Search results for: sampling algorithms
128 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland
Authors: Raptis Sotirios
Abstract:
Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services
Procedia PDF Downloads 236127 Discover Your Power: A Case for Contraceptive Self-Empowerment
Authors: Oluwaseun Adeleke, Samuel Ikan, Anthony Nwala, Mopelola Raji, Fidelis Edet
Abstract:
Background: The risks associated with each pregnancy is carried almost entirely by a woman; however, the decision about whether and when to get pregnant is a subject that several others contend with her to make. The self-care concept offers women of reproductive age the opportunity to take control of their health and its determinants with or without the influence of a healthcare provider, family, and friends. DMPA-SC Self-injection (SI) is becoming the cornerstone of contraceptive self-care and has the potential to expand access and create opportunities for women to take control of their reproductive health. Methodology: To obtain insight into the influences that interfere with a woman’s capacity to make contraceptive choices independently, the Delivering Innovations in Selfcare (DISC) project conducted two intensive rounds of qualitative data collection and triangulation that included provider, client, and community mobilizer interviews, facility observations, and routine program data collection. Respondents were sampled according to a convenience sampling approach and data collected analyzed using a codebook and Atlas-TI. The research team members came together for participatory analysis workshop to explore and interpret emergent themes. Findings: Insights indicate that women are increasingly finding their voice and independently seek services to prevent a deterioration of their economic situation and achieve personal ambitions. Women who hold independent decision-making power still prefer to share decision making power with their male partners. Male partners’ influence on women’s use of family planning and self-inject was most dominant. There were examples of men’s support for women’s use of contraception to prevent unintended pregnancy, as well as men withholding support. Other men outrightly deny their partners from obtaining contraceptive services and their partners cede this sexual and reproductive health right without objection. A woman’s decision to initiate family planning is affected by myths and misconceptions, many of which have cultural and religious origins. Some tribes are known for their reluctance to use contraception and often associate stigma with the pursuit of family planning (FP) services. Information given by the provider is accepted, and, in many cases, clients cede power to providers to shape their SI user journey. A provider’s influence on a client’s decision to self-inject is reinforced by their biases and concerns. Clients are inhibited by the presence of peers during group education at the health facility. Others are motivated to seek FP services by the interest expressed by peers. There is also a growing trend in the influence of social media on FP uptake, particularly Facebook fora. Conclusion: The convenience of self-administration at home is a benefit for those that contend with various forms of social influences as well as covert users. Beyond increasing choice and reducing barriers to accessing Sexual and Reproductive Health (SRH) services, it can initiate the process of self-discovery and agency in the contraceptive user journey.Keywords: selfcare, self-empowerment, agency, DMPA-SC, contraception, family planning, influences
Procedia PDF Downloads 71126 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management
Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities
Procedia PDF Downloads 72125 Comparative Studies on the Needs and Development of Autotronic Maintenance Training Modules for the Training of Automobile Independent Workshop Service Technicians in North – Western Region, Nigeria
Authors: Muhammad Shuaibu Birniwa
Abstract:
Automobile Independent Workshop Service Technicians (popularly called roadside mechanics) are technical personals that repairs most of the automobile vehicles in Nigeria. Majority of these mechanics acquired their skills through apprenticeship training. Modern vehicle imported into the country posed greater challenges to the present automobile technicians particularly in the area of carrying out maintenance repairs of these latest automobile vehicles (autotronics vehicle) due to their inability to possessed autotronic skills competency. To source for solution to the above mentioned problems, therefore a research is carried out in North – Western region of Nigeria to produce a suitable maintenance training modules that can be used to train the technicians for them to upgrade/acquire the needed competencies for successful maintenance repair of the autotronic vehicles that were running everyday on the nation’s roads. A cluster sampling technique is used to obtain a sample from the population. The population of the study is all autotronic inclined lecturers, instructors and independent workshop service technicians that are within North – Western region of Nigeria. There are seven states (Jigawa, Kaduna, Kano, Katsina, Kebbi, Sokoto and Zamfara) in the study area, these serves as clusters in the population. Five (5) states were randomly selected to serve as the sample size. The five states are Jigawa, Kano, Katsina, Kebbi and Zamfara, the entire population of the five states which serves as clusters is (183), lecturers (44), instructors (49) and autotronic independent workshop service technicians (90), all of them were used in the study because of their manageable size. 183 copies of autotronic maintenance training module questionnaires (AMTMQ) with 174 and 149 question items respectively were administered and collected by the researcher with the help of an assistants, they are administered to 44 Polytechnic lecturers in the department of mechanical engineering, 49 instructors in skills acquisition centres/polytechnics and 90 master craftsmen of an independent workshops that are autotronic inclined. Data collected for answering research questions 1, 3, 4 and 5 were analysed using SPSS software version 22, Grand Mean and standard deviation were used to answer the research questions. Analysis of Variance (ANOVA) was used to test null hypotheses one (1) to three (3) and t-test statistical tool is used to analyzed hypotheses four (4) and five (5) all at 0.05 level of significance. The research conducted revealed that; all the objectives, contents/tasks, facilities, delivery systems and evaluation techniques contained in the questionnaire were required for the development of the autotronic maintenance training modules for independent workshop service technicians in the north – western zone of Nigeria. The skills upgrade training conducted by federal government in collaboration with SURE-P, NAC and SMEDEN was not successful because the educational status of the target population was not considered in drafting the needed training modules. The mode of training used does not also take cognizance of the theoretical aspect of the trainees, especially basic science which rendered the programme ineffective and insufficient for the tasks on ground.Keywords: autotronics, roadside, mechanics, technicians, independent
Procedia PDF Downloads 73124 Office Workspace Design for Policewomen in Assam, India: Applications for Developing Countries
Authors: Shilpi Bora, Abhirup Chatterjee, Debkumar Chakrabarti
Abstract:
Organizations of all the sectors around the world are increasingly revisiting their workplace strategies with due concern for women working therein. Limited office space and rigid work arrangements contribute to lesser job satisfaction and greater work impoundments for any organization. Flexible workspace strategies are indispensable to accommodate the progressive rise of modular workstations and involvement of women. Today’s generation of employees deserves malleable office environments with employee-friendly job conditions and strategies. The workplace nowadays stands on rapid organizational changes in progressive and flexible work culture. Occupational well-being practices need to keep pace with the rapid changes in office-based work. Working at the office (workspace) with awkward postures or for long periods can cause pain, discomfort, and injury. The world is stirring towards the era of globalization and progress. The 4000 women police personnel constitute less than one per cent of the total police strength of India. Lots of innovative fields are growing fast, and it is important that we should accommodate women in those arenas. The timeworn trends should be set apart to set out for fresh opportunities and possibilities of development and success through more involvement of women in the workplace. The notion of women policing is gaining position throughout the world, and various countries are putting solemn efforts to mainstream women in policing. As the role of women policing in a society is budding, and thus it is also notable that the accessibility of women at general police stations should be considered. Accordingly, the impact of workspace at police station on the employee productivity has been widely deliberated as a crucial contributor to employee satisfaction leading to better functional motivation. Thus the present research aimed to look into the office workstation design of police station with reference to womanhood specific issues to uplift occupational wellbeing of the policewomen. Personal interview and individual responses collected through administering to a subjective assessment questionnaire on thirty women police as well as to have their views on these issues by purposive non-probability sampling of women police personnel of different ranks posted in Guwahati, Assam, India. Scrutiny of the collected data revealed that office design has a substantial impact on the policewomen job satisfaction in the police station. In this study, the workspace was designed in such a way that the set of factors would impact on the individual to ensure increased productivity. Office design such as furniture, noise, temperature, lighting and spatial arrangement were considered. The primary feature which affected the productivity of policewomen was the furniture used in the workspace, which was found to disturb the everyday and overall productivity of policewomen. Therefore, it was recommended to have proper and adequate ergonomics design intervention to improve the office design for better performance. This type of study is today’s need-of-the-hour to empower women and facilitate their inner talent to come up in service of the nation. The office workspace design also finds critical importance at several other occupations also – where office workstation needs further improvement.Keywords: office workspace design, policewomen, womanhood concerns at workspace, occupational wellbeing
