p > .05), whereas no significant differences were found for the DSLR and MTT. Our findings suggest that dynamic stretching (30s x 6 bouts) resulted in change in muscle stiffness or may be induced slack in the musculotendinous unit thereby, reducing force production. Therefore, 30s x 6 bouts of dynamic stretching adversely affects efforts of hamstring muscle maximal concentric strength.

Keywords: sport injury, ultrasound, eccentric exercise, performance

Procedia PDF Downloads 285
80 Wood Decay Fungal Strains Useful for Bio-Composite Material Production

Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino

Abstract:

Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.

Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi

Procedia PDF Downloads 141
79 A Multi-Modal Virtual Walkthrough of the Virtual Past and Present Based on Panoramic View, Crowd Simulation and Acoustic Heritage on Mobile Platform

Authors: Lim Chen Kim, Tan Kian Lam, Chan Yi Chee

Abstract:

This research presents a multi-modal simulation in the reconstruction of the past and the construction of present in digital cultural heritage on mobile platform. In bringing the present life, the virtual environment is generated through a presented scheme for rapid and efficient construction of 360° panoramic view. Then, acoustical heritage model and crowd model are presented and improvised into the 360° panoramic view. For the reconstruction of past life, the crowd is simulated and rendered in an old trading port. However, the keystone of this research is in a virtual walkthrough that shows the virtual present life in 2D and virtual past life in 3D, both in an environment of virtual heritage sites in George Town through mobile device. Firstly, the 2D crowd is modelled and simulated using OpenGL ES 1.1 on mobile platform. The 2D crowd is used to portray the present life in 360° panoramic view of a virtual heritage environment based on the extension of Newtonian Laws. Secondly, the 2D crowd is animated and rendered into 3D with improved variety and incorporated into the virtual past life using Unity3D Game Engine. The behaviours of the 3D models are then simulated based on the enhancement of the classical model of Boid algorithm. Finally, a demonstration system is developed and integrated with the models, techniques and algorithms of this research. The virtual walkthrough is demonstrated to a group of respondents and is evaluated through the user-centred evaluation by navigating around the demonstration system. The results of the evaluation based on the questionnaires have shown that the presented virtual walkthrough has been successfully deployed through a multi-modal simulation and such a virtual walkthrough would be particularly useful in a virtual tour and virtual museum applications.

Keywords: Boid Algorithm, Crowd Simulation, Mobile Platform, Newtonian Laws, Virtual Heritage

Procedia PDF Downloads 277
78 The Impact of Rising Architectural Façade in Improving Terms of the Physical Urban Ambience Inside the Free Space for Urban Fabric - the Street- Case Study the City of Biskra

Authors: Rami Qaoud, Alkama Djamal

Abstract:

When we ask about the impact of rising architectural façade in improving the terms physical urban ambiance inside the free space for urban fabric. Considered as bringing back life and culture values and civilization to these cities. And This will be the theme of this search. Where we have conducted the study about the relationship that connects the empty and full of in the urban fabric in terms of the density construction and the architectural elevation of its façade to street view. In this framework, we adopted in the methodology of this research the technical field experience. And according to three types of Street engineering(H≥2W, H=W, H≤0.5W). Where we conducted a field to raise the values of the physical ambiance according to three main axes of ambiance. The first axe 1 - Thermal ambiance. Where the temperature values were collected, relative humidity, wind speed, temperature of surfaces (the outer wall-ground). The second axe 2- Visual ambiance. Where we took the values of natural lighting levels during the daytime. The third axe 3- Acoustic ambiance . Where we take sound values during the entire day. That experience, which lasted for three consecutive days, and through six stations of measuring, where it has been one measuring station for each type of the street engineering and in two different way street. Through the obtained results and with the comparison of those values. We noticed the difference between this values and the three type of street engineering. Where the difference the calorific values of air equal 4 ° C , in terms of the visual ambiance the difference in the direct lighting natural periods amounted six hours between the three types of street engineering. As well in terms of sound ambience, registered a difference in values of up 15 (db) between the three types. This difference in values indicates The impact of rising architectural façade in improving the physical urban ambiance within the free field - street- for urban fabric.

