Search results for: demand and supply
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4954

Search results for: demand and supply

154 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 57
153 Vortex Generation to Model the Airflow Downstream of a Piezoelectric Fan Array

Authors: Alastair Hales, Xi Jiang, Siming Zhang

Abstract:

Numerical methods are used to generate vortices in a domain. Through considered design, two counter-rotating vortices may interact and effectively drive one another downstream. This phenomenon is comparable to the vortex interaction that occurs in a region immediately downstream from two counter-oscillating piezoelectric (PE) fan blades. PE fans are small blades clamped at one end and driven to oscillate at their first natural frequency by an extremely low powered actuator. In operation, the high oscillation amplitude and frequency generate sufficient blade tip speed through the surrounding air to create downstream air flow. PE fans are considered an ideal solution for low power hot spot cooling in a range of small electronic devices, but a single blade does not typically induce enough air flow to be considered a direct alternative to conventional air movers, such as axial fans. The development of face-to-face PE fan arrays containing multiple blades oscillating in counter-phase to one another is essential for expanding the range of potential PE fan applications regarding the cooling of power electronics. Even in an unoptimised state, these arrays are capable of moving air volumes comparable to axial fans with less than 50% of the power demand. Replicating the airflow generated by face-to-face PE fan arrays without including the actual blades in the model reduces the process’s computational demands and enhances the rate of innovation and development in the field. Vortices are generated at a defined inlet using a time-dependent velocity profile function, which pulsates the inlet air velocity magnitude. This induces vortex generation in the considered domain, and these vortices are shown to separate and propagate downstream in a regular manner. The generation and propagation of a single vortex are compared to an equivalent vortex generated from a PE fan blade in a previous experimental investigation. Vortex separation is found to be accurately replicated in the present numerical model. Additionally, the downstream trajectory of the vortices’ centres vary by just 10.5%, and size and strength of the vortices differ by a maximum of 10.6%. Through non-dimensionalisation, the numerical method is shown to be valid for PE fan blades with differing parameters to the specific case investigated. The thorough validation methods presented verify that the numerical model may be used to replicate vortex formation from an oscillating PE fans blade. An investigation is carried out to evaluate the effects of varying the distance between two PE fan blade, pitch. At small pitch, the vorticity in the domain is maximised, along with turbulence in the near vicinity of the inlet zones. It is proposed that face-to-face PE fan arrays, oscillating in counter-phase, should have a minimal pitch to optimally cool nearby heat sources. On the other hand, downstream airflow is maximised at a larger pitch, where the vortices can fully form and effectively drive one another downstream. As such, this should be implemented when bulk airflow generation is the desired result.

Keywords: piezoelectric fans, low energy cooling, vortex formation, computational fluid dynamics

Procedia PDF Downloads 155
152 Interdigitated Flexible Li-Ion Battery by Aerosol Jet Printing

Authors: Yohann R. J. Thomas, Sébastien Solan

Abstract:

Conventional battery technology includes the assembly of electrode/separator/electrode by standard techniques such as stacking or winding, depending on the format size. In that type of batteries, coating or pasting techniques are only used for the electrode process. The processes are suited for large scale production of batteries and perfectly adapted to plenty of application requirements. Nevertheless, as the demand for both easier and cost-efficient production modes, flexible, custom-shaped and efficient small sized batteries is rising. Thin-film, printable batteries are one of the key areas for printed electronics. In the frame of European BASMATI project, we are investigating the feasibility of a new design of lithium-ion battery: interdigitated planar core design. Polymer substrate is used to produce bendable and flexible rechargeable accumulators. Direct fully printed batteries lead to interconnect the accumulator with other electronic functions for example organic solar cells (harvesting function), printed sensors (autonomous sensors) or RFID (communication function) on a common substrate to produce fully integrated, thin and flexible new devices. To fulfill those specifications, a high resolution printing process have been selected: Aerosol jet printing. In order to fit with this process parameters, we worked on nanomaterials formulation for current collectors and electrodes. In addition, an advanced printed polymer-electrolyte is developed to be implemented directly in the printing process in order to avoid the liquid electrolyte filling step and to improve safety and flexibility. Results: Three different current collectors has been studied and printed successfully. An ink of commercial copper nanoparticles has been formulated and printed, then a flash sintering was applied to the interdigitated design. A gold ink was also printed, the resulting material was partially self-sintered and did not require any high temperature post treatment. Finally, carbon nanotubes were also printed with a high resolution and well defined patterns. Different electrode materials were formulated and printed according to the interdigitated design. For cathodes, NMC and LFP were efficaciously printed. For anodes, LTO and graphite have shown to be good candidates for the fully printed battery. The electrochemical performances of those materials have been evaluated in a standard coin cell with lithium-metal counter electrode and the results are similar with those of a traditional ink formulation and process. A jellified plastic crystal solid state electrolyte has been developed and showed comparable performances to classical liquid carbonate electrolytes with two different materials. In our future developments, focus will be put on several tasks. In a first place, we will synthesize and formulate new specific nano-materials based on metal-oxyde. Then a fully printed device will be produced and its electrochemical performance will be evaluated.

Keywords: high resolution digital printing, lithium-ion battery, nanomaterials, solid-state electrolytes

Procedia PDF Downloads 226
151 Antifungal Activity of Processed Sulfur Solution as Potential Eco-Friendly Disinfectant against Saprolegnia parasitica and Its Safety in Freshwater-Farmed Fish

Authors: Hye-Hyun Lee, Hyo-Kon Chun, Kyung-Hee Kim Kim, Mi-Hee Kim, Saet-Byul Chu, Sang-Jong Lee, Seung-Hyeop Lee, Seung-Won Yi

Abstract:

Some chemicals such as malachite green, methylene blue, and copper sulfate had been used frequently as disinfectants controlling fungal infection in aquaculture. However, their carcinogenicity, mutagenicity and teratogenicity were reported in mammals. After their accumulation in food fish and its consumers was confirmed, concerns about public health has resulted in enhanced monitoring and increased demand for eco-friendly treatments. Therefore, this study aimed to evaluate safety to fish and efficacy of sulfur solution processed by effective microorganisms (EM-PSS) against Saprolegnia parasitica, for use of a potential aquatic fungicidal disinfectant. The natural sulfur purchased from Kawah Ijen volcano, East Java, Indonesia was processed by the liquid mixture consisting of following twelve effective microorganisms (Rapha-el®; Lbiotech, Jeonnam, Korea), Lactobacillus parafarraginis, L. paracasei, L. harbinensis, L. buchneri, L. perolens, L. rhamnosus, L. vaccinostercus, Acetobacter lovaniensis, A. peroxydans, Pichia fermentans, Candida ethanolica, Saccharomycopsis schoenii isolated from fermentation process of oriental medicinal herbs including green tea, privet, and puer tea. The material was applied to in vitro antifungal activity test for Saprolegnia parasitica using agar dilution method. In addition, an acute toxicity test was performed on carp (Cyprinus carpio), eel (Anguilla japonica), and mud fish (Misgurnus mizolepis) for 96 hours. After three species of fish (n=15) were accustomed to experimental water environment for three days, the EM-PSS was added to each tank as final concentrations to be 0 to 500 ppm. The fish were taken into necropsy, and the histological sections of the gill, liver, and spleen were counter-stained with hematoxylin and eosin (H-E). And hence, no observed effect concentration (NOEC) of the solution was used for taking a medicinal bath for mudfish infected by Saprolegnia parasitica in practice. The result of in vitro antifungal activity test showed the growth inhibition of the fungus at 100 ppm, which and the lower concentrations occurred no fatal case in any fish species tested until the end of the examination. The 125 ppm of the solution, however, resulted in 13.3 %, 13.3 %, and 6.3 % of mortality in carp, eel, and mudfish, respectively. But both 250 and 500 ppm of the solution leaded lethality to all population of each fish species within 24 hours. Besides, H-E staining also showed no specific evidence for toxicity in fish at lesser than 100 ppm of EM-PSS. On the other hand, as a result of field application of the solution, no growth of fungal mycelium was found in fish bodies from gross observation 5 days post treatment. In conclusion, 100ppm of EM-PSS resulted in inhibition and treatment of Saprolegnia parasitica infection. In addition, the use of EM-PSS lower than 100 ppm is safe for fish. Therefore, EM-PSS could be used as aquatic fungicide, and also may be possible to be a potential eco-friendly disinfectant in aquaculture.

