Search results for: LANDSAT images
2016 Efficient Schemes of Classifiers for Remote Sensing Satellite Imageries of Land Use Pattern Classifications
Authors: S. S. Patil, Sachidanand Kini
Abstract:
Classification of land use patterns is compelling in complexity and variability of remote sensing imageries data. An imperative research in remote sensing application exploited to mine some of the significant spatially variable factors as land cover and land use from satellite images for remote arid areas in Karnataka State, India. The diverse classification techniques, unsupervised and supervised consisting of maximum likelihood, Mahalanobis distance, and minimum distance are applied in Bellary District in Karnataka State, India for the classification of the raw satellite images. The accuracy evaluations of results are compared visually with the standard maps with ground-truths. We initiated with the maximum likelihood technique that gave the finest results and both minimum distance and Mahalanobis distance methods over valued agriculture land areas. In meanness of mislaid few irrelevant features due to the low resolution of the satellite images, high-quality accord between parameters extracted automatically from the developed maps and field observations was found.Keywords: Mahalanobis distance, minimum distance, supervised, unsupervised, user classification accuracy, producer's classification accuracy, maximum likelihood, kappa coefficient
Procedia PDF Downloads 1832015 Integration of an Augmented Reality System for the Visualization of the HRMAS NMR Analysis of Brain Biopsy Specimens Using the Brainlab Cranial Navigation System
Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux, Mariana Kuras, Vincent Récamier, Martial Piotto, Karim Elbayed, François Proust, Izzie Namer
Abstract:
This paper proposes an augmented reality system dedicated to neurosurgery in order to assist the surgeon during an operation. This work is part of the ExtempoRMN project (Funded by Bpifrance) which aims at analyzing during a surgical operation the metabolic content of tumoral brain biopsy specimens by HRMAS NMR. Patients affected with a brain tumor (gliomas) frequently need to undergo an operation in order to remove the tumoral mass. During the operation, the neurosurgeon removes biopsy specimens using image-guided surgery. The biopsy specimens removed are then sent for HRMAS NMR analysis in order to obtain a better diagnosis and prognosis. Image-guided refers to the use of MRI images and a computer to precisely locate and target a lesion (abnormal tissue) within the brain. This is performed using preoperative MRI images and the BrainLab neuro-navigation system. With the patient MRI images loaded on the Brainlab Cranial neuro-navigation system in the operating theater, surgeons can better identify their approach before making an incision. The Brainlab neuro-navigation tool tracks in real time the position of the instruments and displays their position on the patient MRI data. The results of the biopsy analysis by 1H HRMAS NMR are then sent back to the operating theater and superimposed on the 3D localization system directly on the MRI images. The method we have developed to communicate between the HRMAS NMR analysis software and Brainlab makes use of a combination of C++, VTK and the Insight Toolkit using OpenIGTLink protocol.Keywords: neuro-navigation, augmented reality, biopsy, BrainLab, HR-MAS NMR
Procedia PDF Downloads 3632014 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 1862013 Investigating the Editing's Effect of Advertising Photos on the Virtual Purchase Decision Based on the Quantitative Electroencephalogram (EEG) Parameters
Authors: Parya Tabei, Maryam Habibifar
Abstract:
Decision-making is an important cognitive function that can be defined as the process of choosing an option among available options to achieve a specific goal. Consumer ‘need’ is the main reason for purchasing decisions. Human decision-making while buying products online is subject to various factors, one of which is the quality and effect of advertising photos. Advertising photo editing can have a significant impact on people's virtual purchase decisions. This technique helps improve the quality and overall appearance of photos by adjusting various aspects such as brightness, contrast, colors, cropping, resizing, and adding filters. This study, by examining the effect of editing advertising photos on the virtual purchase decision using EEG data, tries to investigate the effect of edited images on the decision-making of customers. A group of 30 participants were asked to react to 24 edited and unedited images while their EEG was recorded. Analysis of the EEG data revealed increased alpha wave activity in the occipital regions (O1, O2) for both edited and unedited images, which is related to visual processing and attention. Additionally, there was an increase in beta wave activity in the frontal regions (FP1, FP2, F4, F8) when participants viewed edited images, suggesting involvement in cognitive processes such as