Keywords: street, physical urban ambience, rising architectural façade, urban fabric

Procedia PDF Downloads 289
77 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials

Authors: Behzad Behnia, Noah LaRussa-Trott

Abstract:

In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.

Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model

Procedia PDF Downloads 141
76 Modification of a Commercial Ultrafiltration Membrane by Electrospray Deposition for Performance Adjustment

Authors: Elizaveta Korzhova, Sebastien Deon, Patrick Fievet, Dmitry Lopatin, Oleg Baranov

Abstract:

Filtration with nanoporous ultrafiltration membranes is an attractive option to remove ionic pollutants from contaminated effluents. Unfortunately, commercial membranes are not necessarily suitable for specific applications, and their modification by polymer deposition is a fruitful way to adapt their performances accordingly. Many methods are usually used for surface modification, but a novel technique based on electrospray is proposed here. Various quantities of polymers were deposited on a commercial membrane, and the impact of the deposit is investigated on filtration performances and discussed in terms of charge and hydrophobicity. The electrospray deposition is a technique which has not been used for membrane modification up to now. It consists of spraying small drops of polymer solution under a high voltage between the needle containing the solution and the metallic support on which membrane is stuck. The advantage of this process lies in the small quantities of polymer that can be coated on the membrane surface compared with immersion technique. In this study, various quantities (from 2 to 40 μL/cm²) of solutions containing two charged polymers (13 mmol/L of monomer unit), namely polyethyleneimine (PEI) and polystyrene sulfonate (PSS), were sprayed on a negatively charged polyethersulfone membrane (PLEIADE, Orelis Environment). The efficacy of the polymer deposition was then investigated by estimating ion rejection, permeation flux, zeta-potential and contact angle before and after the polymer deposition. Firstly, contact angle (θ) measurements show that the surface hydrophilicity is notably improved by coating both PEI and PSS. Moreover, it was highlighted that the contact angle decreases monotonously with the amount of sprayed solution. Additionally, hydrophilicity enhancement was proved to be better with PSS (from 62 to 35°) than PEI (from 62 to 53°). Values of zeta-potential (ζ were estimated by measuring the streaming current generated by a pressure difference on both sides of a channel made by clamping two membranes. The ζ-values demonstrate that the deposits of PSS (negative at pH=5.5) allow an increase of the negative membrane charge, whereas the deposits of PEI (positive) lead to a positive surface charge. Zeta-potentials measurements also emphasize that the sprayed quantity has little impact on the membrane charge, except for very low quantities (2 μL/m²). The cross-flow filtration of salt solutions containing mono and divalent ions demonstrate that polymer deposition allows a strong enhancement of ion rejection. For instance, it is shown that rejection of a salt containing a divalent cation can be increased from 1 to 20 % and even to 35% by deposing 2 and 4 μL/cm² of PEI solution, respectively. This observation is coherent with the reversal of the membrane charge induced by PEI deposition. Similarly, the increase of negative charge induced by PSS deposition leads to an increase of NaCl rejection from 5 to 45 % due to electrostatic repulsion of the Cl- ion by the negative surface charge. Finally, a notable fall in the permeation flux due to the polymer layer coated at the surface was observed and the best polymer concentration in the sprayed solution remains to be determined to optimize performances.