Keywords: antifungal activity, effective microorganism, toxicity, saprolegnia, processed sulfur solution

Procedia PDF Downloads 238
150 Numerical Study of Leisure Home Chassis under Various Loads by Using Finite Element Analysis

Authors: Asem Alhnity, Nicholas Pickett

Abstract:

The leisure home industry is experiencing an increase in sales due to the rise in popularity of staycations. However, there is also a demand for improvements in thermal and structural behaviour from customers. Existing standards and codes of practice outline the requirements for leisure home design. However, there is a lack of expertise in applying Finite Element Analysis (FEA) to complex structures in this industry. As a result, manufacturers rely on standardized design approaches, which often lead to excessively engineered or inadequately designed products. This study aims to address this issue by investigating the impact of the habitation structure on chassis performance in leisure homes. The aim of this research is to comprehensively analyse the impact of the habitation structure on chassis performance in leisure homes. By employing FEA on the entire unit, including both the habitation structure and the chassis, this study seeks to develop a novel framework for designing and analysing leisure homes. The objectives include material reduction, enhancing structural stability, resolving existing design issues, and developing innovative modular and wooden chassis designs. The methodology used in this research is quantitative in nature. The study utilizes FEA to analyse the performance of leisure home chassis under various loads. The analysis procedures involve running the FEA simulations on the numerical model of the leisure home chassis. Different load scenarios are applied to assess the stress and deflection performance of the chassis under various conditions. FEA is a numerical method that allows for accurate analysis of complex systems. The research utilizes flexible mesh sizing to calculate small deflections around doors and windows, with large meshes used for macro deflections. This approach aims to minimize run-time while providing meaningful stresses and deflections. Moreover, it aims to investigate the limitations and drawbacks of the popular approach of applying FEA only to the chassis and replacing the habitation structure with a distributed load. The findings of this study indicate that the popular approach of applying FEA only to the chassis and replacing the habitation structure with a distributed load overlooks the strengthening generated from the habitation structure. By employing FEA on the entire unit, it is possible to optimize stress and deflection performance while achieving material reduction and enhanced structural stability. The study also introduces innovative modular and wooden chassis designs, which show promising weight reduction compared to the existing heavily fabricated lattice chassis. In conclusion, this research provides valuable insights into the impact of the habitation structure on chassis performance in leisure homes. By employing FEA on the entire unit, the study demonstrates the importance of considering the strengthening generated from the habitation structure in chassis design. The research findings contribute to advancements in material reduction, structural stability, and overall performance optimization. The novel framework developed in this study promotes sustainability, cost-efficiency, and innovation in leisure home design.

Keywords: static homes, caravans, motor homes, holiday homes, finite element analysis (FEA)

Procedia PDF Downloads 78
149 Introduction of Acute Paediatric Services in Primary Care: Evaluating the Impact on GP Education

Authors: Salman Imran, Chris Healey

Abstract:

Traditionally, medical care of children in England and Wales starts from primary care with a referral to secondary care paediatricians who may not investigate further. Many primary care doctors do not undergo a paediatric rotation/exposure in training. As a result, there are many who have not acquired the necessary skills to manage children hence increasing hospital referral. With the current demand on hospitals in the National Health Service managing more problems in the community is needed. One way of handling this is to set up clinics, meetings and huddles in GP surgeries where professionals involved (general practitioner, paediatrician, health visitor, community nurse, dietician, school nurse) come together and share information which can help improve communication and care. The increased awareness and education that paediatricians can impart in this way will help boost confidence for primary care professionals to be able to be more self-sufficient. This has been tried successfully in other regions e.g., St. Mary’s Hospital in London but is crucial for a more rural setting like ours. The primary aim of this project would be to educate specifically GP’s and generally all other health professionals involved. Additional benefits would be providing care nearer home, increasing patient’s confidence in their local surgery, improving communication and reducing unnecessary patient flow to already stretched hospital resources. Methods: This was done as a plan do study act cycle (PDSA). Three clinics were delivered in different practices over six months where feedback from staff and patients was collected. Designated time for teaching/discussion was used which involved some cases from the actual clinics. Both new and follow up patients were included. Two clinics were conducted by a paediatrician and nurse whilst the 3rd involved paediatrician and local doctor. The distance from hospital to clinics varied from two miles to 22 miles approximately. All equipment used was provided by primary care. Results: A total of 30 patients were seen. All patients found the location convenient as it was nearer than the hospital. 70-90% clearly understood the reason for a change in venue. 95% agreed to the importance of their local doctor being involved in their care. 20% needed to be seen in the hospital for further investigations. Patients felt this to be a more personalised, in-depth, friendly and polite experience. Local physicians felt this to be a more relaxed, familiar and local experience for their patients and they managed to get immediate feedback regarding their own clinical management. 90% felt they gained important learning from the discussion time and the paediatrician also learned about their understanding and gaps in knowledge/focus areas. 80% felt this time was valuable for targeted learning. Equipment, information technology, and office space could be improved for the smooth running of any future clinics. Conclusion: The acute paediatric outpatient clinic can be successfully established in primary care facilities. Careful patient selection and adequate facilities are important. We have demonstrated a further step in the reduction of patient flow to hospitals and upskilling primary care health professionals. This service is expected to become more efficient with experience.

Keywords: clinics, education, paediatricians, primary care

Procedia PDF Downloads 148
148 Simulation and Thermal Evaluation of Containers Using PCM in Different Weather Conditions of Chile: Energy Savings in Lightweight Constructions

Authors: Paula Marín, Mohammad Saffari, Alvaro de Gracia, Luisa F. Cabeza, Svetlana Ushak

Abstract:

Climate control represents an important issue when referring to energy consumption of buildings and associated expenses, both in installation or operation periods. The climate control of a building relies on several factors. Among them, localization, orientation, architectural elements, sources of energy used, are considered. In order to study the thermal behaviour of a building set up, the present study proposes the use of energy simulation program Energy Plus. In recent years, energy simulation programs have become important tools for evaluation of thermal/energy performance of buildings and facilities. Besides, the need to find new forms of passive conditioning in buildings for energy saving is a critical component. The use of phase change materials (PCMs) for heat storage applications has grown in importance due to its high efficiency. Therefore, the climatic conditions of Northern Chile: high solar radiation and extreme temperature fluctuations ranging from -10°C to 30°C (Calama city), low index of cloudy days during the year are appropriate to take advantage of solar energy and use passive systems in buildings. Also, the extensive mining activities in northern Chile encourage the use of large numbers of containers to harbour workers during shifts. These containers are constructed with lightweight construction systems, requiring heating during night and cooling during day, increasing the HVAC electricity consumption. The use of PCM can improve thermal comfort and reduce the energy consumption. The objective of this study was to evaluate the thermal and energy performance of containers of 2.5×2.5×2.5 m3, located in four cities of Chile: Antofagasta, Calama, Santiago, and Concepción. Lightweight envelopes, typically used in these building prototypes, were evaluated considering a container without PCM inclusion as the reference building and another container with PCM-enhanced envelopes as a test case, both of which have a door and a window in the same wall, orientated in two directions: North and South. To see the thermal response of these containers in different seasons, the simulations were performed considering a period of one year. The results show that higher energy savings for the four cities studied are obtained when the distribution of door and window in the container is in the north direction because of higher solar radiation incidence. The comparison of HVAC consumption and energy savings in % for north direction of door and window are summarised. Simulation results show that in the city of Antofagasta 47% of heating energy could be saved and in the cities of Calama and Concepción the biggest savings in terms of cooling could be achieved since PCM reduces almost all the cooling demand. Currently, based on simulation results, four containers have been constructed and sized with the same structural characteristics carried out in simulations, that are, containers with/without PCM, with door and window in one wall. Two of these containers will be placed in Antofagasta and two containers in a copper mine near to Calama, all of them will be monitored for a period of one year. The simulation results will be validated with experimental measurements and will be reported in the future.

Keywords: energy saving, lightweight construction, PCM, simulation

Procedia PDF Downloads 261
147 Pushover Analysis of a Typical Bridge Built in Central Zone of Mexico

Authors: Arturo Galvan, Jatziri Y. Moreno-Martinez, Daniel Arroyo-Montoya, Jose M. Gutierrez-Villalobos

Abstract:

Bridges are one of the most seismically vulnerable structures on highway transportation systems. The general process for assessing the seismic vulnerability of a bridge involves the evaluation of its overall capacity and demand. One of the most common procedures to obtain this capacity is by means of pushover analysis of the structure. Typically, the bridge capacity is assessed using non-linear static methods or non-linear dynamic analyses. The non-linear dynamic approaches use step by step numerical solutions for assessing the capacity with the consuming computer time inconvenience. In this study, a nonlinear static analysis (‘pushover analysis’) was performed to predict the collapse mechanism of a typical bridge built in the central zone of Mexico (Celaya, Guanajuato). The bridge superstructure consists of three simple supported spans with a total length of 76 m: 22 m of the length of extreme spans and 32 m of length of the central span. The deck width is of 14 m and the concrete slab depth is of 18 cm. The bridge is built by means of frames of five piers with hollow box-shaped sections. The dimensions of these piers are 7.05 m height and 1.20 m diameter. The numerical model was created using a commercial software considering linear and non-linear elements. In all cases, the piers were represented by frame type elements with geometrical properties obtained from the structural project and construction drawings of the bridge. The deck was modeled with a mesh of rectangular thin shell (plate bending and stretching) finite elements. The moment-curvature analysis was performed for the sections of the piers of the bridge considering in each pier the effect of confined concrete and its reinforcing steel. In this way, plastic hinges were defined on the base of the piers to carry out the pushover analysis. In addition, time history analyses were performed using 19 accelerograms of real earthquakes that have been registered in Guanajuato. In this way, the displacements produced by the bridge were determined. Finally, pushover analysis was applied through the control of displacements in the piers to obtain the overall capacity of the bridge before the failure occurs. It was concluded that the lateral deformation of the piers due to a critical earthquake occurred in this zone is almost imperceptible due to the geometry and reinforcement demanded by the current design standards and compared to its displacement capacity, they were excessive. According to the analysis, it was found that the frames built with five piers increase the rigidity in the transverse direction of the bridge. Hence it is proposed to reduce these frames of five piers to three piers, maintaining the same geometrical characteristics and the same reinforcement in each pier. Also, the mechanical properties of materials (concrete and reinforcing steel) were maintained. Once a pushover analysis was performed considering this configuration, it was concluded that the bridge would continue having a “correct” seismic behavior, at least for the 19 accelerograms considered in this study. In this way, costs in material, construction, time and labor would be reduced in this study case.