decision-making and evaluating advertising content. Gamma wave activity also increased in various regions, especially the frontal and parietal regions, which are associated with higher cognitive functions, such as attention, memory, and perception, when viewing the edited images. While the visual processing reflected by alpha waves remained consistent across different visual conditions, editing advertising photos appeared to boost neural activity in frontal and parietal regions associated with decision-making processes. These Findings suggest that photo editing could potentially influence consumer perceptions during virtual shopping experiences by modulating brain activity related to product assessment and purchase decisions.Keywords: virtual purchase decision, advertising photo, EEG parameters, decision Making
Procedia PDF Downloads 492012 Remote Sensing of Urban Land Cover Change: Trends, Driving Forces, and Indicators
Authors: Wei Ji
Abstract:
This study was conducted in the Kansas City metropolitan area of the United States, which has experienced significant urban sprawling in recent decades. The remote sensing of land cover changes in this area spanned over four decades from 1972 through 2010. The project was implemented in two stages: the first stage focused on detection of long-term trends of urban land cover change, while the second one examined how to detect the coupled effects of human impact and climate change on urban landscapes. For the first-stage study, six Landsat images were used with a time interval of about five years for the period from 1972 through 2001. Four major land cover types, built-up land, forestland, non-forest vegetation land, and surface water, were mapped using supervised image classification techniques. The study found that over the three decades the built-up lands in the study area were more than doubled, which was mainly at the expense of non-forest vegetation lands. Surprisingly and interestingly, the area also saw a significant gain in surface water coverage. This observation raised questions: How have human activities and precipitation variation jointly impacted surface water cover during recent decades? How can we detect such coupled impacts through remote sensing analysis? These questions led to the second stage of the study, in which we designed and developed approaches to detecting fine-scale surface waters and analyzing coupled effects of human impact and precipitation variation on the waters. To effectively detect urban landscape changes that might be jointly shaped by precipitation variation, our study proposed “urban wetscapes” (loosely-defined urban wetlands) as a new indicator for remote sensing detection. The study examined whether urban wetscape dynamics was a sensitive indicator of the coupled effects of the two driving forces. To better detect this indicator, a rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. Three SPOT images for years 1992, 2008, and 2010, respectively were classified with this technique to generate the four types of land cover as described above. The spatial analyses of remotely-sensed wetscape changes were implemented at the scales of metropolitan, watershed, and sub-watershed, as well as based on the size of surface water bodies in order to accurately reveal urban wetscape change trends in relation to the driving forces. The study identified that urban wetscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds in response to human impacts at different scales. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while generally smaller wetlands decreased mainly due to human development activities. These results confirm that wetscape dynamics can effectively reveal the coupled effects of human impact and climate change on urban landscapes. As such, remote sensing of this indicator provides new insights into the relationships between urban land cover changes and driving forces.Keywords: urban land cover, human impact, climate change, rule-based classification, across-scale analysis
Procedia PDF Downloads 3082011 Grain Boundary Detection Based on Superpixel Merges
Authors: Gaokai Liu
Abstract:
The distribution of material grain sizes reflects the strength, fracture, corrosion and other properties, and the grain size can be acquired via the grain boundary. In recent years, the automatic grain boundary detection is widely required instead of complex experimental operations. In this paper, an effective solution is applied to acquire the grain boundary of material images. First, the initial superpixel segmentation result is obtained via a superpixel approach. Then, a region merging method is employed to merge adjacent regions based on certain similarity criterions, the experimental results show that the merging strategy improves the superpixel segmentation result on material datasets.Keywords: grain boundary detection, image segmentation, material images, region merging
Procedia PDF Downloads 1692010 Architectural Adaptation for Road Humps Detection in Adverse Light Scenario
Authors: Padmini S. Navalgund, Manasi Naik, Ujwala Patil
