Search results for: COSMO models
2000 A Cros Sectional Observational Study of Prescription Pattern of Gastro-Protective Drugs with Non-Steroidal Anti-Inflammatory Drugs in Nilgiris, India
Authors: B.S. Roopa
Abstract:
Objectives: To investigate the prevalence of concomitant use of GPDs in patients treated with NSAIDs and GPDs in recommended dose and frequency as prophylaxis. And also to know the association between risk factors and prescription of GPDs in patients treated with NSAIDs. Methods: Study was a prospective, observational, cross-sectional survey. Data from patients with prescription of NSAIDs at the out-patient departments of secondary care Hospital, Nilgiris, India were collected in a specially designed proforma for a period of 45 days. Analysis using χ2 tests for discrete variables. Factors that might be associated with prescription of GPD with NSIADs were assessed in multiple logistic regression models. Results: Three hundred and three patients were included in this study, and the rate of GPD prescription was 89.1%. Most of the patients received H2-receptor antagonist, and, to a lesser degree, antacid and proton pump inhibitor. Patients with history of GI ulcer/bleeding were much more likely to be co-prescribed GPD than those who had no history of GI disorders .Compared with patients who were managed in general outpatient clinic, those managed in Secondary care hospital in Nilgrisis, India were more likely to receive GPD. Conclusions: The prescription rate of GPD with NSAIDs is high. Patients were prescribed with H2RA with dose of 150mg twice daily, which are not effective in reducing the risk of NSAIDs induced gastric ulcer. Only the frequency of NSAIDs prescription was considered significant determinant for the co-prescription with GPAs in patients who are < 65 years and ≥ 65 years old.Keywords: gastro protective agents, non steridol anti inlfammatory agents
Procedia PDF Downloads 2961999 Prediction of Excess Pore Pressure Variation of Reinforced Silty Sand by Stone Columns During Liquefaction
Authors: Zeineb Ben Salem, Wissem Frikha, Mounir Bouassida
Abstract:
Liquefaction has been responsible for tremendous amounts of damage in historical earthquakes around the world. The installation of stone columns is widely adopted to prevent liquefaction. Stone columns provide a drainage path, and due to their high permeability, allow for the quick dissipation of earthquake generated excess pore water pressure. Several excess pore pressure generation models in silty sand have been developed and calibrated based on the results of shaking table and centrifuge tests focusing on the effect of silt content on liquefaction resistance. In this paper, the generation and dissipation of excess pore pressure variation of reinforced silty sand by stone columns during liquefaction are analyzedwith different silt content based on test results. In addition, the installation effect of stone columns is investigated. This effect is described by a decrease in horizontal permeability within a disturbed zone around the column. Obtained results show that reduced soil permeability and a larger disturbed zone around the stone column increases the generation of excess pore pressure during the cyclic loading and decreases the dissipation rate after cyclic loading. On the other hand, beneficial effects of silt content were observed in the form of a decrease in excess pore water pressure.Keywords: stone column, liquefaction, excess pore pressure, silt content, disturbed zone, reduced permeability
Procedia PDF Downloads 1561998 Pricing Strategy in Marketing: Balancing Value and Profitability
Authors: Mohsen Akhlaghi, Tahereh Ebrahimi
Abstract:
Pricing strategy is a vital component in achieving the balance between customer value and business profitability. The aim of this study is to provide insights into the factors, techniques, and approaches involved in pricing decisions. The study utilizes a descriptive approach to discuss various aspects of pricing strategy in marketing, drawing on concepts from market research, consumer psychology, competitive analysis, and adaptability. This approach presents a comprehensive view of pricing decisions. The result of this exploration is a framework that highlights key factors influencing pricing decisions. The study examines how factors such as market positioning, product differentiation, and brand image shape pricing strategies. Additionally, it emphasizes the role of consumer psychology in understanding price elasticity, perceived value, and price-quality associations that influence consumer behavior. Various pricing techniques, including charm pricing, prestige pricing, and bundle pricing, are mentioned as methods to enhance sales by influencing consumer perceptions. The study also underscores the importance of adaptability in responding to market dynamics through regular price monitoring, dynamic pricing, and promotional strategies. It recognizes the role of digital platforms in enabling personalized pricing and dynamic pricing models. In conclusion, the study emphasizes that effective pricing strategies strike a balance between customer value and business profitability, ultimately driving sales, enhancing brand perception, and fostering lasting customer relationships.Keywords: business, customer benefits, marketing, pricing
Procedia PDF Downloads 791997 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments
Authors: Naduni Ranasinghe
Abstract:
E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model
Procedia PDF Downloads 1571996 Modeling Operating Theater Scheduling and Configuration: An Integrated Model in Health-Care Logistics
Authors: Sina Keyhanian, Abbas Ahmadi, Behrooz Karimi
Abstract:
We present a multi-objective binary programming model which considers surgical cases are scheduling among operating rooms and the configuration of surgical instruments in limited capacity hospital trays, simultaneously. Many mathematical models have been developed previously in the literature addressing different challenges in health-care logistics such as assigning operating rooms, leveling beds, etc. But what happens inside the operating rooms along with the inventory management of required instruments for various operations, and also their integration with surgical scheduling have been poorly discussed. Our model considers the minimization of movements between trays during a surgery which recalls the famous cell formation problem in group technology. This assumption can also provide a major potential contribution to robotic surgeries. The tray configuration problem which consumes surgical instruments requirement plan (SIRP) and sequence of surgical procedures based on required instruments (SIRO) is nested inside the bin packing problem. This modeling approach helps us understand that most of the same-output solutions will not be necessarily identical when it comes to the rearrangement of surgeries among rooms. A numerical example has been dealt with via a proposed nested simulated annealing (SA) optimization approach which provides insights about how various configurations inside a solution can alter the optimal condition.Keywords: health-care logistics, hospital tray configuration, off-line bin packing, simulated annealing optimization, surgical case scheduling