Keywords: collapse mechanism, moment-curvature analysis, overall capacity, push-over analysis

Procedia PDF Downloads 137
146 Optimizing Stormwater Sampling Design for Estimation of Pollutant Loads

Authors: Raja Umer Sajjad, Chang Hee Lee

Abstract:

Stormwater runoff is the leading contributor to pollution of receiving waters. In response, an efficient stormwater monitoring program is required to quantify and eventually reduce stormwater pollution. The overall goals of stormwater monitoring programs primarily include the identification of high-risk dischargers and the development of total maximum daily loads (TMDLs). The challenge in developing better monitoring program is to reduce the variability in flux estimates due to sampling errors; however, the success of monitoring program mainly depends on the accuracy of the estimates. Apart from sampling errors, manpower and budgetary constraints also influence the quality of the estimates. This study attempted to develop optimum stormwater monitoring design considering both cost and the quality of the estimated pollutants flux. Three years stormwater monitoring data (2012 – 2014) from a mix land use located within Geumhak watershed South Korea was evaluated. The regional climate is humid and precipitation is usually well distributed through the year. The investigation of a large number of water quality parameters is time-consuming and resource intensive. In order to identify a suite of easy-to-measure parameters to act as a surrogate, Principal Component Analysis (PCA) was applied. Means, standard deviations, coefficient of variation (CV) and other simple statistics were performed using multivariate statistical analysis software SPSS 22.0. The implication of sampling time on monitoring results, number of samples required during the storm event and impact of seasonal first flush were also identified. Based on the observations derived from the PCA biplot and the correlation matrix, total suspended solids (TSS) was identified as a potential surrogate for turbidity, total phosphorus and for heavy metals like lead, chromium, and copper whereas, Chemical Oxygen Demand (COD) was identified as surrogate for organic matter. The CV among different monitored water quality parameters were found higher (ranged from 3.8 to 15.5). It suggests that use of grab sampling design to estimate the mass emission rates in the study area can lead to errors due to large variability. TSS discharge load calculation error was found only 2 % with two different sample size approaches; i.e. 17 samples per storm event and equally distributed 6 samples per storm event. Both seasonal first flush and event first flush phenomena for most water quality parameters were observed in the study area. Samples taken at the initial stage of storm event generally overestimate the mass emissions; however, it was found that collecting a grab sample after initial hour of storm event more closely approximates the mean concentration of the event. It was concluded that site and regional climate specific interventions can be made to optimize the stormwater monitoring program in order to make it more effective and economical.

Keywords: first flush, pollutant load, stormwater monitoring, surrogate parameters

Procedia PDF Downloads 222
145 A Dynamic Curriculum as a Platform for Continuous Competence Development

Authors: Niina Jallinoja, Anu Moisio

Abstract:

Focus on adult learning is vital to overcome economic challenges as well as to respond to the demand for new competencies and sustained productivity in the digitalized world economy. Employees of all ages must be able to carry on continuous professional development to remain competitive in the labor market. According to EU policies, countries should offer more flexible opportunities for adult learners who study online and in so-called ‘second chance’ qualification programmes. Traditionally, adult education in Finland has comprised of not only liberal adult education but also the government funding to study for Bachelor, Master's, and Ph.D. degrees in Finnish Universities and Universities of Applied Sciences (UAS). From the beginning of 2021, public funding is allocated not only to degrees but also to courses to achieve new competencies for adult learners in Finland. Consequently, there will be degree students (often younger of age) and adult learners studying in the same evening, online and blended courses. The question is thus: How are combined studies meeting the different needs of degree students and adult learners? Haaga-Helia University of Applied Sciences (UAS), located in the metropolitan area of Finland, is taking up the challenge of continuous learning for adult learners. Haaga-Helia has been reforming the bachelor level education and respective shorter courses from 2019 in the biggest project in its history. By the end of 2023, Haaga-Helia will have a flexible, modular curriculum for the bachelor's degrees of hospitality management, business administration, business information technology, journalism and sports management. Building on the shared key competencies, degree students will have the possibility to build individual study paths more flexibly, thanks to the new modular structure of the curriculum. They will be able to choose courses across all degrees, and thus, build their own unique competence combinations. All modules can also be offered as separate courses or learning paths to non-degree students, both publicly funded and as commercial services for employers. Consequently, there will be shared course implementations for degree studies and adult learners with various competence requirements. The newly designed courses are piloted in parallel of the designing of the curriculum in Haaga-Helia during 2020 and 2021. Semi-structured online surveys are composed among the participants for the key competence courses. The focus of the research is to understand how students in the bachelor programme and adult learners from Open UAE perceive the learning experience in such a diverse learning group. A comparison is also executed between learning methods of in-site teaching, online implementation, blended learning and virtual self-learning courses to understand how the pedagogy is meeting the learning objectives of these two different groups. The new flexible curricula and the study modules are to be designed to fill the most important competence gaps that exist in the Finnish labor markets. The new curriculum will be dynamic and constantly evolving over time according to the future competence needs in the labor market. This type of approach requires constant dialogue between Haaga-Helia and workplaces during and after designing of the shared curriculum.

Keywords: ccompetence development, continuous learning, curriculum, higher education

Procedia PDF Downloads 108
144 Distribution of Micro Silica Powder at a Ready Mixed Concrete

Authors: Kyong-Ku Yun, Dae-Ae Kim, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han

Abstract:

Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam.

Keywords: micro silica, distribution, ready mixed concrete, foam

Procedia PDF Downloads 192
143 Multi-Criteria Assessment of Biogas Feedstock

Authors: Rawan Hakawati, Beatrice Smyth, David Rooney, Geoffrey McCullough

Abstract:

Targets have been set in the EU to increase the share of renewable energy consumption to 20% by 2020, but developments have not occurred evenly across the member states. Northern Ireland is almost 90% dependent on imported fossil fuels. With such high energy dependency, Northern Ireland is particularly susceptible to the security of supply issues. Linked to fossil fuels are greenhouse gas emissions, and the EU plans to reduce emissions by 20% by 2020. The use of indigenously produced biomass could reduce both greenhouse gas emissions and external energy dependence. With a wide range of both crop and waste feedstock potentially available in Northern Ireland, anaerobic digestion has been put forward as a possible solution for renewable energy production, waste management, and greenhouse gas reduction. Not all feedstock, however, is the same, and an understanding of feedstock suitability is important for both plant operators and policy makers. The aim of this paper is to investigate biomass suitability for anaerobic digestion in Northern Ireland. It is also important that decisions are based on solid scientific evidence. For this reason, the methodology used is multi-criteria decision matrix analysis which takes multiple criteria into account simultaneously and ranks alternatives accordingly. The model uses the weighted sum method (which follows the Entropy Method to measure uncertainty using probability theory) to decide on weights. The Topsis method is utilized to carry out the mathematical analysis to provide the final scores. Feedstock that is currently available in Northern Ireland was classified into two categories: wastes (manure, sewage sludge and food waste) and energy crops, specifically grass silage. To select the most suitable feedstock, methane yield, feedstock availability, feedstock production cost, biogas production, calorific value, produced kilowatt-hours, dry matter content, and carbon to nitrogen ratio were assessed. The highest weight (0.249) corresponded to production cost reflecting a variation of £41 gate fee to 22£/tonne cost. The weights calculated found that grass silage was the most suitable feedstock. A sensitivity analysis was then conducted to investigate the impact of weights. The analysis used the Pugh Matrix Method which relies upon The Analytical Hierarchy Process and pairwise comparisons to determine a weighting for each criterion. The results showed that the highest weight (0.193) corresponded to biogas production indicating that grass silage and manure are the most suitable feedstock. Introducing co-digestion of two or more substrates can boost the biogas yield due to a synergistic effect induced by the feedstock to favor positive biological interactions. A further benefit of co-digesting manure is that the anaerobic digestion process also acts as a waste management strategy. From the research, it was concluded that energy from agricultural biomass is highly advantageous in Northern Ireland because it would increase the country's production of renewable energy, manage waste production, and would limit the production of greenhouse gases (current contribution from agriculture sector is 26%). Decision-making methods based on scientific evidence aid policy makers in classifying multiple criteria in a logical mathematical manner in order to reach a resolution.

Keywords: anaerobic digestion, biomass as feedstock, decision matrix, renewable energy

Procedia PDF Downloads 430
142 In Vitro Propagation of Vanilla Planifolia Using Nodal Explants and Varied Concentrations of Naphthaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP).