Procedia PDF Downloads 225123 Spatio-Temporal Dynamic of Woody Vegetation Assessment Using Oblique Landscape Photographs
Authors: V. V. Fomin, A. P. Mikhailovich, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova
Abstract:
Ground-level landscape photos can be used as a source of objective data on woody vegetation and vegetation dynamics. We proposed a method for processing, analyzing, and presenting ground photographs, which has the following advantages: 1) researcher has to form holistic representation of the study area in form of a set of interlapping ground-level landscape photographs; 2) it is necessary to define or obtain characteristics of the landscape, objects, and phenomena present on the photographs; 3) it is necessary to create new or supplement existing textual descriptions and annotations for the ground-level landscape photographs; 4) single or multiple ground-level landscape photographs can be used to develop specialized geoinformation layers, schematic maps or thematic maps; 5) it is necessary to determine quantitative data that describes both images as a whole, and displayed objects and phenomena, using algorithms for automated image analysis. It is suggested to match each photo with a polygonal geoinformation layer, which is a sector consisting of areas corresponding with parts of the landscape visible in the photos. Calculation of visibility areas is performed in a geoinformation system within a sector using a digital model of a study area relief and visibility analysis functions. Superposition of the visibility sectors corresponding with various camera viewpoints allows matching landscape photos with each other to create a complete and wholesome representation of the space in question. It is suggested to user-defined data or phenomenons on the images with the following superposition over the visibility sector in the form of map symbols. The technology of geoinformation layers’ spatial superposition over the visibility sector creates opportunities for image geotagging using quantitative data obtained from raster or vector layers within the sector with the ability to generate annotations in natural language. The proposed method has proven itself well for relatively open and clearly visible areas with well-defined relief, for example, in mountainous areas in the treeline ecotone. When the polygonal layers of visibility sectors for a large number of different points of photography are topologically superimposed, a layer of visibility of sections of the entire study area is formed, which is displayed in the photographs. Also, as a result of this overlapping of sectors, areas that did not appear in the photo will be assessed as gaps. According to the results of this procedure, it becomes possible to obtain information about the photos that display a specific area and from which points of photography it is visible. This information may be obtained either as a query on the map or as a query for the attribute table of the layer. The method was tested using repeated photos taken from forty camera viewpoints located on Ray-Iz mountain massif (Polar Urals, Russia) from 1960 until 2023. It has been successfully used in combination with other ground-based and remote sensing methods of studying the climate-driven dynamics of woody vegetation in the Polar Urals. Acknowledgment: This research was collaboratively funded by the Russian Ministry for Science and Education project No. FEUG-2023-0002 (image representation) and Russian Science Foundation project No. 24-24-00235 (automated textual description).Keywords: woody, vegetation, repeated, photographs
Procedia PDF Downloads 93122 Resolving Urban Mobility Issues through Network Restructuring of Urban Mass Transport
Authors: Aditya Purohit, Neha Bansal
Abstract:
Unplanned urbanization and multidirectional sprawl of the cities have resulted in increased motorization and deteriorating transport conditions like traffic congestion, longer commuting, pollution, increased carbon footprint, and above all increased fatalities. In order to overcome these problems, various practices have been adopted including– promoting and implementing mass transport; traffic junction channelization; smart transport etc. However, these methods are found to be primarily focusing on vehicular mobility rather than people accessibility. With this research gap, this paper tries to resolve the mobility issues for Ahmedabad city in India, which being the economic capital Gujarat state has a huge commuter and visitor inflow. This research aims to resolve the traffic congestion and urban mobility issues focusing on Gujarat State Regional Transport Corporation (GSRTC) for the city of Ahmadabad by analyzing the existing operations and network structure of GSRTC followed by finding possibilities of integrating it with other modes of urban transport. The network restructuring (NR) methodology is used with appropriate variations, based on commuter demand and growth pattern of the city. To do these ‘scenarios’ based on priority issues (using 12 parameters) and their best possible solution, are established after route network analysis for 2700 population sample of 20 traffic junctions/nodes across the city. Approximately 5% sample (of passenger inflow) at each node is considered using random stratified sampling technique two scenarios are – Scenario 1: Resolving mobility issues by use of Special Purpose Vehicle (SPV) in joint venture to GSRTC and Private Operators for establishing feeder service, which shall provide a transfer service for passenger for movement from inner city area to identified peripheral terminals; and Scenario 2: Augmenting existing mass transport services such as BRTS and AMTS for using them as feeder service to the identified peripheral terminals. Each of these has now been analyzed for the best suitability/feasibility in network restructuring. A desire-line diagram is constructed using this analysis which indicated that on an average 62% of designated GSRTC routes are overlapping with mass transportation service routes of BRTS and AMTS in the city. This has resulted in duplication of bus services causing traffic congestion especially in the Central Bus Station (CBS). Terminating GSRTC services on the periphery of the city is found to be the best restructuring network proposal. This limits the GSRTC buses at city fringe area and prevents them from entering into the city core areas. These end-terminals of GSRTC are integrated with BRTS and AMTS services which help in segregating intra-state and inter-state bus services. The research concludes that absence of integrated multimodal transport network resulted in complexity of transport access to the commuters. As a further scope of research comparing and understanding of value of access time in total travel time and its implication on generalized cost on trip and how it varies city wise may be taken up.Keywords: mass transportation, multi-modal integration, network restructuring, travel behavior, urban transport
Procedia PDF Downloads 198121 The Social Aspects of Mental Illness among Orthodox Christians of the Tigrinya Ethnic Group in Eritrea
Authors: Erimias Firre
Abstract:
This study is situated within the religio-cultural milieu of Coptic Orthodox Christians of the Tigrinya ethnic group in Eritrea. With this ethnic group being conservative and traditionally bound, extended family structures dissected along various clans and expansive community networks are the distinguishing mark of its members. Notably, Coptic Tigrinya constitutes the largest percentage of all Christian denominations in Eritrea. As religious, cultural beliefs, rituals and teachings permeate in all aspects of social life, a distinct worldview and traditionalized health and illness conceptualization are common. Accordingly, this study argues that religio-culturally bound illness ideologies immensely determine the perception, help seeking behavior and healing preference of Coptic Tigrinya in Eritrea. The study bears significance in the sense that it bridges an important knowledge gap, given that it is ethno-linguistically (within the Tigrinya ethnic group), spatially (central region of Eritrea) and religiously (Coptic Christianity) specific. The conceptual framework guiding this research centered on the social determinants of mental health, and explores through the lens of critical theory how existing systems generate social vulnerability and structural inequality, providing a platform to reveal how the psychosocial model has the capacity to emancipate and empower those with mental disorders to live productive and meaningful lives. A case study approach was employed to explore the interrelationship