Abstract:
Road hump is a semi-cylindrical elevation on the road made across specific locations of the road. The vehicle needs to maneuver the hump by reducing the speed to avoid car damage and pass over the road hump safely. Road Humps on road surfaces, if identified in advance, help to maintain the security and stability of vehicles, especially in adverse visibility conditions, viz. night scenarios. We have proposed a deep learning architecture adaptation by implementing the MISH activation function and developing a new classification loss function called "Effective Focal Loss" for Indian road humps detection in adverse light scenarios. We captured images comprising of marked and unmarked road humps from two different types of cameras across South India to build a heterogeneous dataset. A heterogeneous dataset enabled the algorithm to train and improve the accuracy of detection. The images were pre-processed, annotated for two classes viz, marked hump and unmarked hump. The dataset from these images was used to train the single-stage object detection algorithm. We utilised an algorithm to synthetically generate reduced visible road humps scenarios. We observed that our proposed framework effectively detected the marked and unmarked hump in the images in clear and ad-verse light environments. This architectural adaptation sets up an option for early detection of Indian road humps in reduced visibility conditions, thereby enhancing the autonomous driving technology to handle a wider range of real-world scenarios.Keywords: Indian road hump, reduced visibility condition, low light condition, adverse light condition, marked hump, unmarked hump, YOLOv9
Procedia PDF Downloads 232009 Image Segmentation Techniques: Review
Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo
Abstract:
Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.Keywords: clustering-based, convolution-network, edge-based, region-growing
Procedia PDF Downloads 952008 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera
Authors: Isa Moazen, Ali Nahvi
Abstract:
Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction
Procedia PDF Downloads 1382007 Application of Pattern Recognition Technique to the Quality Characterization of Superficial Microstructures in Steel Coatings
Authors: H. Gonzalez-Rivera, J. L. Palmeros-Torres
Abstract:
This paper describes the application of traditional computer vision techniques as a procedure for automatic measurement of the secondary dendrite arm spacing (SDAS) from microscopic images. The algorithm is capable of finding the lineal or curve-shaped secondary column of the main microstructure, measuring its length size in a micro-meter and counting the number of spaces between dendrites. The automatic characterization was compared with a set of 1728 manually characterized images, leading to an accuracy of −0.27 µm for the length size determination and a precision of ± 2.78 counts for dendrite spacing counting, also reducing the characterization time from 7 hours to 2 minutes.Keywords: dendrite arm spacing, microstructure inspection, pattern recognition, polynomial regression
Procedia PDF Downloads 452006 Secure Message Transmission Using Meaningful Shares
Authors: Ajish Sreedharan
Abstract:
Visual cryptography encodes a secret image into shares of random binary patterns. If the shares are exerted onto transparencies, the secret image can be visually decoded by superimposing a qualified subset of transparencies, but no secret information can be obtained from the superposition of a forbidden subset. The binary patterns of the shares, however, have no visual meaning and hinder the objectives of visual cryptography. In the Secret Message Transmission through Meaningful Shares a secret message to be transmitted is converted to grey scale image. Then (2,2) visual cryptographic shares are generated from this converted gray scale image. The shares are encrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. Two separate color images which are of the same size of the shares, taken as cover image of the respective shares to hide the shares into them. The encrypted shares which are covered by meaningful images so that a potential eavesdropper wont know there is a message to be read. The meaningful shares are transmitted through two different transmission medium. During decoding shares are fetched from received meaningful images and decrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. The shares are combined to regenerate the grey scale image from where the secret message is obtained.Keywords: visual cryptography, wavelet transform, meaningful shares, grey scale image
Procedia PDF Downloads 4552005 The Stereotypical Images of Marginalized Women in the Poetry of Rita Dove
Authors: Wafaa Kamal Isaac
Abstract:
This paper attempts to shed light upon the stereotypical images of marginalized black women as shown through the poetry of Rita Dove. Meanwhile, it explores how stereotypical images held by the society and public perceptions perpetuate the marginalization of black women. Dove is considered one of the most fundamental African-American poets who devoted her writings to explore the problem of identity that confronted marginalized women in America. Besides tackling the issue of black women’s stereotypical images, this paper focuses upon the psychological damage which the black women had suffered from due to their stripped identity. In ‘Thomas and Beulah’, Dove reflects the black woman’s longing for her homeland in order to make up for her lost identity. This poem represents atavistic feelings deal with certain recurrent images, both aural and visual, like the image of Beulah who represents the African-American woman who searches for an identity, as she is being denied and humiliated one in the newly founded society. In an attempt to protest against the stereotypical mule image that had been imposed upon black women in America, Dove in ‘On the Bus with Rosa Parks’ tries to ignite the beaten spirits to struggle for their own rights by revitalizing the rebellious nature and strong determination of the historical figure ‘Rosa Parks’ that sparked the Civil Rights Movement. In ‘Daystar’, Dove proves that black women are subjected to double-edged oppression; firstly, in terms of race as a black woman in an unjust white society that violates her rights due to her black origins and secondly, in terms of gender as a member of the female sex that is meant to exist only to serve man’s needs. Similarly, in the ‘Adolescence’ series, Dove focuses on the double marginalization which the black women had experienced. It concludes that the marginalization of black women has resulted from the domination of the masculine world and the oppression of the white world. Moreover, Dove’s ‘Beauty and the Beast’ investigates the African-American women’s problem of estrangement and identity crisis in America. It also sheds light upon the psychological consequences that resulted from the violation of marginalized women’s identity. Furthermore, this poem shows the black women’s self-debasement, helplessness, and double consciousness that emanate from the sense of uprootedness. Finally, this paper finds out that the negative, debased and inferior stereotypical image held by the society did not only contribute to the marginalization of black women but also silenced and muted their voices.Keywords: stereotypical images, marginalized women, Rita Dove, identity
Procedia PDF Downloads 1642004 The Development of Congeneric Elicited Writing Tasks to Capture Language Decline in Alzheimer Patients
Authors: Lise Paesen, Marielle Leijten
Abstract:
People diagnosed with probable Alzheimer disease suffer from an impairment of their language capacities; a gradual impairment which affects both their spoken and written communication. Our study aims at characterising the language decline in DAT patients with the use of congeneric elicited writing tasks. Within these tasks, a descriptive text has to be written based upon images with which the participants are confronted. A randomised set of images allows us to present the participants with a different task on every encounter, thus allowing us to avoid a recognition effect in this iterative study. This method is a revision from previous studies, in which participants were presented with a larger picture depicting an entire scene. In order to create the randomised set of images, existing pictures were adapted following strict criteria (e.g. frequency, AoA, colour, ...). The resulting data set contained 50 images, belonging to several categories (vehicles, animals, humans, and objects). A pre-test was constructed to validate the created picture set; most images had been used before in spoken picture naming tasks. Hence the same reaction times ought to be triggered in the typed picture naming task. Once validated, the effectiveness of the descriptive tasks was assessed. First, the participants (n=60 students, n=40 healthy elderly) performed a typing task, which provided information about the typing speed of each individual. Secondly, two descriptive writing tasks were carried out, one simple and one complex. The simple task contains 4 images (1 animal, 2 objects, 1 vehicle) and only contains elements with high frequency, a young AoA (<6 years), and fast reaction times. Slow reaction times, a later AoA (≥ 6 years) and low frequency were criteria for the complex task. This task uses 6 images (2 animals, 1 human, 2 objects and 1 vehicle). The data were collected with the keystroke logging programme Inputlog. Keystroke logging tools log and time stamp keystroke activity to reconstruct and describe text production processes. The data were analysed using a selection of writing process and product variables, such as general writing process measures, detailed pause analysis, linguistic analysis, and text length. As a covariate, the intrapersonal interkey transition times from the typing task were taken into account. The pre-test indicated that the new images lead to similar or even faster reaction times compared to the original images. All