Keywords: ultrafiltration, electrospray deposition, ion rejection, permeation flux, zeta-potential, hydrophobicity

Procedia PDF Downloads 187
75 Economic Important of Manta Ray Watching Tourism in Dampier Strait, Raja Ampat, West Papua, Indonesia

Authors: Maulita Sari Hani, Abraham B. Sianipar, Jamaluddin Jompa, Natsir Nessa, Alan T. White

Abstract:

Manta ray is an icon for tourism in Raja Ampat. The tourist volume has been increased for the past ten years which up to approximately 23,000 tourists in 2017. Since 2013, Conservation International Indonesia deployed satellite and acoustic tags on manta ray in Dampier strait to track the species and identify the aggregation areas. These findings encourage the government and the local community to boost conservation through the management of marine protected areas for tourism purposes. Community in Dampier strait including the village of Arborek, Kurkapa, Kapisawar, and Sawingray involved in variety of small scale tourism business including homestay, dive shop, tour operator, and crafts. Working groups of related local businesses were established to support the local community and to ensure the sustainability of the economic viability and environmental sustainability. In order to analyze the economic benefits of manta ray tourism, this study was conducted to identify the number of local business in Dampier Strait and the economic impacts in terms of local finance security, social, humanity, individual, and physical assets. The results of this study identify 30 homestays, 2 dive shops, 10 tour operators, 30 women involved in crafts, and about 50 villagers worked for dive resorts. In addition to community assets, we confirmed the welfare of community has been improved in terms of food security, households, education for children, savings, and health insurance.

Keywords: marine wildlife tourism, elasmobranch, conservation, ecotourism, co-management, economic viability, environmental sustainability

Procedia PDF Downloads 217
74 Motor Speech Profile of Marathi Speaking Adults and Children

Authors: Anindita Banik, Anjali Kant, Aninda Duti Banik, Arun Banik

Abstract:

Speech is a complex, dynamic unique motor activity through which we express thoughts and emotions and respond to and control our environment. The aim was based to compare select Motor Speech parameters and their sub parameters across typical Marathi speaking adults and children. The subjects included a total of 300 divided into Group I, II, III including males and females. Subjects included were reported of no significant medical history and had a rating of 0-1 on GRBAS scale. The recordings were obtained utilizing three stimuli for the acoustic analysis of Diadochokinetic rate (DDK), Second Formant Transition, Voice and Tremor and its sub parameters. And these aforementioned parameters were acoustically analyzed in Motor Speech Profile software in VisiPitch IV. The statistical analyses were done by applying descriptive statistics and Two- Way ANOVA.The results obtained showed statistically significant difference across age groups and gender for the aforementioned parameters and its sub parameters.In DDK, for avp (ms) there was a significant difference only across age groups. However, for avr (/s) there was a significant difference across age groups and gender. It was observed that there was an increase in rate with an increase in age groups. The second formant transition sub parameter F2 magn (Hz) also showed a statistically significant difference across both age groups and gender. There was an increase in mean value with an increase in age. Females had a higher mean when compared to males. For F2 rate (/s) a statistically significant difference was observed across age groups. There was an increase in mean value with increase in age. It was observed for Voice and Tremor MFTR (%) that a statistically significant difference was present across age groups and gender. Also for RATR (Hz) there was statistically significant difference across both age groups and gender. In other words, the values of MFTR and RATR increased with an increase in age. Thus, this study highlights the variation of the motor speech parameters amongst the typical population which would be beneficial for comparison with the individuals with motor speech disorders for assessment and management.

Keywords: adult, children, diadochokinetic rate, second formant transition, tremor, voice

Procedia PDF Downloads 308
73 An Event-Related Potential Investigation of Speech-in-Noise Recognition in Native and Nonnative Speakers of English

Authors: Zahra Fotovatnia, Jeffery A. Jones, Alexandra Gottardo

Abstract:

Speech communication often occurs in environments where noise conceals part of a message. Listeners should compensate for the lack of auditory information by picking up distinct acoustic cues and using semantic and sentential context to recreate the speaker’s intended message. This situation seems to be more challenging in a nonnative than native language. On the other hand, early bilinguals are expected to show an advantage over the late bilingual and monolingual speakers of a language due to their better executive functioning components. In this study, English monolingual speakers were compared with early and late nonnative speakers of English to understand speech in noise processing (SIN) and the underlying neurobiological features of this phenomenon. Auditory mismatch negativities (MMNs) were recorded using a double-oddball paradigm in response to a minimal pair that differed in their middle vowel (beat/bit) at Wilfrid Laurier University in Ontario, Canada. The results did not show any significant structural and electroneural differences across groups. However, vocabulary knowledge correlated positively with performance on tests that measured SIN processing in participants who learned English after age 6. Moreover, their performance on the test negatively correlated with the integral area amplitudes in the left superior temporal gyrus (STG). In addition, the STG was engaged before the inferior frontal gyrus (IFG) in noise-free and low-noise test conditions in all groups. We infer that the pre-attentive processing of words engages temporal lobes earlier than the fronto-central areas and that vocabulary knowledge helps the nonnative perception of degraded speech.

Keywords: degraded speech perception, event-related brain potentials, mismatch negativities, brain regions

Procedia PDF Downloads 107
72 Validation of the Formula for Air Attenuation Coefficient for Acoustic Scale Models

Authors: Katarzyna Baruch, Agata Szelag, Aleksandra Majchrzak, Tadeusz Kamisinski

Abstract:

Methodology of measurement of sound absorption coefficient in scaled models is based on the ISO 354 standard. The measurement is realised indirectly - the coefficient is calculated from the reverberation time of an empty chamber as well as a chamber with an inserted sample. It is crucial to maintain the atmospheric conditions stable during both measurements. Possible differences may be amended basing on the formulas for atmospheric attenuation coefficient α given in ISO 9613-1. Model studies require scaling particular factors in compliance with specified characteristic numbers. For absorption coefficient measurement, these are for example: frequency range or the value of attenuation coefficient m. Thanks to the possibilities of modern electroacoustic transducers, it is no longer a problem to scale the frequencies which have to be proportionally higher. However, it may be problematic to reduce values of the attenuation coefficient. It is practically obtained by drying the air down to a defined relative humidity. Despite the change of frequency range and relative humidity of the air, ISO 9613-1 standard still allows the calculation of the amendment for little differences of the atmospheric conditions in the chamber during measurements. The paper discusses a number of theoretical analyses and experimental measurements performed in order to obtain consistency between the values of attenuation coefficient calculated from the formulas given in the standard and by measurement. The authors performed measurements of reverberation time in a chamber made in a 1/8 scale in a corresponding frequency range, i.e. 800 Hz - 40 kHz and in different values of the relative air humidity (40% 5%). Based on the measurements, empirical values of attenuation coefficient were calculated and compared with theoretical ones. In general, the values correspond with each other, but for high frequencies and low values of relative air humidity the differences are significant. Those discrepancies may directly influence the values of measured sound absorption coefficient and cause errors. Therefore, the authors made an effort to determine an amendment minimizing described inaccuracy.

Keywords: air absorption correction, attenuation coefficient, dimensional analysis, model study, scaled modelling

Procedia PDF Downloads 421
71 From Homogeneous to Phase Separated UV-Cured Interpenetrating Polymer Networks: Influence of the System Composition on Properties and Microstructure

Authors: Caroline Rocco, Feyza Karasu, Céline Croutxé-Barghorn, Xavier Allonas, Maxime Lecompère, Gérard Riess, Yujing Zhang, Catarina Esteves, Leendert van der Ven, Rolf van Benthem Gijsbertus de With

Abstract:

Acrylates are widely used in UV-curing technology. Their high reactivity can, however, limit their conversion due to early vitrification. In addition, the free radical photopolymerization is known to be sensitive to oxygen inhibition leading to tacky surfaces. Although epoxides can lead to full polymerization, they are sensitive to humidity and exhibit low polymerization rate. To overcome the intrinsic limitations of both classes of monomers, Interpenetrating Polymer Networks (IPNs) can be synthesized. They consist of at least two cross linked polymers which are permanently entangled. They can be achieved under thermal and/or light induced polymerization in one or two steps approach. IPNs can display homogeneous to heterogeneous morphologies with various degrees of phase separation strongly linked to the monomer miscibility and also synthesis parameters. In this presentation, we synthesize UV-cured methacrylate - epoxide based IPNs with different chemical compositions in order to get a better understanding of their formation and phase separation. Miscibility before and during the photopolymerization, reaction kinetics, as well as mechanical properties and morphology have been investigated. The key parameters controlling the morphology and the phase separation, namely monomer miscibility and synthesis parameters have been identified. By monitoring the stiffness changes on the film surface, atomic force acoustic microscopy (AFAM) gave, in conjunction with polymerization kinetic profiles and thermomechanical properties, explanations and corroborated the miscibility predictions. When varying the methacrylate / epoxide ratio, it was possible to move from a miscible and highly-interpenetrated IPN to a totally immiscible and phase-separated one.

Keywords: investigation of properties and morphology, kinetics, phase separation, UV-cured IPNs

Procedia PDF Downloads 367
70 Experimental Research and Analyses of Yoruba Native Speakers’ Chinese Phonetic Errors

Authors: Obasa Joshua Ifeoluwa

Abstract:

Phonetics is the foundation and most important part of language learning. This article, through an acoustic experiment as well as using Praat software, uses Yoruba students’ Chinese consonants, vowels, and tones pronunciation to carry out a visual comparison with that of native Chinese speakers. This article is aimed at Yoruba native speakers learning Chinese phonetics; therefore, Yoruba students are selected. The students surveyed are required to be at an elementary level and have learned Chinese for less than six months. The students selected are all undergraduates majoring in Chinese Studies at the University of Lagos. These students have already learned Chinese Pinyin and are all familiar with the pinyin used in the provided questionnaire. The Chinese students selected are those that have passed the level two Mandarin proficiency examination, which serves as an assurance that their pronunciation is standard. It is discovered in this work that in terms of Mandarin’s consonants pronunciation, Yoruba students cannot distinguish between the voiced and voiceless as well as the aspirated and non-aspirated phonetics features. For instance, while pronouncing [ph] it is clearly shown in the spectrogram that the Voice Onset Time (VOT) of a Chinese speaker is higher than that of a Yoruba native speaker, which means that the Yoruba speaker is pronouncing the unaspirated counterpart [p]. Another difficulty is to pronounce some affricates like [tʂ]、[tʂʰ]、[ʂ]、[ʐ]、 [tɕ]、[tɕʰ]、[ɕ]. This is because these sounds are not in the phonetic system of the Yoruba language. In terms of vowels, some students find it difficult to pronounce some allophonic high vowels such as [ɿ] and [ʅ], therefore pronouncing them as their phoneme [i]; another pronunciation error is pronouncing [y] as [u], also as shown in the spectrogram, a student pronounced [y] as [iu]. In terms of tone, it is most difficult for students to differentiate between the second (rising) and third (falling and rising) tones because these tones’ emphasis is on the rising pitch. This work concludes that the major error made by Yoruba students while pronouncing Chinese sounds is caused by the interference of their first language (LI) and sometimes by their lingua franca.

Keywords: Chinese, Yoruba, error analysis, experimental phonetics, consonant, vowel, tone

Procedia PDF Downloads 111
69 Elastodynamic Response of Shear Wave Dispersion in a Multi-Layered Concentric Cylinders Composed of Reinforced and Piezo-Materials

Authors: Sunita Kumawat, Sumit Kumar Vishwakarma

Abstract:

The present study fundamentally focuses on analyzing the limitations and transference of horizontally polarized Shear waves(SH waves) in a four-layered compounded cylinder. The geometrical structure comprises of concentric cylinders of infinite length composed of self-reinforced (SR), fibre-reinforced (FR), piezo-magnetic (PM), and piezo-electric(PE) materials. The entire structure is assumed to be pre stressed along the azimuthal direction. In order to make the structure sensitive to the application pertaining to sensors and actuators, the PM and PE cylinders have been categorically placed in the outer part of the geometry. Whereas in order to provide stiffness and stability to the structure, the inner part consists of self-reinforced and fibre-reinforced media. The common boundary between each of the cylinders has been essentially considered as imperfectly bounded. At the interface of PE and PM media, mechanical, electrical, magnetic, and inter-coupled types of imperfections have been exhibited. The closed-form of dispersion relation has been deduced for two contrast cases i.e. electrically open magnetically short(EOMS) and electrically short and magnetically open ESMO circuit conditions. Dispersion curves have been plotted to illustrate the salient features of parameters like normalized imperfect interface parameters, initial stresses, and radii of the concentric cylinders. The comparative effect of each one of these parameters on the phase velocity of the wave has been enlisted and marked individually. Every graph has been presented with two consecutive modes in succession for a comprehensive understanding. This theoretical study may be implemented to improvise the performance of surface acoustic wave (SAW) sensors and actuators consisting of piezo-electric quartz and piezo-composite concentric cylinders.

Keywords: self-reinforced, fibre-reinforced, piezo-electric, piezo-magnetic, interfacial imperfection

Procedia PDF Downloads 109
68 Advanced Particle Characterisation of Suspended Sediment in the Danube River Using Automated Imaging and Laser Diffraction

Authors: Flóra Pomázi, Sándor Baranya, Zoltán Szalai

Abstract:

A harmonized monitoring of the suspended sediment transport along such a large river as the world’s most international river, the Danube River, is a rather challenging task. The traditional monitoring method in Hungary is obsolete but using indirect measurement devices and techniques like optical backscatter sensors (OBS), laser diffraction or acoustic backscatter sensors (ABS) could provide a fast and efficient alternative option of direct methods. However, these methods are strongly sensitive to the particle characteristics (i.e. particle shape, particle size and mineral composition). The current method does not provide sufficient information about particle size distribution, mineral analysis is rarely done, and the shape of the suspended sediment particles have not been examined yet. The aims of the study are (1) to determine the particle characterisation of suspended sediment in the Danube River using advanced particle characterisation methods as laser diffraction and automated imaging, and (2) to perform a sensitivity analysis of the indirect methods in order to determine the impact of suspended particle characteristics. The particle size distribution is determined by laser diffraction. The particle shape and mineral composition analysis is done by the Morphologi G3ID image analyser. The investigated indirect measurement devices are the LISST-Portable|XR, the LISST-ABS (Sequoia Inc.) and the Rio Grande 1200 kHz ADCP (Teledyne Marine). The major findings of this study are (1) the statistical shape of the suspended sediment particle - this is the first research in this context, (2) the actualised particle size distribution – that can be compared to historical information, so that the morphological changes can be tracked, (3) the actual mineral composition of the suspended sediment in the Danube River, and (4) the reliability of the tested indirect methods has been increased – based on the results of the sensitivity analysis and the previous findings.

Keywords: advanced particle characterisation, automated imaging, indirect methods, laser diffraction, mineral composition, suspended sediment

Procedia PDF Downloads 146
67 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation

Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri

Abstract:

In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm² are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm²). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.

Keywords: focused ultrasound therapy, histotripsy, inertial cavitation, mechanical tissue ablation

Procedia PDF Downloads 319
66 Behavioral Patterns of Adopting Digitalized Services (E-Sport versus Sports Spectating) Using Agent-Based Modeling

Authors: Justyna P. Majewska, Szymon M. Truskolaski

Abstract:

The growing importance of digitalized services in the so-called new economy, including the e-sports industry, can be observed recently. Various demographic or technological changes lead consumers to modify their needs, not regarding the services themselves but the method of their application (attracting customers, forms of payment, new content, etc.). In the case of leisure-related to competitive spectating activities, there is a growing need to participate in events whose content is not sports competitions but computer games challenge – e-sport. The literature in this area so far focuses on determining the number of e-sport fans with elements of a simple statistical description (mainly concerning demographic characteristics such as age, gender, place of residence). Meanwhile, the development of the industry is influenced by a combination of many different, intertwined demographic, personality and psychosocial characteristics of customers, as well as the characteristics of their environment. Therefore, there is a need for a deeper recognition of the determinants of the behavioral patterns upon selecting digitalized services by customers, which, in the absence of available large data sets, can be achieved by using econometric simulations – multi-agent modeling. The cognitive aim of the study is to reveal internal and external determinants of behavioral patterns of customers taking into account various variants of economic development (the pace of digitization and technological development, socio-demographic changes, etc.). In the paper, an agent-based model with heterogeneous agents (characteristics of customers themselves and their environment) was developed, which allowed identifying a three-stage development scenario: i) initial interest, ii) standardization, and iii) full professionalization. The probabilities regarding the transition process were estimated using the Method of Simulated Moments. The estimation of the agent-based model parameters and sensitivity analysis reveals crucial factors that have driven a rising trend in e-sport spectating and, in a wider perspective, the development of digitalized services. Among the psychosocial characteristics of customers, they are the level of familiarization with the rules of games as well as sports disciplines, active and passive participation history and individual perception of challenging activities. Environmental factors include general reception of games, number and level of recognition of community builders and the level of technological development of streaming as well as community building platforms. However, the crucial factor underlying the good predictive power of the model is the level of professionalization. While in the initial interest phase, the entry barriers for new customers are high. They decrease during the phase of standardization and increase again in the phase of full professionalization when new customers perceive participation history inaccessible. In this case, they are prone to switch to new methods of service application – in the case of e-sport vs. sports to new content and more modern methods of its delivery. In a wider context, the findings in the paper support the idea of a life cycle of services regarding methods of their application from “traditional” to digitalized.

Keywords: agent-based modeling, digitalized services, e-sport, spectators motives

Procedia PDF Downloads 172
65 Neural Network Mechanisms Underlying the Combination Sensitivity Property in the HVC of Songbirds

Authors: Zeina Merabi, Arij Dao

Abstract:

The temporal order of information processing in the brain is an important code in many acoustic signals, including speech, music, and animal vocalizations. Despite its significance, surprisingly little is known about its underlying cellular mechanisms and network manifestations. In the songbird telencephalic nucleus HVC, a subset of neurons shows temporal combination sensitivity (TCS). These neurons show a high temporal specificity, responding differently to distinct patterns of spectral elements and their combinations. HVC neuron types include basal-ganglia-projecting HVCX, forebrain-projecting HVCRA, and interneurons (HVC¬INT), each exhibiting distinct cellular, electrophysiological and functional properties. In this work, we develop conductance-based neural network models connecting the different classes of HVC neurons via different wiring scenarios, aiming to explore possible neural mechanisms that orchestrate the combination sensitivity property exhibited by HVCX, as well as replicating in vivo firing patterns observed when TCS neurons are presented with various auditory stimuli. The ionic and synaptic currents for each class of neurons that are presented in our networks and are based on pharmacological studies, rendering our networks biologically plausible. We present for the first time several realistic scenarios in which the different types of HVC neurons can interact to produce this behavior. The different networks highlight neural mechanisms that could potentially help to explain some aspects of combination sensitivity, including 1) interplay between inhibitory interneurons’ activity and the post inhibitory firing of the HVCX neurons enabled by T-type Ca2+ and H currents, 2) temporal summation of synaptic inputs at the TCS site of opposing signals that are time-and frequency- dependent, and 3) reciprocal inhibitory and excitatory loops as a potent mechanism to encode information over many milliseconds. The result is a plausible network model characterizing auditory processing in HVC. Our next step is to test the predictions of the model.