between religio-cultural beliefs and practices and perception of common mental disorders of depression, anxiety, bipolar affective, schizophrenia and post-traumatic stress disorders and the impact of these perceptions on people with those mental disorders. Purposive sampling was used to recruit 41 participants representing seven diverse cohorts; people with common mental disorders, family caregivers, general community members, ex-fighters , priests, staff at St. Mary’s and Biet-Mekae Community Health Center; resulting in rich data for thematic analysis. Findings highlighted current religio-cultural perceptions, causes and treatment of mental disorders among Coptic Tigrinya result in widespread labelling, stigma and discrimination, both of those with mental disorders and their families. Traditional healing sources are almost exclusively tried, sometimes for many years, before families and sufferers seek formal medical assessment and treatment, resulting difficult to treat illness chronicity. Service gaps in the formal medical system result in the inability to meet the principles enshrined in the WHO Mental Health Action Plan 2013-2020 to which the Eritrean Government is a signatory. However, the study found that across all participant cohorts, there was a desire for change that will create a culture whereby those with mental disorders will have restored hope, connectedness, healing and self-determination.Keywords: Coptic Tigrinya, mental disorders, psychosocial model social integration and recovery, traditional healing
Procedia PDF Downloads 187120 Modelling Pest Immigration into Rape Seed Crops under Past and Future Climate Conditions
Authors: M. Eickermann, F. Ronellenfitsch, J. Junk
Abstract:
Oilseed rape (Brassica napus L.) is one of the most important crops throughout Europe, but pressure due to pest insects and pathogens can reduce yield amount substantially. Therefore, the usage of pesticide applications is outstanding in this crop. In addition, climate change effects can interact with phenology of the host plant and their pests and can apply additional pressure on the yield. Next to the pollen beetle, Meligethes aeneus L., the seed-damaging pest insects, cabbage seed weevil (Ceutorhynchus obstrictus Marsham) and the brassica pod midge (Dasineura brassicae Winn.) are of main economic impact to the yield. While females of C. obstrictus are infesting oilseed rape by depositing single eggs into young pods, the females of D. brassicae are using this local damage in the pod for their own oviposition, while depositing batches of 20-30 eggs. Without a former infestation by the cabbage seed weevil, a significant yield reduction by the brassica pod midge can be denied. Based on long-term, multisided field experiments, a comprehensive data-set on pest migration to crops of B. napus has been built up in the last ten years. Five observational test sides, situated in different climatic regions in Luxembourg were controlled between February until the end of May twice a week. Pest migration was recorded by using yellow water pan-traps. Caught insects were identified in the laboratory according to species specific identification keys. By a combination of pest observations and corresponding meteorological observations, the set-up of models to predict the migration periods of the seed-damaging pests was possible. This approach is the basis for a computer-based decision support tool, to assist the farmer in identifying the appropriate time point of pesticide application. In addition, the derived algorithms of that decision support tool can be combined with climate change projections in order to assess the future potential threat caused by the seed-damaging pest species. Regional climate change effects for Luxembourg have been intensively studied in recent years. Significant changes to wetter winters and drier summers, as well as a prolongation of the vegetation period mainly caused by higher spring temperature, have also been reported. We used the COSMO-CLM model to perform a time slice experiment for Luxembourg with a spatial resolution of 1.3 km. Three ten year time slices were calculated: The reference time span (1991-2000), the near (2041-2050) and the far future (2091-2100). Our results projected a significant shift of pest migration to an earlier onset of the year. In addition, a prolongation of the possible migration period could be observed. Because D. brassiace is depending on the former oviposition activity by C. obstrictus to infest its host plant successfully, the future dependencies of both pest species will be assessed. Based on this approach the future risk potential of both seed-damaging pests is calculated and the status as pest species is characterized.Keywords: CORDEX projections, decision support tool, Brassica napus, pests
Procedia PDF Downloads 382119 Effects of Live Webcast-Assisted Teaching on Physical Assessment Technique Learning of Young Nursing Majors
Authors: Huey-Yeu Yan, Ching-Ying Lee, Hung-Ru Lin
Abstract:
Background: Physical assessment is a vital clinical nursing competence. The gap between conventional teaching method and the way e-generation students’ preferred could be bridged owing to the support of Internet technology, i.e. interacting with online media to manage learning works. Nursing instructors in the wake of new learning pattern of the e-generation students are challenged to actively adjust and make teaching contents and methods more versatile. Objective: The objective of this research is to explore the effects on teaching and learning with live webcast-assisted on a specific topic, Physical Assessment technique, on a designated group of young nursing majors. It’s hoped that, with a way of nursing instructing, more versatile learning resources may be provided to facilitate self-directed learning. Design: This research adopts a cross-sectional descriptive survey. The instructor demonstrated physical assessment techniques and operation procedures via live webcast broadcasted online to all students. It increased both the off-time interaction between teacher and students concerning teaching materials. Methods: A convenient sampling was used to recruit a total of 52 nursing-majors at a certain university. The nursing majors took two-hour classes of Physical Assessment per week for 18 weeks (36 hrs. in total). The instruction covered four units with live webcasting and then conducted an online anonymous survey of learning outcomes by questionnaire. The research instrument was the online questionnaire, covering three major domains—online media used, learning outcome evaluation and evaluation result. The data analysis was conducted via IBM SPSS Statistics Version 2.0. The descriptive statistics was undertaken to describe the analysis of basic data and learning outcomes. Statistical methods such as descriptive statistics, t-test, ANOVA, and Pearson’s correlation were employed in verification. Results: Results indicated the following five major findings. (1) learning motivation, about four fifth of the participants agreed the online instruction resources are very helpful in improving learning motivation and raising the learning interest. (2) learning needs, about four fifth of participants agreed it was helpful to plan self-directed practice after the instruction, and meet their needs of repetitive learning and/or practice at their leisure time. (3) learning effectiveness, about two third agreed it was helpful to reduce pre-exam anxiety, and improve their test scores. (4) course objects, about three fourth agreed that it was helpful to achieve the goal of ‘executing the complete Physical Assessment procedures with proper skills’. (5) finally, learning reflection, about all of participants agreed this experience of online instructing, learning, and practicing is beneficial to them, they recommend instructor to share with other nursing majors, and they will recommend it to fellow students too. Conclusions: Live webcasting is a low-cost, convenient, efficient and interactive resource to facilitate nursing majors’ motivation of learning, need of self-directed learning and practice, outcome of learning. When live webcasting is integrated into nursing teaching, it provides an opportunity of self-directed learning to promote learning effectiveness, as such to fulfill the teaching objective.Keywords: innovative teaching, learning effectiveness, live webcasting, physical assessment technique
Procedia PDF Downloads 132118 Sustainable Recycling Practices to Reduce Health Hazards of Municipal Solid Waste in Patna, India
Authors: Anupama Singh, Papia Raj
Abstract:
Though Municipal Solid Waste (MSW) is a worldwide problem, yet its implications are enormous in developing countries, as they are unable to provide proper Municipal Solid Waste Management (MSWM) for the large volume of MSW. As a result, the collected wastes are dumped in open dumping at landfilling sites while the uncollected wastes remain strewn on the roadside, many-a-time clogging drainage. Such unsafe and inadequate management of MSW causes various public health hazards. For example, MSW directly on contact or by leachate contaminate the soil, surface water, and ground water; open burning causes air pollution; anaerobic digestion between the piles of MSW enhance the greenhouse gases i.e., carbon dioxide and methane (CO2 and CH4) into the atmosphere. Moreover, open dumping can cause spread of vector borne disease like cholera, typhoid, dysentery, and so on. Patna, the capital city of Bihar, one of the most underdeveloped provinces in India, is a unique representation of this situation. Patna has been identified as the ‘garbage city’. Over the last decade there has been an exponential increase in the quantity of MSW generation in Patna. Though a large proportion of such MSW is recyclable in nature, only a negligible portion is recycled. Plastic constitutes the major chunk of the recyclable waste. The chemical composition of plastic is versatile consisting of toxic compounds, such as, plasticizers, like adipates and phthalates. Pigmented plastic is highly toxic and it contains harmful metals such as copper, lead, chromium, cobalt, selenium, and cadmium. Human population becomes vulnerable to an array of health problems as they are exposed to these toxic chemicals multiple times a day through air, water, dust, and food. Based on analysis of health data it can be emphasized that in Patna there has been an increase in the incidence of specific diseases, such as, diarrhoea, dysentry, acute respiratory infection (ARI), asthma, and other chronic respiratory diseases (CRD). This trend can be attributed to improper MSWM. The results were reiterated through a survey (N=127) conducted during 2014-15 in selected areas of Patna. Random sampling method of data collection was used to better understand the relationship between different variables affecting public health due to exposure to MSW and lack of MSWM. The results derived through bivariate and logistic regression analysis of the survey data indicate that segregation of wastes at source, segregation behavior, collection bins in the area, distance of collection bins from residential area, and transportation of MSW are the major determinants of public health issues. Sustainable recycling is a robust method for MSWM with its pioneer concerns being environment, society, and economy. It thus ensures minimal threat to environment and ecology consequently improving public health conditions. Hence, this paper concludes that sustainable recycling would be the most viable approach to manage MSW in Patna and would eventually reduce public health hazards.Keywords: municipal solid waste, Patna, public health, sustainable recycling
Procedia PDF Downloads 326117 Wind Tunnel Tests on Ground-Mounted and Roof-Mounted Photovoltaic Array Systems
Authors: Chao-Yang Huang, Rwey-Hua Cherng, Chung-Lin Fu, Yuan-Lung Lo
Abstract:
Solar energy is one of the replaceable choices to reduce the CO2 emission produced by conventional power plants in the modern society. As an island which is frequently visited by strong typhoons and earthquakes, it is an urgent issue for Taiwan to make an effort in revising the local regulations to strengthen the safety design of photovoltaic systems. Currently, the Taiwanese code for wind resistant design of structures does not have a clear explanation on photovoltaic systems, especially when the systems are arranged in arrayed format. Furthermore, when the arrayed photovoltaic system is mounted on the rooftop, the approaching flow is significantly altered by the building and led to different pressure pattern in the different area of the photovoltaic system. In this study, L-shape arrayed photovoltaic system is mounted on the ground of the wind tunnel and then mounted on the building rooftop. The system is consisted of 60 PV models. Each panel model is equivalent to a full size of 3.0 m in depth and 10.0 m in length. Six pressure taps are installed on the upper surface of the panel model and the other six are on the bottom surface to measure the net pressures. Wind attack angle is varied from 0° to 360° in a 10° interval for the worst concern due to wind direction. The sampling rate of the pressure scanning system is set as high enough to precisely estimate the peak pressure and at least 20 samples are recorded for good ensemble average stability. Each sample is equivalent to 10-minute time length in full scale. All the scale factors, including timescale, length scale, and velocity scale, are properly verified by similarity rules in low wind speed wind tunnel environment. The purpose of L-shape arrayed system is for the understanding the pressure characteristics at the corner area. Extreme value analysis is applied to obtain the design pressure coefficient for each net pressure. The commonly utilized Cook-and-Mayne coefficient, 78%, is set to the target non-exceedance probability for design pressure coefficients under Gumbel distribution. Best linear unbiased estimator method is utilized for the Gumbel parameter identification. Careful time moving averaging method is also concerned in data processing. Results show that when the arrayed photovoltaic system is mounted on the ground, the first row of the panels reveals stronger positive pressure than that mounted on the rooftop. Due to the flow separation occurring at the building edge, the first row of the panels on the rooftop is most in negative pressures; the last row, on the other hand, shows positive pressures because of the flow reattachment. Different areas also have different pressure patterns, which corresponds well to the regulations in ASCE7-16 describing the area division for design values. Several minor observations are found according to parametric studies, such as rooftop edge effect, parapet effect, building aspect effect, row interval effect, and so on. General comments are then made for the proposal of regulation revision in Taiwanese code.Keywords: aerodynamic force coefficient, ground-mounted, roof-mounted, wind tunnel test, photovoltaic
Procedia PDF Downloads 139116 Towards Automatic Calibration of In-Line Machine Processes
Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales
Abstract:
In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820Keywords: data model, machine learning, industrial winding, calibration
Procedia PDF Downloads 242115 Bridging Minds, Building Success Beyond Metrics: Uncovering Human Influence on Project Performance: Case Study of University of Salford
Authors: David Oyewumi Oyekunle, David Preston, Florence Ibeh
Abstract:
The paper provides an overview of the impacts of the human dimension in project management and team management on projects, which is increasingly affecting the performance of organizations. Recognizing its crucial significance, the research focuses on analyzing the psychological and interpersonal dynamics within project teams. This research is highly significant in the dynamic field of project management, as it addresses important gaps and offers vital insights that align with the constantly changing demands of the profession. A case study was conducted at the University of Salford to examine how human activity affects project management and performance. The study employed a mixed methodology to gain a deeper understanding of the real-world experiences of the subjects and project teams. Data analysis procedures to address the research objectives included the deductive approach, which involves testing a clear hypothesis or theory, as well as descriptive analysis and visualization. The survey comprised a sample size of 40 participants out of 110 project management professionals, including staff and final students in the Salford Business School, using a purposeful sampling method. To mitigate bias, the study ensured diversity in the sample by including both staff and final students. A smaller sample size allowed for more in-depth analysis and a focused exploration of the research objective. Conflicts, for example, are intricate occurrences shaped by a multitude of psychological stimuli and social interactions and may have either a deterrent perspective or a positive perspective on project performance and project management productivity. The study identified conflict elements, including culture, environment, personality, attitude, individual project knowledge, team relationships, leadership, and team dynamics among team members, as crucial human activities to minimize conflict. The findings are highly significant in the dynamic field of project management, as they address important gaps and offer vital insights that align with the constantly changing demands of the profession. It provided project professionals with valuable insights that can help them create a collaborative and high-performing project environment. Uncovering human influence on project performance, effective communication, optimal team synergy, and a keen understanding of project scope are necessary for the management of projects to attain exceptional performance and efficiency. For the research to achieve the aims of this study, it was acknowledged that the productive dynamics of teams and strong group cohesiveness are crucial for effectively managing conflicts in a beneficial and forward-thinking manner. Addressing the identified human influence will contribute to a more sustainable project management approach and offer opportunities for exploration and potential contributions to both academia and practical project management.Keywords: human dimension, project management, team dynamics, conflict resolution
Procedia PDF Downloads 108114 Genetic Polymorphism and Insilico Study Epitope Block 2 MSP1 Gene of Plasmodium falciparum Isolate Endemic Jayapura
Authors: Arsyam Mawardi, Sony Suhandono, Azzania Fibriani, Fifi Fitriyah Masduki
Abstract:
Malaria is an infectious disease caused by Plasmodium sp. This disease has a high prevalence in Indonesia, especially in Jayapura. The vaccine that is currently being developed has not been effective in overcoming malaria. This is due to the high polymorphism in the Plasmodium genome especially in areas that encode Plasmodium surface proteins. Merozoite Surface Protein 1 (MSP1) Plasmodium falciparum is a surface protein that plays a role in the invasion process in human erythrocytes through the interaction of Glycophorin A protein receptors and sialic acid in erythrocytes with Reticulocyte Binding Proteins (RBP) and Duffy Adhesion Protein (DAP) ligands in merozoites. MSP1 can be targeted to be a specific antigen and predicted epitope area which will be used for the development of diagnostic and malaria vaccine therapy. MSP1 consists of 17 blocks, each block is dimorphic, and has been marked as the K1 and MAD20 alleles. Exceptions only in block 2, because it has 3 alleles, among others K1, MAD20 and RO33. These polymorphisms cause allelic variations and implicate the severity of patients infected P. falciparum. In addition, polymorphism of MSP1 in Jayapura isolates has not been reported so it is interesting to be further identified and projected as a specific antigen. Therefore, in this study, we analyzed the allele polymorphism as well as detected the MSP1 epitope antigen candidate on block 2 P. falciparum. Clinical samples of selected malaria patients followed the consecutive sampling method, examining malaria parasites with blood preparations on glass objects observed through a microscope. Plasmodium DNA was isolated from the blood of malarial positive patients. The block 2 MSP1 gene was amplified using PCR method and cloned using the pGEM-T easy vector then transformed to TOP'10 E.coli. Positive colonies selection was performed with blue-white screening. The existence of target DNA was confirmed by PCR colonies and DNA sequencing methods. Furthermore, DNA sequence analysis was done through alignment and formation of a phylogenetic tree using MEGA 6 software and insilico analysis using IEDB software to predict epitope candidate for P. falciparum. A total of 15 patient samples have been isolated from Plasmodium DNA. PCR amplification results show the target gene size about ± 1049 bp. The results of MSP1 nucleotide alignment analysis reveal that block 2 MSP1 genes derived from the sample of malarial patients were distributed in four different allele family groups, K1 (7), MAD20 (1), RO33 (0) and MSP1_Jayapura (10) alleles. The most commonly appears of the detected allele is MSP1_Jayapura single allele. There was no significant association between sex variables, age, the density of parasitemia and alel variation (Mann Whitney, U > 0.05), while symptomatic signs have a significant difference as a trigger of detectable allele variation (U < 0.05). In this research, insilico study shows that there is a new epitope antigen candidate from the MSP1_Jayapura allele and it is predicted to be recognized by B cells with 17 amino acid lengths in the amino acid sequence 187 to 203.Keywords: epitope candidate, insilico analysis, MSP1 P. falciparum, polymorphism
Procedia PDF Downloads 180113 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 341112 Pharmacokinetic Assessment of Antimicrobial Treatment of Acute Exacerbations of Chronic Obstructive Pulmonary Disease in Hospitalized Patients Colonized with Pseudomonas aeruginosa
Authors: Juliette Begin, Juliano Colapelle, Andrea Taratanu, Daniel Thirion, Amelie Marsot, Bryan A. Ross
Abstract:
Chronic obstructive pulmonary disease (COPD), a leading cause of death globally, is characterized by chronic airflow obstruction and acute exacerbations (AECOPDs) that are often triggered by respiratory infections. Pseudomonas aeruginosa (P. aeruginosa), a potentially serious bacterial cause of AECOPDs, is treated with targeted anti-pseudomonal antibiotics. These select few antimicrobials are often used as first-line therapy in patients who are clinically unwell and/or in those suspected of P. aeruginosa-related infection prior to confirmation, potentially contributing to antimicrobial resistance. The present study evaluates prescribing practices in patients with a confirmed sputum history of P. aeruginosa admitted for AECOPD at the McGill University Health Centre (MUHC) and treated with anti-pseudomonal antibiotics. Serum antibiotic concentrations were measured from the same-day peak, trough, and mid-dose blood sampling intervals after reaching steady-state (on or after day 3) and were quantified using ultra-high-performance liquid chromatography (UHPLC). Demographic, clinical, and treatment outcomes were extracted from patient medical charts. Treatment failure was defined by respiratory-related death or mechanical ventilation after ≥3 days of antibiotics; antibiotic therapy extended beyond 2 weeks or a new antibiotic regimen started; or urgent care readmission within 30 days for AECOPD. To date, 9 of 30 planned participants have completed testing: seven received ciprofloxacin, one received meropenem, and one received piperacillin-tazobactam. Due to serum sample batching requirements, the serum ciprofloxacin concentration results for the first 2/8 participants are presented at the time of writing. The first participant had serum levels of 5.45mg/L (T₀), 4.74mg/L (T₅₀), and 4.49mg/L (T₁₀₀), while the second had serum levels of 5mg/L (T₀), 2.6mg/L (T₅₀), and 2.51mg/L (T₁₀₀). Pharmacokinetic parameters Cmax (5.18±0.43mg/L), T₁/₂ (23.56±18.94hours), and AUC (181.9±155.95mg*h/l) were higher than reported monograph values and met target AUC-to-MIC ratio of >125. The patients treated with meropenem and with piperacillin-tazobactam experienced treatment failure. Preliminary results suggest that standard ciprofloxacin dosing in patients experiencing an AECOPD and colonized with P. aeruginosa appears to achieve effective serum concentrations. Final cohort results will inform the pharmacokinetic appropriateness and clinical sufficiency of current AECOPD antimicrobial strategies in P. aeruginosa-colonized patients. This study will guide clinicians in determining the appropriate dosing for AECOPD treatment to achieve therapeutic levels, optimizing outcomes, and minimizing adverse effects. It could also highlight the value of routine antibiotic level monitoring in patients with treatment failure to ensure optimal serum concentrations.Keywords: acute exacerbation, antimicrobial resistance, chronic obstructive pulmonary disease, pharmacokinetics/pharmacodynamics, Pseudomonas aeruginosa
Procedia PDF Downloads 22111 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment
Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot
Abstract:
Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography
Procedia PDF Downloads 271110 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality
Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan
Abstract:
Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application
Procedia PDF Downloads 76109 Innovation in PhD Training in the Interdisciplinary Research Institute
Authors: B. Shaw, K. Doherty
Abstract:
The Cultural Communication and Computing Research Institute (C3RI) is a diverse multidisciplinary research institute including art, design, media production, communication studies, computing and engineering. Across these disciplines it can seem like there are enormous differences of research practice and convention, including differing positions on objectivity and subjectivity, certainty and evidence, and different political and ethical parameters. These differences sit within, often unacknowledged, histories, codes, and communication styles of specific disciplines, and it is all these aspects that can make understanding of research practice across disciplines difficult. To explore this, a one day event was orchestrated, testing how a PhD community might communicate and share research in progress in a multi-disciplinary context. Instead of presenting results at a conference, research students were tasked to articulate their method of inquiry. A working party of students from across disciplines had to design a conference call, visual identity and an event framework that would work for students across all disciplines. The process of establishing the shape and identity of the conference was revealing. Even finding a linguistic frame that would meet the expectations of different disciplines for the conference call was challenging. The first abstracts submitted either resorted to reporting findings, or only described method briefly. It took several weeks of supported intervention for research students to get ‘inside’ their method and to understand their research practice as a process rich with philosophical and practical decisions and implications. In response to the abstracts the conference committee generated key methodological categories for conference sessions, including sampling, capturing ‘experience’, ‘making models’, researcher identities, and ‘constructing data’. Each session involved presentations by visual artists, communications students and computing researchers with inter-disciplinary dialogue, facilitated by alumni Chairs. The apparently simple focus on method illuminated research process as a site of creativity, innovation and discovery, and also built epistemological awareness, drawing attention to what is being researched and how it can be known. It was surprisingly difficult to limit students to discussing method, and it was apparent that the vocabulary available for method is sometimes limited. However, by focusing on method rather than results, the genuine process of research, rather than one constructed for approval, could be captured. In unlocking the twists and turns of planning and implementing research, and the impact of circumstance and contingency, students had to reflect frankly on successes and failures. This level of self – and public- critique emphasised the degree of critical thinking and rigour required in executing research and demonstrated that honest reportage of research, faults and all, is good valid research. The process also revealed the degree that disciplines can learn from each other- the computing students gained insights from the sensitive social contextualizing generated by communications and art and design students, and art and design students gained understanding from the greater ‘distance’ and emphasis on application that computing students applied to their subjects. Finding the means to develop dialogue across disciplines makes researchers better equipped to devise and tackle research problems across disciplines, potentially laying the ground for more effective collaboration.Keywords: interdisciplinary, method, research student, training