Authors: Jessica Arthur, Duke Amegah, Kingsley Akenten Wiafe

Abstract:

Background: Vanilla planifolia is the only edible fruit of the orchid family (Orchidaceae) among the over 35,000 Orchidaceae species found worldwide. In Ghana, Vanilla was discovered in the wild, but it is underutilized for commercial production, most likely due to a lack of knowledge on the best NAA and BAP combinations for in vitro propagation to promote successfully regenerated plant acclimatization. The growing interest and global demand for elite Vanilla planifolia plants and natural vanilla flavour emphasize the need for an effective industrial-scale micropropagation protocol. Tissue culture systems are increasingly used to grow disease-free plants and reliable in vitro methods can also produce plantlets with typically modest proliferation rates. This study sought to develop an efficient protocol for in vitro propagation of vanilla using nodal explants by testing different concentrations of NAA and BAP, for the proliferation of the entire plant. Methods: Nodal explants with dormant axillary buds were obtained from year-old laboratory-grown Vanilla planifolia plants. MS media was prepared with a nutrient stock solution (containing macronutrients, micronutrients, iron solution and vitamins) and semi-solidified using phytagel. It was supplemented with different concentrations of NAA and BAP to induce multiple shoots and roots (0.5mg/L BAP with NAA at 0, 0.5, 1, 1.5, 2.0mg/L and vice-versa). The explants were sterilized, cultured in labelled test tubes and incubated at 26°C ± 2°C with 16/8 hours light/dark cycle. Data on shoot and root growth, leaf number, node number, and survival percentage were collected over three consecutive two-week periods. The data were square root transformed and subjected to ANOVA and LSD at a 5% significance level using the R statistical package. Results: Shoots emerged at 8 days and roots at 12 days after inoculation with 94% survival rate. It was discovered that for the NAA treatments, MS media supplemented with 2.00 mg/l NAA resulted in the highest shoot length (10.45cm), maximum root number (1.51), maximum shoot number (1.47) and the highest number of leaves (1.29). MS medium containing 1.00 mg/l NAA produced the highest number of nodes (1.62) and root length (14.27cm). Also, a similar growth pattern for the BAP treatments was observed. MS medium supplemented with 1.50 mg/l BAP resulted in the highest shoot length (14.98 cm), the highest number of nodes (4.60), the highest number of leaves (1.75) and the maximum shoot number (1.57). MS medium containing 0.50 mg/l BAP and 1.0 mg/l BAP generated a maximum root number (1.44) and the highest root length (13.25cm), respectively. However, the best concentration combination for maximizing shoot and root was media containing 1.5mg/l BAP combined with 0.5mg/l NAA, and 1.0mg/l NAA combined with 0.5mg/l of BAP respectively. These concentrations were optimum for in vitro growth and production of Vanilla planifolia. Significance: This study presents a standardized protocol for labs to produce clean vanilla plantlets, enhancing cultivation in Ghana and beyond. It provides insights into Vanilla planifolia's growth patterns and hormone responses, aiding future research and cultivation.

Keywords: Vanilla planifolia, In vitro propagation, plant hormones, MS media

Procedia PDF Downloads 37
141 Phorbol 12-Myristate 13-Acetate (PMA)-Differentiated THP-1 Monocytes as a Validated Microglial-Like Model in Vitro

Authors: Amelia J. McFarland, Andrew K. Davey, Shailendra Anoopkumar-Dukie

Abstract:

Microglia are the resident macrophage population of the central nervous system (CNS), contributing to both innate and adaptive immune response, and brain homeostasis. Activation of microglia occurs in response to a multitude of pathogenic stimuli in their microenvironment; this induces morphological and functional changes, resulting in a state of acute neuroinflammation which facilitates injury resolution. Adequate microglial function is essential for the health of the neuroparenchyma, with microglial dysfunction implicated in numerous CNS pathologies. Given the critical role that these macrophage-derived cells play in CNS homeostasis, there is a high demand for microglial models suitable for use in neuroscience research. The isolation of primary human microglia, however, is both difficult and costly, with microglial activation an unwanted but inevitable result of the extraction process. Consequently, there is a need for the development of alternative experimental models which exhibit morphological, biochemical and functional characteristics of human microglia without the difficulties associated with primary cell lines. In this study, our aim was to evaluate whether THP-1 human peripheral blood monocytes would display microglial-like qualities following an induced differentiation, and, therefore, be suitable for use as surrogate microglia. To achieve this aim, THP-1 human peripheral blood monocytes from acute monocytic leukaemia were differentiated with a range of phorbol 12-myristate 13-acetate (PMA) concentrations (50-200 nM) using two different protocols: a 5-day continuous PMA exposure or a 3-day continuous PMA exposure followed by a 5-day rest in normal media. In each protocol and at each PMA concentration, microglial-like cell morphology was assessed through crystal violet staining and the presence of CD-14 microglial / macrophage cell surface marker. Lipopolysaccharide (LPS) from Escherichia coli (055: B5) was then added at a range of concentrations from 0-10 mcg/mL to activate the PMA-differentiated THP-1 cells. Functional microglial-like behavior was evaluated by quantifying the release of prostaglandin (PG)-E2 and pro-inflammatory cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α using mediator-specific ELISAs. Furthermore, production of global reactive oxygen species (ROS) and nitric oxide (NO) were determined fluorometrically using dichlorodihydrofluorescein diacetate (DCFH-DA) and diaminofluorescein diacetate (DAF-2-DA) respectively. Following PMA-treatment, it was observed both differentiation protocols resulted in cells displaying distinct microglial morphology from 10 nM PMA. Activation of differentiated cells using LPS significantly augmented IL-1β, TNF-α and PGE2 release at all LPS concentrations under both differentiation protocols. Similarly, a significant increase in DCFH-DA and DAF-2-DA fluorescence was observed, indicative of increases in ROS and NO production. For all endpoints, the 5-day continuous PMA treatment protocol yielded significantly higher mediator levels than the 3-day treatment and 5-day rest protocol. Our data, therefore, suggests that the differentiation of THP-1 human monocyte cells with PMA yields a homogenous microglial-like population which, following stimulation with LPS, undergo activation to release a range of pro-inflammatory mediators associated with microglial activation. Thus, the use of PMA-differentiated THP-1 cells represents a suitable microglial model for in vitro research.

Keywords: differentiation, lipopolysaccharide, microglia, monocyte, neuroscience, THP-1

Procedia PDF Downloads 360
140 High Pressure Thermophysical Properties of Complex Mixtures Relevant to Liquefied Natural Gas (LNG) Processing

Authors: Saif Al Ghafri, Thomas Hughes, Armand Karimi, Kumarini Seneviratne, Jordan Oakley, Michael Johns, Eric F. May

Abstract:

Knowledge of the thermophysical properties of complex mixtures at extreme conditions of pressure and temperature have always been essential to the Liquefied Natural Gas (LNG) industry’s evolution because of the tremendous technical challenges present at all stages in the supply chain from production to liquefaction to transport. Each stage is designed using predictions of the mixture’s properties, such as density, viscosity, surface tension, heat capacity and phase behaviour as a function of temperature, pressure, and composition. Unfortunately, currently available models lead to equipment over-designs of 15% or more. To achieve better designs that work more effectively and/or over a wider range of conditions, new fundamental property data are essential, both to resolve discrepancies in our current predictive capabilities and to extend them to the higher-pressure conditions characteristic of many new gas fields. Furthermore, innovative experimental techniques are required to measure different thermophysical properties at high pressures and over a wide range of temperatures, including near the mixture’s critical points where gas and liquid become indistinguishable and most existing predictive fluid property models used breakdown. In this work, we present a wide range of experimental measurements made for different binary and ternary mixtures relevant to LNG processing, with a particular focus on viscosity, surface tension, heat capacity, bubble-points and density. For this purpose, customized and specialized apparatus were designed and validated over the temperature range (200 to 423) K at pressures to 35 MPa. The mixtures studied were (CH4 + C3H8), (CH4 + C3H8 + CO2) and (CH4 + C3H8 + C7H16); in the last of these the heptane contents was up to 10 mol %. Viscosity was measured using a vibrating wire apparatus, while mixture densities were obtained by means of a high-pressure magnetic-suspension densimeter and an isochoric cell apparatus; the latter was also used to determine bubble-points. Surface tensions were measured using the capillary rise method in a visual cell, which also enabled the location of the mixture critical point to be determined from observations of critical opalescence. Mixture heat capacities were measured using a customised high-pressure differential scanning calorimeter (DSC). The combined standard relative uncertainties were less than 0.3% for density, 2% for viscosity, 3% for heat capacity and 3 % for surface tension. The extensive experimental data gathered in this work were compared with a variety of different advanced engineering models frequently used for predicting thermophysical properties of mixtures relevant to LNG processing. In many cases the discrepancies between the predictions of different engineering models for these mixtures was large, and the high quality data allowed erroneous but often widely-used models to be identified. The data enable the development of new or improved models, to be implemented in process simulation software, so that the fluid properties needed for equipment and process design can be predicted reliably. This in turn will enable reduced capital and operational expenditure by the LNG industry. The current work also aided the community of scientists working to advance theoretical descriptions of fluid properties by allowing to identify deficiencies in theoretical descriptions and calculations.