the images were therefore used in the main study. The produced texts of the description tasks were significantly longer compared to previous studies, providing sufficient text and process data for analyses. Preliminary analysis shows that the amount of words produced differed significantly between the healthy elderly and the students, as did the mean length of production bursts, even though both groups needed the same time to produce their texts. However, the elderly took significantly more time to produce the complex task than the simple task. Nevertheless, the amount of words per minute remained comparable between simple and complex. The pauses within and before words varied, even when taking personal typing abilities (obtained by the typing task) into account.Keywords: Alzheimer's disease, experimental design, language decline, writing process
Procedia PDF Downloads 2742003 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking
Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine
Abstract:
In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.Keywords: lifting wavelet transform (LWT), sub-space vectorial decomposition, secure, image watermarking, watermark
Procedia PDF Downloads 2762002 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data
Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju
Abstract:
Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding
Procedia PDF Downloads 4122001 Detection of Intentional Attacks in Images Based on Watermarking
Authors: Hazem Munawer Al-Otum
Abstract:
In this work, an efficient watermarking technique is proposed and can be used for detecting intentional attacks in RGB color images. The proposed technique can be implemented for image authentication and exhibits high robustness against unintentional common image processing attacks. It deploys two measures to discern between intentional and unintentional attacks based on using a quantization-based technique in a modified 2D multi-pyramidal DWT transform. Simulations have shown high accuracy in detecting intentionally attacked regions while exhibiting high robustness under moderate to severe common image processing attacks.Keywords: image authentication, copyright protection, semi-fragile watermarking, tamper detection
Procedia PDF Downloads 2552000 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images
Authors: Elham Bagheri, Yalda Mohsenzadeh
Abstract:
Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception
Procedia PDF Downloads 901999 Meteosat Second Generation Image Compression Based on the Radon Transform and Linear Predictive Coding: Comparison and Performance
Authors: Cherifi Mehdi, Lahdir Mourad, Ameur Soltane
Abstract:
Image compression is used to reduce the number of bits required to represent an image. The Meteosat Second Generation satellite (MSG) allows the acquisition of 12 image files every 15 minutes. Which results a large databases sizes. The transform selected in the images compression should contribute to reduce the data representing the images. The Radon transform retrieves the Radon points that represent the sum of the pixels in a given angle for each direction. Linear predictive coding (LPC) with filtering provides a good decorrelation of Radon points using a Predictor constitute by the Symmetric Nearest Neighbor filter (SNN) coefficients, which result losses during decompression. Finally, Run Length Coding (RLC) gives us a high and fixed compression ratio regardless of the input image. In this paper, a novel image compression method based on the Radon transform and linear predictive coding (LPC) for MSG images is proposed. MSG image compression based on the Radon transform and the LPC provides a good compromise between compression and quality of reconstruction. A comparison of our method with other whose two based on DCT and one on DWT bi-orthogonal filtering is evaluated to show the power of the Radon transform in its resistibility against the quantization noise and to evaluate the performance of our method. Evaluation criteria like PSNR and the compression ratio allows showing the efficiency of our method of compression.Keywords: image compression, radon transform, linear predictive coding (LPC), run lengthcoding (RLC), meteosat second generation (MSG)
Procedia PDF Downloads 4211998 Stability Assessment of Chamshir Dam Based on DEM, South West Zagros
Authors: Rezvan Khavari
Abstract:
The Zagros fold-thrust belt in SW Iran is a part of the Alpine-Himalayan system which consists of a variety of structures with different sizes or geometries. The study area is Chamshir Dam, which is located on the Zohreh River, 20 km southeast of Gachsaran City (southwest Iran). The satellite images are valuable means available to geologists for locating geological or geomorphological features expressing regional fault or fracture systems, therefore, the satellite images were used for structural analysis of the Chamshir dam area. As well, using the DEM and geological maps, 3D Models of the area have been constructed. Then, based on these models, all the acquired fracture traces data were integrated in Geographic Information System (GIS) environment by using Arc GIS software. Based on field investigation and DEM model, main structures in the area consist of Cham Shir syncline and two fault sets, the main thrust faults with NW-SE direction and small normal faults in NE-SW direction. There are three joint sets in the study area, both of them (J1 and J3) are the main large fractures around the Chamshir dam. These fractures indeed consist with the normal faults in NE-SW direction. The third joint set in NW-SE is normal to the others. In general, according to topography, geomorphology and structural geology evidences, Chamshir dam has a potential for sliding in some parts of Gachsaran formation.Keywords: DEM, chamshir dam, zohreh river, satellite images
Procedia PDF Downloads 4821997 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images
Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi
Abstract:
Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis
Procedia PDF Downloads 591996 Dynamics Pattern of Land Use and Land Cover Change and Its Driving Factors Based on a Cellular Automata Markov Model: A Case Study at Ibb Governorate, Yemen
Authors: Abdulkarem Qasem Dammag, Basema Qasim Dammag, Jian Dai
Abstract:
Change in Land use and Land cover (LU/LC) has a profound impact on the area's natural, economic, and ecological development, and the search for drivers of land cover change is one of the fundamental issues of LU/LC change. The study aimed to assess the temporal and Spatio-temporal dynamics of LU/LC in the past and to predict the future using Landsat images by exploring the characteristics of different LU/LC types. Spatio-temporal patterns of LU/LC change in Ibb Governorate, Yemen, were analyzed based on RS and GIS from 1990, 2005, and 2020. A socioeconomic survey and key informant interviews were used to assess potential drivers of LU/LC. The results showed that from 1990 to 2020, the total area of vegetation land decreased by 5.3%, while the area of barren land, grassland, built-up area, and waterbody increased by 2.7%, 1.6%, 1.04%, and 0.06%, respectively. Based on socio-economic surveys and key informant interviews, natural factors had a significant and long-term impact on land change. In contrast, site construction and socio-economic factors were the main driving forces affecting land change in a short time scale. The analysis results have been linked to the CA-Markov Land Use simulation and forecasting model for the years 2035 and 2050. The simulation results revealed from the period 2020 to 2050, the trend of dynamic changes in land use, where the total area of barren land decreased by 7.0% and grassland by 0.2%, while the vegetation land, built-up area, and waterbody increased by 4.6%, 2.6%, and 0.1 %, respectively. Overall, these findings provide LULC's past and future trends and identify drivers, which can play an important role in sustainable land use planning and management by balancing and coordinating urban growth and land use and can also be used at the regional level in different levels to provide as a reference. In addition, the results provide scientific guidance to government departments and local decision-makers in future land-use planning through dynamic monitoring of LU/LC change.Keywords: LU/LC change, CA-Markov model, driving forces, change detection, LU/LC change simulation
Procedia PDF Downloads 641995 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 321994 Pneumoperitoneum Creation Assisted with Optical Coherence Tomography and Automatic Identification
Authors: Eric Yi-Hsiu Huang, Meng-Chun Kao, Wen-Chuan Kuo
Abstract:
For every laparoscopic surgery, a safe pneumoperitoneumcreation (gaining access to the peritoneal cavity) is the first and essential step. However, closed pneumoperitoneum is usually obtained by blind insertion of a Veress needle into the peritoneal cavity, which may carry potential risks suchas bowel and vascular injury.Until now, there remains no definite measure to visually confirm the position of the needle tip inside the peritoneal cavity. Therefore, this study established an image-guided Veress needle method by combining a fiber probe with optical coherence tomography (OCT). An algorithm was also proposed for determining the exact location of the needle tip through the acquisition of OCT images. Our method not only generates a series of “live” two-dimensional (2D) images during the needle puncture toward the peritoneal cavity but also can eliminate operator variation in image judgment, thus improving peritoneal access safety. This study was approved by the Ethics Committee of Taipei Veterans General Hospital (Taipei VGH IACUC 2020-144). A total of 2400 in vivo OCT images, independent of each other, were acquired from experiments of forty peritoneal punctures on two piglets. Characteristic OCT image patterns could be observed during the puncturing process. The ROC curve demonstrates the discrimination capability of these quantitative image features of the classifier, showing the accuracy of the classifier for determining the inside vs. outside of the peritoneal was 98% (AUC=0.98). In summary, the present study demonstrates the ability of the combination of our proposed automatic identification method and OCT imaging for automatically and objectively identifying the location of the needle tip. OCT images translate the blind closed technique of peritoneal access into a visualized procedure, thus improving peritoneal access safety.Keywords: pneumoperitoneum, optical coherence tomography, automatic identification, veress needle