Procedia PDF Downloads 207108 Smart Mobility Planning Applications in Meeting the Needs of the Urbanization Growth
Authors: Caroline Atef Shoukry Tadros
Abstract:
Massive Urbanization growth threatens the sustainability of cities and the quality of city life. This raised the need for an alternate model of sustainability, so we need to plan the future cities in a smarter way with smarter mobility. Smart Mobility planning applications are solutions that use digital technologies and infrastructure advances to improve the efficiency, sustainability, and inclusiveness of urban transportation systems. They can contribute to meeting the needs of Urbanization growth by addressing the challenges of traffic congestion, pollution, accessibility, and safety in cities. Some example of a Smart Mobility planning application are Mobility-as-a-service: This is a service that integrates different transport modes, such as public transport, shared mobility, and active mobility, into a single platform that allows users to plan, book, and pay for their trips. This can reduce the reliance on private cars, optimize the use of existing infrastructure, and provide more choices and convenience for travelers. MaaS Global is a company that offers mobility-as-a-service solutions in several cities around the world. Traffic flow optimization: This is a solution that uses data analytics, artificial intelligence, and sensors to monitor and manage traffic conditions in real-time. This can reduce congestion, emissions, and travel time, as well as improve road safety and user satisfaction. Waycare is a platform that leverages data from various sources, such as connected vehicles, mobile applications, and road cameras, to provide traffic management agencies with insights and recommendations to optimize traffic flow. Logistics optimization: This is a solution that uses smart algorithms, blockchain, and IoT to improve the efficiency and transparency of the delivery of goods and services in urban areas. This can reduce the costs, emissions, and delays associated with logistics, as well as enhance the customer experience and trust. ShipChain is a blockchain-based platform that connects shippers, carriers, and customers and provides end-to-end visibility and traceability of the shipments. Autonomous vehicles: This is a solution that uses advanced sensors, software, and communication systems to enable vehicles to operate without human intervention. This can improve the safety, accessibility, and productivity of transportation, as well as reduce the need for parking space and infrastructure maintenance. Waymo is a company that develops and operates autonomous vehicles for various purposes, such as ride-hailing, delivery, and trucking. These are some of the ways that Smart Mobility planning applications can contribute to meeting the needs of the Urbanization growth. However, there are also various opportunities and challenges related to the implementation and adoption of these solutions, such as the regulatory, ethical, social, and technical aspects. Therefore, it is important to consider the specific context and needs of each city and its stakeholders when designing and deploying Smart Mobility planning applications.Keywords: smart mobility planning, smart mobility applications, smart mobility techniques, smart mobility tools, smart transportation, smart cities, urbanization growth, future smart cities, intelligent cities, ICT information and communications technologies, IoT internet of things, sensors, lidar, digital twin, ai artificial intelligence, AR augmented reality, VR virtual reality, robotics, cps cyber physical systems, citizens design science
Procedia PDF Downloads 74107 Psychological Functioning of Youth Experiencing Community and Collective Violence in Post-conflict Northern Ireland
Authors: Teresa Rushe, Nicole Devlin, Tara O Neill
Abstract:
In this study, we sought to examine associations between childhood experiences of community and collective violence and psychological functioning in young people who grew up in post-conflict Northern Ireland. We hypothesized that those who grew up with such experiences would demonstrate internalizing and externalizing difficulties in early adulthood and, furthermore, that these difficulties would be mediated by adverse childhood experiences occurring within the home environment. As part of the Northern Ireland Childhood Adversity Study, we recruited 213 young people aged 18-25 years (108 males) who grew up in the post-conflict society of Northern Ireland using purposive sampling. Participants completed a digital questionnaire to measure adverse childhood experiences as well as aspects of psychological functioning. We employed the Adverse Childhood Experience -International Questionnaire (ACE-IQ¬) adaptation of the original Adverse Childhood Experiences Questionnaire (ACE) as it additionally measured aspects of witnessing community violence (e.g., seeing someone being beaten/killed, fights) and experiences of collective violence (e.g., war, terrorism, police, or gangs’ battles exposure) during the first 18 years of life. 51% of our sample reported experiences of community and/or collective violence (N=108). Compared to young people with no such experiences (N=105), they also reported significantly more adverse experiences indicative of household dysfunction (e.g., family substance misuse, mental illness or domestic violence in the family, incarceration of a family member) but not more experiences of abuse or neglect. As expected, young people who grew up with the community and/or collective violence reported significantly higher anxiety and depression scores and were more likely to engage in acts of deliberate self-harm (internalizing symptoms). They also started drinking and taking drugs at a younger age and were significantly more likely to have been in trouble with the police (externalizing symptoms). When the type of violence exposure was separated by whether the violence was witnessed (community violence) or more directly experienced (collective violence), we found community and collective violence to have similar effects on externalizing symptoms, but for internalizing symptoms, we found evidence of a differential effect. Collective violence was associated with depressive symptoms, whereas witnessing community violence was associated with anxiety-type symptoms and deliberate self-harm. However, when experiences of household dysfunction were entered into the models predicting anxiety, depression, and deliberate self-harm, none of the main effects remained significant. This suggests internalizing type symptoms are mediated by immediate family-level experiences. By contrast, significant community and collective violence effects on externalizing behaviours: younger initiation of alcohol use, younger initiation of drug use, and getting into trouble with the police persisted after controlling for family-level factors and thus are directly associated with growing up with the community and collective violence. Given the cross-sectional nature of our study, we cannot comment on the direction of the effect. However, post-hoc correlational analyses revealed associations between externalising behaviours and personal factors, including greater risk-taking and young age at puberty. The implications of the findings will be discussed in relation to interventions for young people and families living with the community and collective violence.Keywords: community and collective violence, adverse childhood experiences, youth, psychological wellbeing
Procedia PDF Downloads 85106 Survey for Mango Seed Weevils and Pulp Weevil Sternochetus Species (Coleoptera:Curculionidae) on Mango, Mangifera indica in Shan State-South, Myanmar
Authors: Khin Nyunt Yee, Mu Mu Thein
Abstract:
Detection survey of mango seed and Pulp weevils was undertaken at major mango production areas, Yat Sauk, Taunggyi, Nyaung Shwe and Hopong Townships, in Shan State (South) of Myanmar on two mango cultivars of Sein Ta Lone and Yinkwe from May to August 2016 to coincide with fruiting season to conduct a survey of mango seed and pulp weevils population. The total numbers of 6300 fruits of both mango cultivars were sampled. Among them, 2900 fruits from 5674 fruit bearing plants were collected for Sein Ta Lone cultivar of five well managed, one unmanaged orchards and Urban in Yatsauk Twonship, 400 fruits from only one well managed orchard in Taunggyi Township, 400 fruits from two managed orchards in Nyaung Shwe Township and 400 fruits from one managed orchard in Hopong Township from May to June. 2200 fruits were collected from 4043 fruit bearing plants for Yinkwe Cultivar of four well managed orchards, one unmanaged orchards and one wild tree only in Yat Sauk Township from July to August, 2016. Fruit sample size was 200 fruits /orchard, / wild or /volunteer trees as minimum number. The pulps of all randomly sampling fruits were longitudinal cut open into three slices on each side of fruit and seed were cut longitudinally to inspect the presence of mango weevils. The collected weevils were identified up to species level at Plant Quarantine Laboratory, Plant Protection Division, Department of Agriculture, Ministry of Agriculture, Livestock and Irrigation, Yangon, Myanmar. Mango Pulp and Seed weevils were found on Sein Ta Lone Mango Cultivar in three out of four surveyed Townships except Hopong with the level of infestation ranged from 0.0% to 3.5% of fruits per Township with 0.0% to 39.0% of fruits per orchard. The highest infestation rate per township was 3.5% of fruits (n=400 fruits) in Nyaung Shwe, then, at Yat Suak, the rate was 2.47% (n=2900 fruits). A well-managed orchard at Taung Gyi had 0.75% (n=400 fruits) whereas Hopong was free 0.0% (n=400). The weevils were also recorded on Yinkwe Mango Cultivar in Yatsauk Township where the infestation level was 12.63% of fruits (n=2200) with 0.0% to 67.0% of fruits per orchard. This high level of infestation was obtained by including an absolutely non Integrated Pest Management (non IPM) orchards in both survey with the infestation rates 63.0% of fruits (n=200) and 67.0% of fruits (n=200) respectively on Yinkwe cultivar. Two different species; mango pulp weevil, Sternochetus frigitus, and mango seed weevil Sternochetus olivieri (Faust) of family Curculionidae under the order Coleoptera were recorded. Sternochetus mangiferae was not found during these surveys. Three different developmental stages of mango seed and pulp weevils: larva, pupa and adult were first detected since the first survey in 3rd week of May and mostly were recorded as adult stages in the following surveys in June, July and August The number of Mango pulp weevil was statistically higher than that of mango seed weevils at P < 0.001%. More precise surveys should be carried out national wide to detect the mango weevils.Keywords: mango pulp weevil, Sternochetus frigitus, mango seed weevil Sternochetus olivieri, faust, Sternochetus mangiferae, fabricius, Sein Ta Lone, Yinkwe mango cultivars, Shan State (South) Myanmar