Keywords: LNG, thermophysical, viscosity, density, surface tension, heat capacity, bubble points, models

Procedia PDF Downloads 257
139 The Impacts of New Digital Technology Transformation on Singapore Healthcare Sector: Case Study of a Public Hospital in Singapore from a Management Accounting Perspective

Authors: Junqi Zou

Abstract:

As one of the world’s most tech-ready countries, Singapore has initiated the Smart Nation plan to harness the full power and potential of digital technologies to transform the way people live and work, through the more efficient government and business processes, to make the economy more productive. The key evolutions of digital technology transformation in healthcare and the increasing deployment of Internet of Things (IoTs), Big Data, AI/cognitive, Robotic Process Automation (RPA), Electronic Health Record Systems (EHR), Electronic Medical Record Systems (EMR), Warehouse Management System (WMS in the most recent decade have significantly stepped up the move towards an information-driven healthcare ecosystem. The advances in information technology not only bring benefits to patients but also act as a key force in changing management accounting in healthcare sector. The aim of this study is to investigate the impacts of digital technology transformation on Singapore’s healthcare sector from a management accounting perspective. Adopting a Balanced Scorecard (BSC) analysis approach, this paper conducted an exploratory case study of a newly launched Singapore public hospital, which has been recognized as amongst the most digitally advanced healthcare facilities in Asia-Pacific region. Specifically, this study gains insights on how the new technology is changing healthcare organizations’ management accounting from four perspectives under the Balanced Scorecard approach, 1) Financial Perspective, 2) Customer (Patient) Perspective, 3) Internal Processes Perspective, and 4) Learning and Growth Perspective. Based on a thorough review of archival records from the government and public, and the interview reports with the hospital’s CIO, this study finds the improvements from all the four perspectives under the Balanced Scorecard framework as follows: 1) Learning and Growth Perspective: The Government (Ministry of Health) works with the hospital to open up multiple training pathways to health professionals that upgrade and develops new IT skills among the healthcare workforce to support the transformation of healthcare services. 2) Internal Process Perspective: The hospital achieved digital transformation through Project OneCare to integrate clinical, operational, and administrative information systems (e.g., EHR, EMR, WMS, EPIB, RTLS) that enable the seamless flow of data and the implementation of JIT system to help the hospital operate more effectively and efficiently. 3) Customer Perspective: The fully integrated EMR suite enhances the patient’s experiences by achieving the 5 Rights (Right Patient, Right Data, Right Device, Right Entry and Right Time). 4) Financial Perspective: Cost savings are achieved from improved inventory management and effective supply chain management. The use of process automation also results in a reduction of manpower costs and logistics cost. To summarize, these improvements identified under the Balanced Scorecard framework confirm the success of utilizing the integration of advanced ICT to enhance healthcare organization’s customer service, productivity efficiency, and cost savings. Moreover, the Big Data generated from this integrated EMR system can be particularly useful in aiding management control system to optimize decision making and strategic planning. To conclude, the new digital technology transformation has moved the usefulness of management accounting to both financial and non-financial dimensions with new heights in the area of healthcare management.

Keywords: balanced scorecard, digital technology transformation, healthcare ecosystem, integrated information system

Procedia PDF Downloads 135
138 Creating an Impact through Environmental Law and Policy with a Focus on Environmental Science Restoration with Social Impacts

Authors: Lauren Beth Birney

Abstract:

BOP-CCERS is a consortium of scientists, K-16 New York City students, faculty, academicians, teachers, stakeholders, STEM Industry professionals, CBO’s, NPO’s, citizen scientists, and local businesses working in partnership to restore New York Harbor’s oyster populations while at the same time providing clean water in New York Harbor. BOP-CCERS gives students an opportunity to learn hands-on about environmental stewardship as well as environmental law and policy by giving students real responsibility. The purpose of this REU will allow for the BOP CCERS Project to further broaden its parameters into the focus of environmental law and policy where further change can be affected. Creating opportunities for undergraduates to work collaboratively with graduate students in law and policy and envision themselves in STEM careers in the field of law continues to be of importance in this project. More importantly, creating opportunities for underrepresented students to pursue careers in STEM Education has been a goal of the project over the last ten years. By raising the level of student interest in community-based citizen science integrated into environmental law and policy, a more diversified workforce will be fostered through the momentum of this dynamic program. The continuing climate crisis facing our planet calls for 21st-century skill development that includes learning and innovation skills derived from critical thinking, which will help REU students address the issues of climate change facing our planet. The demand for a climate-friendly workforce will continue to be met through this community-based citizen science effort. Environmental laws and policies play a crucial role in protecting humans, animals, resources, and habitats. Without these laws, there would be no regulations concerning pollution or contamination of our waterways. Environmental law serves as a mechanism to protect the land, air, water, and soil of our planet. To protect the environment, it is crucial that future policymakers and legal experts both understand and value the importance of environmental protection. The Environmental Law and Policy REU provides students with the opportunity to learn, through hands-on work, the skills, and knowledge needed to help foster a legal workforce centered around environmental protection while participating alongside the BOP CCERS researchers in order to gain research experience. Broadening this area to law and policy will further increase these opportunities and permit students to ultimately affect and influence larger-scale change on a global level while further diversifying the STEM workforce. Students’ findings will be shared at the annual STEM Institute at Pace University in August 2022. Basic research methodologies include qualitative and quantitative analysis performed by the research team. Early findings indicate that providing students with an opportunity to experience, explore and participate in environmental science programs such as these enhances their interests in pursuing STEM careers in Law and Policy, with the focus being on providing opportunities for underserved, marginalized, and underrepresented populations.

Keywords: environmental restoration science, citizen science, environmental law and policy, STEM education

Procedia PDF Downloads 85
137 Influence of Ride Control Systems on the Motions Response and Passenger Comfort of High-Speed Catamarans in Irregular Waves

Authors: Ehsan Javanmardemamgheisi, Javad Mehr, Jason Ali-Lavroff, Damien Holloway, Michael Davis

Abstract:

During the last decades, a growing interest in faster and more efficient waterborne transportation has led to the development of high-speed vessels for both commercial and military applications. To satisfy this global demand, a wide variety of arrangements of high-speed crafts have been proposed by designers. Among them, high-speed catamarans have proven themselves to be a suitable Roll-on/Roll-off configuration for carrying passengers and cargo due to widely spaced demi hulls, a wide deck zone, and a high ratio of deadweight to displacement. To improve passenger comfort and crew workability and enhance the operability and performance of high-speed catamarans, mitigating the severity of motions and structural loads using Ride Control Systems (RCS) is essential.In this paper, a set of towing tank tests was conducted on a 2.5 m scaled model of a 112 m Incat Tasmania high-speed catamaran in irregular head seas to investigate the effect of different ride control algorithms including linear and nonlinear versions of the heave control, pitch control, and local control on motion responses and passenger comfort of the full-scale ship. The RCS included a centre bow-fitted T-Foil and two transom-mounted stern tabs. All the experiments were conducted at the Australian Maritime College (AMC) towing tank at a model speed of 2.89 m/s (37 knots full scale), a modal period of 1.5 sec (10 sec full scale) and two significant wave heights of 60 mm and 90 mm, representing full-scale wave heights of 2.7 m and 4 m, respectively. Spectral analyses were performed using Welch’s power spectral density method on the vertical motion time records of the catamaran model to calculate heave and pitch Response Amplitude Operators (RAOs). Then, noting that passenger discomfort arises from vertical accelerations and that the vertical accelerations vary at different longitudinal locations within the passenger cabin due to the variations in amplitude and relative phase of the pitch and heave motions, the vertical accelerations were calculated at three longitudinal locations (LCG, T-Foil, and stern tabs). Finally, frequency-weighted Root Mean Square (RMS) vertical accelerations were calculated to estimate Motion Sickness Dose Value (MSDV) of the ship based on ISO 2631-recommendations. It was demonstrated that in small seas, implementing a nonlinear pitch control algorithm reduces the peak pitch motions by 41%, the vertical accelerations at the forward location by 46%, and motion sickness at the forward position by around 20% which provides great potential for further improvement in passenger comfort, crew workability, and operability of high-speed catamarans.

Keywords: high-speed catamarans, ride control system, response amplitude operators, vertical accelerations, motion sickness, irregular waves, towing tank tests.

Procedia PDF Downloads 65
136 Longitudinal impact on Empowerment for Ugandan Women with Post-Primary Education

Authors: Shelley Jones

Abstract:

Assumptions abound that education for girls will, as a matter of course, lead to their economic empowerment as women; yet. little is known about the ways in which schooling for girls, who traditionally/historically would not have had opportunities for post-primary, or perhaps even primary education – such as the participants in this study based in rural Uganda - in reality, impacts their economic situations. There is a need forlongitudinal studies in which women share experiences, understandings, and reflections of their lives that can inform our knowledge of this. In response, this paper reports on stage four of a longitudinal case study (2004-2018) focused on education and empowerment for girls and women in rural Uganda, in which 13 of the 15 participants from the original study participated. This paper understands empowerment as not simply increased opportunities (e.g., employment) but also real gains in power, freedoms that enable agentive action, and authentic and viable choices/alternatives that offer ‘exit options’ from unsatisfactory situations. As with the other stages, this study used a critical, postmodernist, global feminist ethnographic methodology, multimodal and qualitative data collection. Participants participated in interviews, focus group discussions, and a two-day workshop, which explored their understandings of how/if they understood post-primary education to have contributed to their economic empowerment. A constructivist grounded theory approach was used for data analysis to capture major themes. Findings indicate that although all participants believe that post-primary education provided them with economic opportunities they would not have had otherwise, the parameters of their economic empowerment were severely constrained by historic and extant sociocultural, economic, political, and institutional structures that continue to disempower girls and women, as well as additional financial responsibilities that they assumed to support others. Even though the participants had post-primary education, and they were able to obtain employment or operate their own businesses that they would not likely have been able to do without post-primary education, the majority of the participants’ incomes were not sufficient to elevate them financially above the extreme poverty level, especially as many were single mothers and the sole income earners in their households. Furthermore, most deemed their working conditions unsatisfactory and their positions precarious; they also experienced sexual harassment and abuse in the labour force. Additionally, employment for the participants resulted in a double work burden: long days at work, surrounded by many hours of domestic work at home (which, even if they had spousal partners, still fell almost exclusively to women). In conclusion, although the participants seem to have experienced some increase in economic empowerment, largely due to skills, knowledge, and qualifications gained at the post-primary level, numerous barriers prevented them from maximizing their capabilities and making significant gains in empowerment. There is need, in addition to providing education (primary, secondary, and tertiary) to girls, to address systemic gender inequalities that mitigate against women’s empowerment, as well as opportunities and freedom for women to come together and demand fair pay, reasonable working conditions, and benefits, freedom from gender-based harassment and assault in the workplace, as well as advocate for equal distribution of domestic work as a cultural change.