Procedia PDF Downloads 1341993 Development of an Automatic Computational Machine Learning Pipeline to Process Confocal Fluorescence Images for Virtual Cell Generation
Authors: Miguel Contreras, David Long, Will Bachman
Abstract:
Background: Microscopy plays a central role in cell and developmental biology. In particular, fluorescence microscopy can be used to visualize specific cellular components and subsequently quantify their morphology through development of virtual-cell models for study of effects of mechanical forces on cells. However, there are challenges with these imaging experiments, which can make it difficult to quantify cell morphology: inconsistent results, time-consuming and potentially costly protocols, and limitation on number of labels due to spectral overlap. To address these challenges, the objective of this project is to develop an automatic computational machine learning pipeline to predict cellular components morphology for virtual-cell generation based on fluorescence cell membrane confocal z-stacks. Methods: Registered confocal z-stacks of nuclei and cell membrane of endothelial cells, consisting of 20 images each, were obtained from fluorescence confocal microscopy and normalized through software pipeline for each image to have a mean pixel intensity value of 0.5. An open source machine learning algorithm, originally developed to predict fluorescence labels on unlabeled transmitted light microscopy cell images, was trained using this set of normalized z-stacks on a single CPU machine. Through transfer learning, the algorithm used knowledge acquired from its previous training sessions to learn the new task. Once trained, the algorithm was used to predict morphology of nuclei using normalized cell membrane fluorescence images as input. Predictions were compared to the ground truth fluorescence nuclei images. Results: After one week of training, using one cell membrane z-stack (20 images) and corresponding nuclei label, results showed qualitatively good predictions on training set. The algorithm was able to accurately predict nuclei locations as well as shape when fed only fluorescence membrane images. Similar training sessions with improved membrane image quality, including clear lining and shape of the membrane, clearly showing the boundaries of each cell, proportionally improved nuclei predictions, reducing errors relative to ground truth. Discussion: These results show the potential of pre-trained machine learning algorithms to predict cell morphology using relatively small amounts of data and training time, eliminating the need of using multiple labels in immunofluorescence experiments. With further training, the algorithm is expected to predict different labels (e.g., focal-adhesion sites, cytoskeleton), which can be added to the automatic machine learning pipeline for direct input into Principal Component Analysis (PCA) for generation of virtual-cell mechanical models.Keywords: cell morphology prediction, computational machine learning, fluorescence microscopy, virtual-cell models
Procedia PDF Downloads 2051992 A Three Step Approach Analysis of the Portrayal of Images of Women in Three Ghanaian Newspapers: Newsone, Ebony and the Mirror
Authors: H. K. Bonsu-Owu
Abstract:
Media portrayal of women in traditional stereotypical roles such as mothers, or seductress has been the norm for years. However, the changing socioeconomic and political environment and advancement of women in today’s society have given rise to questions on the appropriate portrayal of women in the media today. The purpose of the study is to analyze the portrayal of women in Ghanaian newspapers and find women’s perception on the issue. The study uses a three step approach in gathering data for analysis. Using the stratified sampling method, it analyzes front page images of women from 210 issues of the selected newspapers. Further, it administers questionnaires to 100 female students to find out how they relate to the images of women in the selected newspapers. Finally, editors of the newspapers are interviewed to find their rational for portraying women as seen on their front pages. The findings suggest that the newspapers portray women for varied reasons such as promoting sales and influencing the public agenda. Further, the female students claim that in spite of women’s vast contribution to the growth of society, the media continue to marginalize them. They add that such portrayals promote and reinforce social construct, however, refuse to see themselves through the male gaze concept. The study concludes that the stereotyped portrayal of women is likely to continue if the government, regulatory bodies, the media and society do not make a conscious effort to address this problem.Keywords: women, newspaper, portrayal, social construct