Procedia PDF Downloads 307105 Destination Management Organization in the Digital Era: A Data Framework to Leverage Collective Intelligence
Authors: Alfredo Fortunato, Carmelofrancesco Origlia, Sara Laurita, Rossella Nicoletti
Abstract:
In the post-pandemic recovery phase of tourism, the role of a Destination Management Organization (DMO) as a coordinated management system of all the elements that make up a destination (attractions, access, marketing, human resources, brand, pricing, etc.) is also becoming relevant for local territories. The objective of a DMO is to maximize the visitor's perception of value and quality while ensuring the competitiveness and sustainability of the destination, as well as the long-term preservation of its natural and cultural assets, and to catalyze benefits for the local economy and residents. In carrying out the multiple functions to which it is called, the DMO can leverage a collective intelligence that comes from the ability to pool information, explicit and tacit knowledge, and relationships of the various stakeholders: policymakers, public managers and officials, entrepreneurs in the tourism supply chain, researchers, data journalists, schools, associations and committees, citizens, etc. The DMO potentially has at its disposal large volumes of data and many of them at low cost, that need to be properly processed to produce value. Based on these assumptions, the paper presents a conceptual framework for building an information system to support the DMO in the intelligent management of a tourist destination tested in an area of southern Italy. The approach adopted is data-informed and consists of four phases: (1) formulation of the knowledge problem (analysis of policy documents and industry reports; focus groups and co-design with stakeholders; definition of information needs and key questions); (2) research and metadatation of relevant sources (reconnaissance of official sources, administrative archives and internal DMO sources); (3) gap analysis and identification of unconventional information sources (evaluation of traditional sources with respect to the level of consistency with information needs, the freshness of information and granularity of data; enrichment of the information base by identifying and studying web sources such as Wikipedia, Google Trends, Booking.com, Tripadvisor, websites of accommodation facilities and online newspapers); (4) definition of the set of indicators and construction of the information base (specific definition of indicators and procedures for data acquisition, transformation, and analysis). The framework derived consists of 6 thematic areas (accommodation supply, cultural heritage, flows, value, sustainability, and enabling factors), each of which is divided into three domains that gather a specific information need to be represented by a scheme of questions to be answered through the analysis of available indicators. The framework is characterized by a high degree of flexibility in the European context, given that it can be customized for each destination by adapting the part related to internal sources. Application to the case study led to the creation of a decision support system that allows: •integration of data from heterogeneous sources, including through the execution of automated web crawling procedures for data ingestion of social and web information; •reading and interpretation of data and metadata through guided navigation paths in the key of digital story-telling; •implementation of complex analysis capabilities through the use of data mining algorithms such as for the prediction of tourist flows.Keywords: collective intelligence, data framework, destination management, smart tourism
Procedia PDF Downloads 122104 The Achievements and Challenges of Physics Teachers When Implementing Problem-Based Learning: An Exploratory Study Applied to Rural High Schools
Authors: Osman Ali, Jeanne Kriek
Abstract:
Introduction: The current instructional approach entrenched in memorizing does not assist conceptual understanding in science. Instructional approaches that encourage research, investigation, and experimentation, which depict how scientists work, should be encouraged. One such teaching strategy is problem-based learning (PBL). PBL has many advantages; enhanced self-directed learning and improved problem-solving and critical thinking skills. However, despite many advantages, PBL has challenges. Research confirmed is time-consuming and difficult to formulate ill-structured questions. Professional development interventions are needed for in-service educators to adopt the PBL strategy. The purposively selected educators had to implement PBL in their classrooms after the intervention to develop their practice and then reflect on the implementation. They had to indicate their achievements and challenges. This study differs from previous studies as the rural educators were subjected to implementing PBL in their classrooms and reflected on their experiences, beliefs, and attitudes regarding PBL. Theoretical Framework: The study reinforced Vygotskian sociocultural theory. According to Vygotsky, the development of a child's cognitive is sustained by the interaction between the child and more able peers in his immediate environment. The theory suggests that social interactions in small groups create an opportunity for learners to form concepts and skills on their own better than working individually. PBL emphasized learning in small groups. Research Methodology: An exploratory case study was employed. The reason is that the study was not necessarily for specific conclusive evidence. Non-probability purposive sampling was adopted to choose eight schools from 89 rural public schools. In each school, two educators were approached, teaching physical sciences in grades 10 and 11 (N = 16). The research instruments were questionnaires, interviews, and lesson observation protocol. Two open-ended questionnaires were developed before and after intervention and analyzed thematically. Three themes were identified. The semi-structured interviews and responses were coded and transcribed into three themes. Subsequently, the Reform Teaching Observation Protocol (RTOP) was adopted for lesson observation and was analyzed using five constructs. Results: Evidence from analyzing the questionnaires before and after the intervention shows that participants knew better what was required to develop an ill-structured problem during the implementation. Furthermore, indications from the interviews are that participants had positive views about the PBL strategy. They stated that they only act as facilitators, and learners’ problem-solving and critical thinking skills are enhanced. They suggested a change in curriculum to adopt the PBL strategy. However, most participants may not continue to apply the PBL strategy stating that it is time-consuming and difficult to complete the Annual Teaching Plan (ATP). They complained about materials and equipment and learners' readiness to work. Evidence from RTOP shows that after the intervention, participants learn to encourage exploration and use learners' questions and comments to determine the direction and focus of classroom discussions.Keywords: problem-solving, self-directed, critical thinking, intervention
Procedia PDF Downloads 121103 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 23102 Role of Indigenous Women in Securing Sustainable Livelihoods in Western Himalayan Region, India
Authors: Haresh Sharma, Jaimini Luharia
Abstract:
The ecology in the Western Himalayan region transforms with the change in altitude. This change is observed in terms of topography, species of flora and fauna and the quality of the soil. The current study focuses on women of indigenous communities of Pangi Valley, which is located in the state of Himachal Pradesh, India. The valley is bifurcated into three different areas –Saichu, Hudan Bhatori, and Sural Bhatori valleys. It is one of the most remote, rugged and difficult to access tribal regions of Chamba district. The altitude of the valley ranges from 2,000 m to 6,000 m above sea level. The Pangi valley is inhabited by ‘Pangwals’ and ‘Bhots’ tribes of the Himalayas who speak their local tribal language called’ Pangwali’. The valley is cut-off from the mainland due to heavy snow and lack of proper roads during peak winters. Due to difficult geographical location, the daily lives of the people are constantly challenged, and they are most of the times deprived of benefits targeted through government programs. However, the indigenous communities earn their livelihood through livestock and forest-based produce while some of them migrate to nearby places for better work. The current study involves snowball sampling methodology for data collection along with in-depth interviews of women members of Self-Help Groups and women farmers. The findings reveal that the lives of these indigenous communities largely depend on forest-based products. So, it creates all the more significance of enhancing, maintaining, and consuming natural resources sustainably. Under such circumstances, the women of the community play a significant role of guardians in conservation and protection of the forests. They are the custodians of traditional knowledge of environment conservation practices that have been followed for many years in the region. The present study also sought to establish a relationship between some of the development initiatives undertaken by the women in the valley that stimulate sustainable mountain economy and conservation practices. These initiatives include cultivation of products like hazelnut, ‘Gucchi’ rare quality mushroom, medicinal plants exclusively found in the region, thereby promoting long term sustainable conservation of agro-biodiversity of the Western Himalayan region. The measures taken by the community women are commendable as they ensure access and distribution of natural resources as well as manage them for future generations. Apart from this, the tribal women have actively formed Self-Help Groups promoting financial inclusion through various activities that augment ownership and accountability towards the overall development of the communities. But, the results also suggest that there’s not enough recognition given to women’s role in forests conservation practices due to several local socio-political reasons. There are not enough research studies done on communities of Pangi Valley due to inaccessibility created out of lack of proper roads and other resources. Also, there emerged a need to concretize indigenous and traditional knowledge of conservation practices followed by women in the community.Keywords: forest conservation, indigenous community women, sustainable livelihoods, sustainable development, poverty alleviation, Western Himalayas
Procedia PDF Downloads 122101 The Evolving Changes of Religious Behavior: an Exploratory Study on Guanyin Worship of Contemporary Chinese Societies
Authors: Judith Sue Hwa Joo
Abstract:
Guanyin (Avalokiteśvara in Sanskrit), the Bodhisattva of Mercy and Compassion, is the most widely worshipped Buddhist Divinity in Chinese societies and is also believed by more than half of Asian populations across various countries. The most overwhelming reason for the popularity of Guanyin in Chinese societies is, according to the Lotus Sutra, that Guanyin would apperceive voices of those suffering from immense afflictions and troubles, and liberate them upon crying for his/her holy name with wholeheartedness. Its pervasive social influence has spanned more than two thousand years and is still deeply affecting the lives of most Chinese people. This study aimed to investigate whether Guanyin Worship has evolved and changed in modern Chinese societies across the Taiwan Strait. Taiwan and China, albeit having the same language and culture, have been territorially divided and governed by two different political regimes for over 70 years. It would be scientifically intriguing to unveil any substantial changes in religious behaviors in the context of Guanyin Worship. A comprehensive anonymous questionnaire survey in Chinese communities was conducted from October 2017 to May 2019 across various countries, mostly in China, Taiwan, and Hong Kong areas. Since the religious survey is officially prohibited in China, the study was difficult and could only be exercised by means of snowball sampling. Demographic data (age, sex, education, religious belief) were registered and Guanyin’s salvation functions under various confronting situations were investigated. Psychological dimensions of religious belief in Guanyin were probed in terms of the worship experience, the willingness of veneration, and egoistic or altruistic ideations. A literature review on documented functional attributes was carried out in parallel for comparison analyses with traditional roles. Effective 1123 out of 1139 samples were obtained. Statistical analysis revealed that Guanyin Worship is still commonly practiced and deeply rooted in the hearts of all Chinese people regardless of gender, age, education, and residential area, even though they may not enshrine Guanyin at home nowadays. The conventional roles of Guanyin Bodhisattva are still valid and best satisfy the real interests of lifestyles in modern times. When comparing the traditional Buddhist Sutra and the documented literature, the divine power of modern Guanyin has notably empowered to recover, protect and transform fetal and infant spirits due to the sexual liberation, increased abortion rate, gender awakening and enhanced female autonomy in the reproductive decision. However, the One-Child policy may have critically impacted the trajectory of Guanyin Worship so that people in China prevail over those in Taiwan praying for aborted lives or premature deaths. Furthermore, particularly in Hong Kong and Macao, Guanyin not only serves as the sea guardian for the fishermen but also additional services a new function as the God of Wealth. The divine powers and salvation functions of Guanyin are indeed evolving and expanding to comply with the modern psychosocial, cultural and societal needs. This study sheds light on the modernization process of the two-thousand-year-old Guanyin Worship of contemporary Chinese societies.Keywords: Buddhism, Guanyin, religious behavior, salvation function
Procedia PDF Downloads 114100 Motherhood Factors Influencing the Business Growth of Women-Owned Sewing Businesses in Lagos, Nigeria: A Mixed Method Study
Authors: Oyedele Ogundana, Amon Simba, Kostas Galanakis, Lynn Oxborrow
Abstract:
The debate about factors influencing the business growth of women-owned businesses has been a topical issue in business management. Currently, scholars have identified the issues of access to money, market, and management as canvasing factors influencing the business growth of women-owned businesses. However, the influence of motherhood (household/family context) on business growth is inconclusive in the literature; despite that women are more family-oriented than their male counterparts. Therefore, this research study considers the influence of motherhood factor (household/family context) on the business growth of women-owned sewing businesses (WOSBs) in Lagos, Nigeria. The sewing business sector is chosen as the fashion industry (which includes sewing businesses) currently accounts for the second largest number of jobs in Sub-Saharan Africa, following agriculture. Thus, sewing businesses provide a rich ground for contributing to existing scholarly work. Research questions; (1) In what way does the motherhood factor influence the business growth of WOSBs in Lagos? (2) To what extent does the motherhood factor influence the business growth of WOSBs in Lagos? For the method design, a pragmatic approach, a mixed-methods technique and an abductive form of reasoning are adopted. The method design is chosen because it fits, better than other research perspectives, with the research questions posed in this study. For instance, using a positivist approach will not sufficiently answer research question 1, neither will an interpretive approach sufficiently answer research question 2. Therefore, the research method design is divided into 2 phases, and the results from one phase are used to inform the development of the subsequent phases (only phase 1 has been completed at the moment). The first phase uses qualitative data and analytical method to answer research question 1. While the second phase of the research uses quantitative data and analytical method to answer research question 2. For the qualitative phase, 5 WOSBs were purposefully selected and interviewed. The sampling technique is selected as it was not the intention of the researcher to make any statistical inferences, at this phase, rather the purpose was just exploratory. Therefore, the 5 sampled women comprised of 2 unmarried women, 1 married woman with no child, and 2 married women with children. A 40-60 minutes interview was conducted per participants. The interviews were audio-recorded and transcribed. Thereafter, the data were analysed using thematic analysis in order to unearth patterns and relationships. Findings for the first phase of this research reveals that motherhood (household/family context) directly influences (positively/negatively) the performance of WOSBs in Lagos. Apart from a direct influence on WOSBs, motherhood also moderates (positively/negatively) other factors–e.g., access to money, management/human resources and market/opportunities– influencing WOSBs in Lagos. To further strengthen this conclusion, a word frequency query result shows that ‘family,’ ‘husband’ and ‘children’ are among the 10 words used frequently in all the interview transcripts. This first phase contributes to existing studies by showing the various forms by which motherhood influences WOSBs. The second phase (which data are yet to be collected) would reveal the extent to which motherhood influence the business growth of WOSBs in Lagos.Keywords: women-owned sewing businesses, business growth, motherhood, Lagos
Procedia PDF Downloads 16499 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube
Authors: Dan Kanmegne
Abstract:
Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification
Procedia PDF Downloads 146