Keywords: girls' post-primary education, women's empowerment, uganda, employment

Procedia PDF Downloads 132
135 Li-Ion Batteries vs. Synthetic Natural Gas: A Life Cycle Analysis Study on Sustainable Mobility

Authors: Guido Lorenzi, Massimo Santarelli, Carlos Augusto Santos Silva

Abstract:

The growth of non-dispatchable renewable energy sources in the European electricity generation mix is promoting the research of technically feasible and cost-effective solutions to make use of the excess energy, produced when the demand is low. The increasing intermittent renewable capacity is becoming a challenge to face especially in Europe, where some countries have shares of wind and solar on the total electricity produced in 2015 higher than 20%, with Denmark around 40%. However, other consumption sectors (mainly transportation) are still considerably relying on fossil fuels, with a slow transition to other forms of energy. Among the opportunities for different mobility concepts, electric (EV) and biofuel-powered vehicles (BPV) are the options that currently appear more promising. The EVs are targeting mainly the light duty users because of their zero (Full electric) or reduced (Hybrid) local emissions, while the BPVs encourage the use of alternative resources with the same technologies (thermal engines) used so far. The batteries which are applied to EVs are based on ions of Lithium because of their overall good performance in energy density, safety, cost and temperature performance. Biofuels, instead, can be various and the major difference is in their physical state (liquid or gaseous). In this study gaseous biofuels are considered and, more specifically, Synthetic Natural Gas (SNG) produced through a process of Power-to-Gas consisting in an electrochemical upgrade (with Solid Oxide Electrolyzers) of biogas with CO2 recycling. The latter process combines a first stage of electrolysis, where syngas is produced, and a second stage of methanation in which the product gas is turned into methane and then made available for consumption. A techno-economic comparison between the two alternatives is possible, but it does not capture all the different aspects involved in the two routes for the promotion of a more sustainable mobility. For this reason, a more comprehensive methodology, i.e. Life Cycle Assessment, is adopted to describe the environmental implications of using excess electricity (directly or indirectly) for new vehicle fleets. The functional unit of the study is 1 km and the two options are compared in terms of overall CO2 emissions, both considering Cradle to Gate and Cradle to Grave boundaries. Showing how production and disposal of materials affect the environmental performance of the analyzed routes is useful to broaden the perspective on the impacts that different technologies produce, in addition to what is emitted during the operational life. In particular, this applies to batteries for which the decommissioning phase has a larger impact on the environmental balance compared to electrolyzers. The lower (more than one order of magnitude) energy density of Li-ion batteries compared to SNG implies that for the same amount of energy used, more material resources are needed to obtain the same effect. The comparison is performed in an energy system that simulates the Western European one, in order to assess which of the two solutions is more suitable to lead the de-fossilization of the transport sector with the least resource depletion and the mildest consequences for the ecosystem.

Keywords: electrical energy storage, electric vehicles, power-to-gas, life cycle assessment

Procedia PDF Downloads 161
134 Nature of Forest Fragmentation Owing to Human Population along Elevation Gradient in Different Countries in Hindu Kush Himalaya Mountains

Authors: Pulakesh Das, Mukunda Dev Behera, Manchiraju Sri Ramachandra Murthy

Abstract:

Large numbers of people living in and around the Hindu Kush Himalaya (HKH) region, depends on this diverse mountainous region for ecosystem services. Following the global trend, this region also experiencing rapid population growth, and demand for timber and agriculture land. The eight countries sharing the HKH region have different forest resources utilization and conservation policies that exert varying forces in the forest ecosystem. This created a variable spatial as well altitudinal gradient in rate of deforestation and corresponding forest patch fragmentation. The quantitative relationship between fragmentation and demography has not been established before for HKH vis-à-vis along elevation gradient. This current study was carried out to attribute the overall and different nature in landscape fragmentations along the altitudinal gradient with the demography of each sharing countries. We have used the tree canopy cover data derived from Landsat data to analyze the deforestation and afforestation rate, and corresponding landscape fragmentation observed during 2000 – 2010. Area-weighted mean radius of gyration (AMN radius of gyration) was computed owing to its advantage as spatial indicator of fragmentation over non-spatial fragmentation indices. Using the subtraction method, the change in fragmentation was computed during 2000 – 2010. Using the tree canopy cover data as a surrogate of forest cover, highest forest loss was observed in Myanmar followed by China, India, Bangladesh, Nepal, Pakistan, Bhutan, and Afghanistan. However, the sequence of fragmentation was different after the maximum fragmentation observed in Myanmar followed by India, China, Bangladesh, and Bhutan; whereas increase in fragmentation was seen following the sequence of as Nepal, Pakistan, and Afghanistan. Using SRTM-derived DEM, we observed higher rate of fragmentation up to 2400m that corroborated with high human population for the year 2000 and 2010. To derive the nature of fragmentation along the altitudinal gradients, the Statistica software was used, where the user defined function was utilized for regression applying the Gauss-Newton estimation method with 50 iterations. We observed overall logarithmic decrease in fragmentation change (area-weighted mean radius of gyration), forest cover loss and population growth during 2000-2010 along the elevation gradient with very high R2 values (i.e., 0.889, 0.895, 0.944 respectively). The observed negative logarithmic function with the major contribution in the initial elevation gradients suggest to gap filling afforestation in the lower altitudes to enhance the forest patch connectivity. Our finding on the pattern of forest fragmentation and human population across the elevation gradient in HKH region will have policy level implication for different nations and would help in characterizing hotspots of change. Availability of free satellite derived data products on forest cover and DEM, grid-data on demography, and utility of geospatial tools helped in quick evaluation of the forest fragmentation vis-a-vis human impact pattern along the elevation gradient in HKH.

Keywords: area-weighted mean radius of gyration, fragmentation, human impact, tree canopy cover

Procedia PDF Downloads 197
133 Menstrual Hygiene Practices Among the Women Age 15-24 in India

Authors: Priyanka Kumari

Abstract:

Menstrual hygiene is an important aspect in the life of young girls. Menstrual Hygiene Management (MHM) is defined as ‘Women and adolescent girls using a clean material to absorb or collect menstrual blood that can be changed in privacy as often as necessary for the duration of the menstruation period, using soap and water for washing the body as required and having access to facilities to dispose of used menstrual management materials. This paper aims to investigate the prevalence of hygienic menstrual practices and socio-demographic correlates of hygienic menstrual practices among women aged 15-24 in India. Data from the 2015–2016 National Family Health Survey–4 for 244,500 menstruating women aged 15–24 were used. The methods have been categorized into two, women who use sanitary napkins, locally prepared napkins and tampons considered as a hygienic method and those who use cloth, any other method and nothing used at all during menstruation considered as an unhygienic method. Women’s age, year of schooling, religion, place of residence, caste/tribe, marital status, wealth index, type of toilet facility used, region, the structure of the house and exposure to mass media are taken as an independent variables. Bivariate analysis was carried out with selected background characteristics to analyze the socio-economic and demographic factors associated with the use of hygienic methods during menstruation. The odds for the use of the hygienic method were computed by employing binary logistic regression. Almost 60% of the women use cloth as an absorbent during menstruation to prevent blood stains from becoming evident. The hygienic method, which includes the use of locally prepared napkins, sanitary napkins and tampons, is 16.27%, 41.8% and 2.4%. The proportion of women who used hygienic methods to prevent blood stains from becoming evident was 57.58%. Multivariate analyses reveal that education of women, wealth and marital status are found to be the most important positive factors of hygienic menstrual practices. The structure of the house and exposure to mass media also have a positive impact on the use of menstrual hygiene practices. In contrast, women residing in rural areas belonging to scheduled tribes are less likely to use hygienic methods during their menstruation. Geographical regions are also statistically significant with the use of hygienic methods during menstruation. This study reveals that menstrual hygiene is not satisfactory among a large proportion of adolescent girls. They need more education about menstrual hygiene. A variety of factors affect menstrual behaviors; amongst these, the most influential is economic status, educational status and residential status, whether urban or rural. It is essential to design a mechanism to address and access healthy menstrual knowledge. It is important to encourage policies and quality standards that promote safe and affordable options and dynamic markets for menstrual products. Materials that are culturally acceptable, contextually available and affordable. Promotion of sustainable, environmentally friendly menstrual products and their disposal as it is a very important aspect of sustainable development goals. We also need to educate the girls about the services which are provided by the government, like a free supply of sanitary napkins to overcome reproductive tract infections. Awareness regarding the need for information on healthy menstrual practices is very important. It is essential to design a mechanism to address and access healthy menstrual practices. Emphasis should be given to the education of young girls about the importance of maintaining hygiene during menstruation to prevent the risk of reproductive tract infections.