Procedia PDF Downloads 1331991 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images
Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam
Abstract:
Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification
Procedia PDF Downloads 3471990 An Examination of Changes on Natural Vegetation due to Charcoal Production Using Multi Temporal Land SAT Data
Authors: T. Garba, Y. Y. Babanyara, M. Isah, A. K. Muktari, R. Y. Abdullahi
Abstract:
The increased in demand of fuel wood for heating, cooking and sometimes bakery has continued to exert appreciable impact on natural vegetation. This study focus on the use of multi-temporal data from land sat TM of 1986, land sat EMT of 1999 and lands sat ETM of 2006 to investigate the changes of Natural Vegetation resulting from charcoal production activities. The three images were classified based on bare soil, built up areas, cultivated land, and natural vegetation, Rock out crop and water bodies. From the classified images Land sat TM of 1986 it shows natural vegetation of the study area to be 308,941.48 hectares equivalent to 50% of the area it then reduces to 278,061.21 which is 42.92% in 1999 it again depreciated to 199,647.81 in 2006 equivalent to 30.83% of the area. Consequently cultivated continue increasing from 259,346.80 hectares (42%) in 1986 to 312,966.27 hectares (48.3%) in 1999 and then to 341.719.92 hectares (52.78%). These show that within the span of 20 years (1986 to 2006) the natural vegetation is depreciated by 119,293.81 hectares. This implies that if the menace is not control the natural might likely be lost in another twenty years. This is because forest cleared for charcoal production is normally converted to farmland. The study therefore concluded that there is the need for alternatives source of domestic energy such as the use of biomass which can easily be accessible and affordable to people. In addition, the study recommended that there should be strong policies enforcement for the protection forest reserved.Keywords: charcoal, classification, data, images, land use, natural vegetation
Procedia PDF Downloads 3631989 A Decision Support System to Detect the Lumbar Disc Disease on the Basis of Clinical MRI
Authors: Yavuz Unal, Kemal Polat, H. Erdinc Kocer
Abstract:
In this study, a decision support system comprising three stages has been proposed to detect the disc abnormalities of the lumbar region. In the first stage named the feature extraction, T2-weighted sagittal and axial Magnetic Resonance Images (MRI) were taken from 55 people and then 27 appearance and shape features were acquired from both sagittal and transverse images. In the second stage named the feature weighting process, k-means clustering based feature weighting (KMCBFW) proposed by Gunes et al. Finally, in the third stage named the classification process, the classifier algorithms including multi-layer perceptron (MLP- neural network), support vector machine (SVM), Naïve Bayes, and decision tree have been used to classify whether the subject has lumbar disc or not. In order to test the performance of the proposed method, the classification accuracy (%), sensitivity, specificity, precision, recall, f-measure, kappa value, and computation times have been used. The best hybrid model is the combination of k-means clustering based feature weighting and decision tree in the detecting of lumbar disc disease based on both sagittal and axial MR images.Keywords: lumbar disc abnormality, lumbar MRI, lumbar spine, hybrid models, hybrid features, k-means clustering based feature weighting
Procedia PDF Downloads 5201988 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images
Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso
Abstract:
Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence
Procedia PDF Downloads 191987 Non-Destructive Visual-Statistical Approach to Detect Leaks in Water Mains
Authors: Alaa Al Hawari, Mohammad Khader, Tarek Zayed, Osama Moselhi
Abstract:
In this paper, an effective non-destructive, non-invasive approach for leak detection was proposed. The process relies on analyzing thermal images collected by an IR viewer device that captures thermo-grams. In this study a statistical analysis of the collected thermal images of the ground surface along the expected leak location followed by a visual inspection of the thermo-grams was performed in order to locate the leak. In order to verify the applicability of the proposed approach the predicted leak location from the developed approach was compared with the real leak location. The results showed that the expected leak location was successfully identified with an accuracy of more than 95%.Keywords: thermography, leakage, water pipelines, thermograms
Procedia PDF Downloads 355