Keywords: combination sensitivity, songbirds, neural networks, spatiotemporal integration

Procedia PDF Downloads 65
64 The Effects of Ultrasound on the Extraction of Ficus deltoidea Leaves

Authors: Nur Aimi Syairah Mohd Abdul Alim, Azilah Ajit, A. Z. Sulaiman

Abstract:

The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) on the extraction of Vitexin and Iso-Vitexin from Ficus deltoidea plants. In recent years, ultrasound technology has been found to be a potential herbal extraction technique. The passage of ultrasound energy in a liquid medium generates mechanical agitation and other physical effects due to acoustic cavitation. The main goal is to optimised ultrasonic-assisted extraction condition providing the highest extraction yield with the most desirable antioxidant activity and stability. Thus, a series of experiments has been developed to investigate the effect of ultrasound energy on the vegetal material and the implemented parameters by using HPLC-photodiode array detection. The influences of several experimental parameters on the ultrasonic extraction of Ficus deltoidea leaves were investigated: extraction time (1-8 h), solvent-to-water ratio (1:10 to 1:50), temperature (50–100 °C), duty cycle (10–continuous sonication) and intensity. The extracts at the optimized condition were compared with those obtained by conventional boiling extraction, in terms of bioactive constituents yield and chemical composition. The compounds of interest identified in the extracts were Vitexin and Isovitexin, which possess anti-diabetic, anti-oxidant and anti-cancer properties. Results showed that the main variables affecting the extraction process were temperature and time. Though in less extent, solvent-to-water ratio, duty cycle and intensity are also demonstrated to be important parameters. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested that ultrasonic-assisted extraction (UAE) is more efficient process as compared to conventional boiling extraction. It recommended that ultrasound extraction of Ficus deltoidea plants are feasible to replace the traditional time-consuming and low efficiency preparation procedure in the future modernized and commercialized manufacture of this highly valuable herbal medicine.

Keywords: Ficus, ultrasounds, vitexin, isovitexin

Procedia PDF Downloads 413
63 Effects of Spectrotemporal Modulation of Music Profiles on Coherence of Cardiovascular Rhythms

Authors: I-Hui Hsieh, Yu-Hsuan Hu

Abstract:

The powerful effect of music is often associated with changes in physiological responses such as heart rate and respiration. Previous studies demonstrate that Mayer waves of blood pressure, the spontaneous rhythm occurring at 0.1 Hz, corresponds to a progressive crescendo of the musical phrase. However, music contain dynamic changes in temporal and spectral features. As such, it remains unclear which aspects of musical structures optimally affect synchronization of cardiovascular rhythms. This study investigates the independent contribution of spectral pattern, temporal pattern, and dissonance level on synchronization of cardiovascular rhythms. The regularity of acoustical patterns occurring at a periodic rhythm of 0.1 Hz is hypothesized to elicit the strongest coherence of cardiovascular rhythms. Music excerpts taken from twelve pieces of Western classical repertoire were modulated to contain varying degrees of pattern regularity of the acoustic envelope structure. Three levels of dissonance were manipulated by varying the harmonic structure of the accompanying chords. Electrocardiogram and photoplethysmography signals were recorded for 5 minutes of baseline and simultaneously while participants listen to music excerpts randomly presented over headphones in a sitting position. Participants were asked to indicate the pleasantness of each music excerpt by adjusting via a slider presented on screen. Analysis of the Fourier spectral power of blood pressure around 0.1 Hz showed a significant difference between music excerpts characterized by spectral and temporal pattern regularity compared to the same content in random pattern. Phase coherence between heart rate and blood pressure increased significantly during listening to spectrally-regular phrases compared to its matched control phrases. The degree of dissonance of the accompanying chord sequence correlated with level of coherence between heart rate and blood pressure. Results suggest that low-level auditory features of music can entrain coherence of autonomic physiological variables. These findings have potential implications for using music as a clinical and therapeutic intervention for regulating cardiovascular functions.

Keywords: cardiovascular rhythms, coherence, dissonance, pattern regularity

Procedia PDF Downloads 148