Keywords: adolescent, menstruation, menstrual hygiene management, menstrual hygiene

Procedia PDF Downloads 119
132 European Electromagnetic Compatibility Directive Applied to Astronomical Observatories

Authors: Oibar Martinez, Clara Oliver

Abstract:

The Cherenkov Telescope Array Project (CTA) aims to build two different observatories of Cherenkov Telescopes, located in Cerro del Paranal, Chile, and La Palma, Spain. These facilities are used in this paper as a case study to investigate how to apply standard Directives on Electromagnetic Compatibility to astronomical observatories. Cherenkov Telescopes are able to provide valuable information from both Galactic and Extragalactic sources by measuring Cherenkov radiation, which is produced by particles which travel faster than light in the atmosphere. The construction requirements demand compliance with the European Electromagnetic Compatibility Directive. The largest telescopes of these observatories, called Large Scale Telescopes (LSTs), are high precision instruments with advanced photomultipliers able to detect the faint sub-nanosecond blue light pulses produced by Cherenkov Radiation. They have a 23-meter parabolic reflective surface. This surface focuses the radiation on a camera composed of an array of high-speed photosensors which are highly sensitive to the radio spectrum pollution. The camera has a field of view of about 4.5 degrees and has been designed for maximum compactness and lowest weight, cost and power consumption. Each pixel incorporates a photo-sensor able to discriminate single photons and the corresponding readout electronics. The first LST is already commissioned and intends to be operated as a service to Scientific Community. Because of this, it must comply with a series of reliability and functional requirements and must have a Conformité Européen (CE) marking. This demands compliance with Directive 2014/30/EU on electromagnetic compatibility. The main difficulty of accomplishing this goal resides on the fact that Conformité Européen marking setups and procedures were implemented for industrial products, whereas no clear protocols have been defined for scientific installations. In this paper, we aim to give an answer to the question on how the directive should be applied to our installation to guarantee the fulfillment of all the requirements and the proper functioning of the telescope itself. Experts in Optics and Electromagnetism were both needed to make these kinds of decisions and match tests which were designed to be made over the equipment of limited dimensions on large scientific plants. An analysis of the elements and configurations most likely to be affected by external interferences and those that are most likely to cause the maximum disturbances was also performed. Obtaining the Conformité Européen mark requires knowing what the harmonized standards are and how the elaboration of the specific requirement is defined. For this type of large installations, one needs to adapt and develop the tests to be carried out. In addition, throughout this process, certification entities and notified bodies play a key role in preparing and agreeing the required technical documentation. We have focused our attention mostly on the technical aspects of each point. We believe that this contribution will be of interest for other scientists involved in applying industrial quality assurance standards to large scientific plant.

Keywords: CE marking, electromagnetic compatibility, european directive, scientific installations

Procedia PDF Downloads 88
131 Sustainable Biostimulant and Bioprotective Compound for the Control of Fungal Diseases in Agricultural Crops

Authors: Geisa Lima Mesquita Zambrosi, Maisa Ciampi Guillardi, Flávia Rodrigues Patrício, Oliveiro Guerreiro Filho

Abstract:

Certified agricultural products are important components of the food industry. However, certifiers have been expanding the list of restricted or prohibited pesticides, limiting the options of products for phytosanitary control of plant diseases, but without offering alternatives to the farmers. Soybean and coffee leaf rust, brown eye spots, and Phoma leaf spots are the main fungal diseases that pose a serious threat to soybean and coffee cultivation worldwide. In conventional farming systems, these diseases are controlled by using synthetic fungicides, which, in addition to intensify the occurrence of fungal resistance, are highly toxic to the environment, farmers and consumers. In organic, agroecological, or regenerative farming systems, product options for plant protection are limited, being available only copper-based compounds, biodefensives or non-standard homemade products. Therefore, there is a growing demand for effective bioprotectors with low environmental impact for adoption in more sustainable agricultural systems. Then, to contribute with the covering of such a gap, we have developed a compound based on plant extracts and metallic elements for foliar application. This product has both biostimulant and bioprotective action, which promotes sustainable disease control, increases productivity as well as reduces the dependence on imported technologies the damages to the environment. The product's components have complementary mechanisms that promote protection against the disease by directly acting on the pathogens and activating the plant's natural defense system. The protective ability of the product against three coffee diseases (coffee leaf rust, brown eye spot, and Phoma leaf spot) and against soybean rust disease was evaluated, in addition to its ability to promote plant growth. Our goal is to offer an effective alternative to control the main coffee fungal diseases and soybean fungal diseases, with a biostimulant effect and low toxicity. The proposed product can also be part of the integrated management of coffee and soybean diseases in conventional farming associated with chemical and biological pesticides, offering the market a sustainable coffee and soybean with high added value and low residue content. Experiments were carried out under controlled conditions to evaluate the effectiveness of the product in controlling rust, phoma, and cercosporiosis in comparison to a control-inoculated plants that did not receive the product. The in vitro and in vivo effects of the product on the pathogen were evaluated using light microscopy and scanning electron microscopy, respectively. The fungistatic action of the product was demonstrated by a reduction of 85% and 95% in spore germination and disease symptoms severity on the leaves of coffee plants, respectively. The formulation had both a protective effect, acting to prevent infection by coffee leaf rust, and a curative effect, reducing the rust symptoms after its establishment.

Keywords: plant disease, natural fungicide, plant health, sustainability, alternative disease management

Procedia PDF Downloads 18
130 Untangling the Greek Seafood Market: Authentication of Crustacean Products Using DNA-Barcoding Methodologies

Authors: Z. Giagkazoglou, D. Loukovitis, C. Gubili, A. Imsiridou

Abstract:

Along with the increase in human population, demand for seafood has increased. Despite the strict labeling regulations that exist for most marketed species in the European Union, seafood substitution remains a persistent global issue. Food fraud occurs when food products are traded in a false or misleading way. Mislabeling occurs when one species is substituted and traded under the name of another, and it can be intentional or unintentional. Crustaceans are one of the most regularly consumed seafood in Greece. Shrimps, prawns, lobsters, crayfish, and crabs are considered a delicacy and can be encountered in a variety of market presentations (fresh, frozen, pre-cooked, peeled, etc.). With most of the external traits removed, products as such are susceptible to species substitution. DNA barcoding has proven to be the most accurate method for the detection of fraudulent seafood products. To our best knowledge, the DNA barcoding methodology is used for the first time in Greece, in order to investigate the labeling practices for crustacean products available in the market. A total of 100 tissue samples were collected from various retailers and markets across four Greek cities. In an effort to cover the highest range of products possible, different market presentations were targeted (fresh, frozen and cooked). Genomic DNA was extracted using the DNeasy Blood & Tissue Kit, according to the manufacturer's instructions. The mitochondrial gene selected as the target region of the analysis was the cytochrome c oxidase subunit I (COI). PCR products were purified and sequenced using an ABI 3500 Genetic Analyzer. Sequences were manually checked and edited using BioEdit software and compared against the ones available in GenBank and BOLD databases. Statistical analyses were conducted in R and PAST software. For most samples, COI amplification was successful, and species-level identification was possible. The preliminary results estimate moderate mislabeling rates (25%) in the identified samples. Mislabeling was most commonly detected in fresh products, with 50% of the samples in this category labeled incorrectly. Overall, the mislabeling rates detected by our study probably relate to some degree of unintentional misidentification, and lack of knowledge surrounding the legal designations by both retailers and consumers. For some species of crustaceans (i.e. Squila mantis) the mislabeling appears to be also affected by the local labeling practices. Across Greece, S. mantis is sold in the market under two common names, but only one is recognized by the country's legislation, and therefore any mislabeling is probably not profit-motivated. However, the substitution of the speckled shrimp (Metapenaus monoceros) for the distinct, giant river prawn (Macrobranchium rosenbergii), is a clear example of deliberate fraudulent substitution, aiming for profit. To our best knowledge, no scientific study investigating substitution and mislabeling rates in crustaceans has been conducted in Greece. For a better understanding of Greece's seafood market, similar DNA barcoding studies in other regions with increased touristic importance (e.g., the Greek islands) should be conducted. Regardless, the expansion of the list of species-specific designations for crustaceans in the country is advised.

Keywords: COI gene, food fraud, labelling control, molecular identification

Procedia PDF Downloads 43
129 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors

Authors: Galatee Levadoux, Trevor Benson, Chris Worrall

Abstract:

With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.

Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades

Procedia PDF Downloads 143
128 Scientific and Regulatory Challenges of Advanced Therapy Medicinal Products

Authors: Alaa Abdellatif, Gabrièle Breda

Abstract:

Background. Advanced therapy medicinal products (ATMPs) are innovative therapies that mainly target orphan diseases and high unmet medical needs. ATMP includes gene therapy medicinal products (GTMP), somatic cell therapy medicinal products (CTMP), and tissue-engineered therapies (TEP). Since legislation opened the way in 2007, 25 ATMPs have been approved in the EU, which is about the same amount as the U.S. Food and Drug Administration. However, not all of the ATMPs that have been approved have successfully reached the market and retained their approval. Objectives. We aim to understand all the factors limiting the market access to very promising therapies in a systemic approach, to be able to overcome these problems, in the future, with scientific, regulatory and commercial innovations. Further to recent reviews that focus either on specific countries, products, or dimensions, we will address all the challenges faced by ATMP development today. Methodology. We used mixed methods and a multi-level approach for data collection. First, we performed an updated academic literature review on ATMP development and their scientific and market access challenges (papers published between 2018 and April 2023). Second, we analyzed industry feedback from cell and gene therapy webinars and white papers published by providers and pharmaceutical industries. Finally, we established a comparative analysis of the regulatory guidelines published by EMA and the FDA for ATMP approval. Results: The main challenges in bringing these therapies to market are the high development costs. Developing ATMPs is expensive due to the need for specialized manufacturing processes. Furthermore, the regulatory pathways for ATMPs are often complex and can vary between countries, making it challenging to obtain approval and ensure compliance with different regulations. As a result of the high costs associated with ATMPs, challenges in obtaining reimbursement from healthcare payers lead to limited patient access to these treatments. ATMPs are often developed for orphan diseases, which means that the patient population is limited for clinical trials which can make it challenging to demonstrate their safety and efficacy. In addition, the complex manufacturing processes required for ATMPs can make it challenging to scale up production to meet demand, which can limit their availability and increase costs. Finally, ATMPs face safety and efficacy challenges: dangerous adverse events of these therapies like toxicity related to the use of viral vectors or cell therapy, starting material and donor-related aspects. Conclusion. As a result of our mixed method analysis, we found that ATMPs face a number of challenges in their development, regulatory approval, and commercialization and that addressing these challenges requires collaboration between industry, regulators, healthcare providers, and patient groups. This first analysis will help us to address, for each challenge, proper and innovative solution(s) in order to increase the number of ATMPs approved and reach the patients

Keywords: advanced therapy medicinal products (ATMPs), product development, market access, innovation

Procedia PDF Downloads 55
127 Treatment Process of Sludge from Leachate with an Activated Sludge System and Extended Aeration System

Authors: A. Chávez, A. Rodríguez, F. Pinzón

Abstract:

Society is concerned about measures of environmental, economic and social impacts generated in the solid waste disposal. These places of confinement, also known as landfills, are locations where problems of pollution and damage to human health are reduced. They are technically designed and operated, using engineering principles, storing the residue in a small area, compact it to reduce volume and covering them with soil layers. Problems preventing liquid (leachate) and gases produced by the decomposition of organic matter. Despite planning and site selection for disposal, monitoring and control of selected processes, remains the dilemma of the leachate as extreme concentration of pollutants, devastating soil, flora and fauna; aggressive processes requiring priority attention. A biological technology is the activated sludge system, used for tributaries with high pollutant loads. Since transforms biodegradable dissolved and particulate matter into CO2, H2O and sludge; transform suspended and no Settleable solids; change nutrients as nitrogen and phosphorous; and degrades heavy metals. The microorganisms that remove organic matter in the processes are in generally facultative heterotrophic bacteria, forming heterogeneous populations. Is possible to find unicellular fungi, algae, protozoa and rotifers, that process the organic carbon source and oxygen, as well as the nitrogen and phosphorus because are vital for cell synthesis. The mixture of the substrate, in this case sludge leachate, molasses and wastewater is maintained ventilated by mechanical aeration diffusers. Considering as the biological processes work to remove dissolved material (< 45 microns), generating biomass, easily obtained by decantation processes. The design consists of an artificial support and aeration pumps, favoring develop microorganisms (denitrifying) using oxygen (O) with nitrate, resulting in nitrogen (N) in the gas phase. Thus, avoiding negative effects of the presence of ammonia or phosphorus. Overall the activated sludge system includes about 8 hours of hydraulic retention time, which does not prevent the demand for nitrification, which occurs on average in a value of MLSS 3,000 mg/L. The extended aeration works with times greater than 24 hours detention; with ratio of organic load/biomass inventory under 0.1; and average stay time (sludge age) more than 8 days. This project developed a pilot system with sludge leachate from Doña Juana landfill - RSDJ –, located in Bogota, Colombia, where they will be subjected to a process of activated sludge and extended aeration through a sequential Bach reactor - SBR, to be dump in hydric sources, avoiding ecological collapse. The system worked with a dwell time of 8 days, 30 L capacity, mainly by removing values of BOD and COD above 90%, with initial data of 1720 mg/L and 6500 mg/L respectively. Motivating the deliberate nitrification is expected to be possible commercial use diffused aeration systems for sludge leachate from landfills.

Keywords: sludge, landfill, leachate, SBR

Procedia PDF Downloads 249
126 Detection of Antibiotic Resistance Genes and Antibiotic Residues in Plant-based Products

Authors: Morello Sara, Pederiva Sabina, Bianchi Manila, Martucci Francesca, Marchis Daniela, Decastelli Lucia

Abstract:

Vegetables represent an integral part of a healthy diet due to their valuable nutritional properties and the growth in consumer demand in recent years is particularly remarkable for a diet rich in vitamins and micronutrients. However, plant-based products are involved in several food outbreaks connected to various sources of contamination and quite often, bacteria responsible for side effects showed high resistance to antibiotics. The abuse of antibiotics can be one of the main mechanisms responsible for increasing antibiotic resistance (AR). Plants grown for food use can be contaminated directly by spraying antibiotics on crops or indirectly by treatments with antibiotics due to the use of manure, which may contain both antibiotics and genes of antibiotic resistance (ARG). Antibiotic residues could represent a potential way of human health risk due to exposure through the consumption of plant-based foods. The presence of antibiotic-resistant bacteria might pose a particular risk to consumers. The present work aims to investigate through a multidisciplinary approach the occurrence of ARG by means of a biomolecular approach (PCR) and the prevalence of antibiotic residues using a multi residues LC-MS/MS method, both in different plant-based products. During the period from July 2020 to October 2021, a total of 74 plant samples (33 lettuces and 41 tomatoes) were collected from 57 farms located throughout the Piedmont area, and18 out of 74 samples (11 lettuces and 7 tomatoes) were selected to LC-MS/MS analyses. DNA extracted (ExtractME, Blirt, Poland) from plants used on crops and isolated bacteria were analyzed with 6 sets of end-point multiplex PCR (Qiagen, Germany) to detect the presence of resistance genes of the main antibiotic families, such as tet genes (tetracyclines), bla (β-lactams) and mcr (colistin). Simultaneous detection of 43 molecules of antibiotics belonging to 10 different classes (tetracyclines, sulphonamides, quinolones, penicillins, amphenicols, macrolides, pleuromotilines, lincosamides, diaminopyrimidines) was performed using Exion LC system AB SCIEX coupled to a triple quadrupole mass spectrometer QTRAP 5500 from AB SCIEX. The PCR assays showed the presence of ARG in 57% (n=42): tetB (4.8%; n=2), tetA (9.5%; n=4), tetE (2.4%; n=1), tetL (12%; n=5), tetM (26%; n=11), blaSHV (21.5%; n=9), blaTEM (4.8%; n =2) and blaCTX-M (19%; n=8). In none of the analyzed samples was the mcr gene responsible for colistin resistance detected. Results obtained from LC-MS/MS analyses showed that none of the tested antibiotics appear to exceed the LOQ (100 ppb). Data obtained confirmed the presence of bacterial populations containing antibiotic resistance determinants such as tet gene (tetracycline) and bla genes (beta-lactams), widely used in human medicine, which can join the food chain and represent a risk for consumers, especially with raw products. The presence of traces of antibiotic residues in vegetables, in concentration below the LOQ of the LC-MS/MS method applied, cannot be excluded. In conclusion, traces of antibiotic residues could be a health risk to the consumer due to potential involvement in the spread of AR. PCR represents a useful and effective approach to characterize and monitor AR carried by bacteria from the entire food chain.

Keywords: plant-based products, ARG, PCR, antibiotic residues

Procedia PDF Downloads 71
125 Determinants of Child Nutritional Inequalities in Pakistan: Regression-Based Decomposition Analysis

Authors: Nilam Bano, Uzma Iram

Abstract:

Globally, the dilemma of undernutrition has become a notable concern for the researchers, academicians, and policymakers because of its severe consequences for many centuries. The nutritional deficiencies create hurdles for the people to achieve goals related to live a better lifestyle. Not only at micro level but also at the macro level, the consequences of undernutrition affect the economic progress of the country. The initial five years of a child’s life are considered critical for the physical growth and brain development. In this regard, children require special care and good quality food (nutrient intake) to fulfill their nutritional demand of the growing body. Having the sensitive stature and health, children specially under the age of 5 years are more vulnerable to the poor economic, housing, environmental and other social conditions. Beside confronting economic challenges and political upheavals, Pakistan is also going through from a rough patch in the context of social development. Majority of the children are facing serious health problems in the absence of required nutrition. The complexity of this issue is getting severe day by day and specially children are left behind with different type of immune problems and vitamins and mineral deficiencies. It is noted that children from the well-off background are less likely affected by the undernutrition. In order to underline this issue, the present study aims to highlight the existing nutritional inequalities among the children of under five years in Pakistan. Moreover, this study strives to decompose those factors that severely affect the existing nutritional inequality and standing in the queue to capture the consideration of concerned authorities. Pakistan Demographic and Health Survey 2012-13 was employed to assess the relevant indicators of undernutrition such as stunting, wasting, underweight and associated socioeconomic factors. The objectives were executed through the utilization of the relevant empirical techniques. Concentration indices were constructed to measure the nutritional inequalities by utilizing three measures of undernutrition; stunting, wasting and underweight. In addition to it, the decomposition analysis following the logistic regression was made to unfold the determinants that severely affect the nutritional inequalities. The negative values of concentration indices illustrate that children from the marginalized background are affected by the undernutrition more than their counterparts who belong from rich households. Furthermore, the result of decomposition analysis indicates that child age, size of a child at birth, wealth index, household size, parents’ education, mother’s health and place of residence are the most contributing factors in the prevalence of existing nutritional inequalities. Considering the result of the study, it is suggested to the policymakers to design policies in a way so that the health sector of Pakistan can stimulate in a productive manner. Increasing the number of effective health awareness programs for mothers would create a notable difference. Moreover, the education of the parents must be concerned by the policymakers as it has a significant association with the present research in terms of eradicating the nutritional inequalities among children.

Keywords: concentration index, decomposition analysis, inequalities, undernutrition, Pakistan

Procedia PDF Downloads 118