Procedia PDF Downloads 2821995 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 2281994 Factors Affecting Slot Machine Performance in an Electronic Gaming Machine Facility
Authors: Etienne Provencal, David L. St-Pierre
Abstract:
A facility exploiting only electronic gambling machines (EGMs) opened in 2007 in Quebec City, Canada under the name of Salons de Jeux du Québec (SdjQ). This facility is one of the first worldwide to rely on that business model. This paper models the performance of such EGMs. The interest from a managerial point of view is to identify the variables that can be controlled or influenced so that a comprehensive model can help improve the overall performance of the business. The EGM individual performance model contains eight different variables under study (Game Title, Progressive jackpot, Bonus Round, Minimum Coin-in, Maximum Coin-in, Denomination, Slant Top and Position). Using data from Quebec City’s SdjQ, a linear regression analysis explains 90.80% of the EGM performance. Moreover, results show a behavior slightly different than that of a casino. The addition of GameTitle as a factor to predict the EGM performance is one of the main contributions of this paper. The choice of the game (GameTitle) is very important. Games having better position do not have significantly better performance than games located elsewhere on the gaming floor. Progressive jackpots have a positive and significant effect on the individual performance of EGMs. The impact of BonusRound on the dependent variable is significant but negative. The effect of Denomination is significant but weakly negative. As expected, the Language of an EGMS does not impact its individual performance. This paper highlights some possible improvements by indicating which features are performing well. Recommendations are given to increase the performance of the EGMs performance.Keywords: EGM, linear regression, model prediction, slot operations
Procedia PDF Downloads 2571993 Hidden Markov Model for Financial Limit Order Book and Its Application to Algorithmic Trading Strategy
Authors: Sriram Kashyap Prasad, Ionut Florescu
Abstract:
This study models the intraday asset prices as driven by Markov process. This work identifies the latent states of the Hidden Markov model, using limit order book data (trades and quotes) to continuously estimate the states throughout the day. This work builds a trading strategy using estimated states to generate signals. The strategy utilizes current state to recalibrate buy/ sell levels and the transition between states to trigger stop-loss when adverse price movements occur. The proposed trading strategy is tested on the Stevens High Frequency Trading (SHIFT) platform. SHIFT is a highly realistic market simulator with functionalities for creating an artificial market simulation by deploying agents, trading strategies, distributing initial wealth, etc. In the implementation several assets on the NASDAQ exchange are used for testing. In comparison to a strategy with static buy/ sell levels, this study shows that the number of limit orders that get matched and executed can be increased. Executing limit orders earns rebates on NASDAQ. The system can capture jumps in the limit order book prices, provide dynamic buy/sell levels and trigger stop loss signals to improve the PnL (Profit and Loss) performance of the strategy.Keywords: algorithmic trading, Hidden Markov model, high frequency trading, limit order book learning
Procedia PDF Downloads 1511992 Analysis of Urban Rail Transit Station's Accessibility Reliability: A Case Study of Hangzhou Metro, China
Authors: Jin-Qu Chen, Jie Liu, Yong Yin, Zi-Qi Ju, Yu-Yao Wu
Abstract:
Increase in travel fare and station’s failure will have huge impact on passengers’ travel. The Urban Rail Transit (URT) station’s accessibility reliability under increasing travel fare and station failure are analyzed in this paper. Firstly, the passenger’s travel path is resumed based on stochastic user equilibrium and Automatic Fare Collection (AFC) data. Secondly, calculating station’s importance by combining LeaderRank algorithm and Ratio of Station Affected Passenger Volume (RSAPV), and then the station’s accessibility evaluation indicators are proposed based on the analysis of passenger’s travel characteristic. Thirdly, station’s accessibility under different scenarios are measured and rate of accessibility change is proposed as station’s accessibility reliability indicator. Finally, the accessibility of Hangzhou metro stations is analyzed by the formulated models. The result shows that Jinjiang station and Liangzhu station are the most important and convenient station in the Hangzhou metro, respectively. Station failure and increase in travel fare and station failure have huge impact on station’s accessibility, except for increase in travel fare. Stations in Hangzhou metro Line 1 have relatively worse accessibility reliability and Fengqi Road station’s accessibility reliability is weakest. For Hangzhou metro operational department, constructing new metro line around Line 1 and protecting Line 1’s station preferentially can effective improve the accessibility reliability of Hangzhou metro.Keywords: automatic fare collection data, AFC, station’s accessibility reliability, stochastic user equilibrium, urban rail transit, URT
Procedia PDF Downloads 1361991 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer
Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved
Abstract:
Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.Keywords: computer-aided system, detection, image segmentation, morphology
Procedia PDF Downloads 1511990 Exploring the Energy Model of Cumulative Grief
Authors: Masica Jordan Alston, Angela N. Bullock, Angela S. Henderson, Stephanie Strianse, Sade Dunn, Joseph Hackett, Alaysia Black Hackett, Marcus Mason
Abstract:
The Energy Model of Cumulative Grief was created in 2018. The Energy Model of Cumulative Grief utilizes historic models of grief stage theories. The innovative model is additionally unique due to its focus on cultural responsiveness. The Energy Model of Cumulative Grief helps to train practitioners who work with clients dealing with grief and loss. This paper assists in introducing the world to this innovative model and exploring how this model positively impacted a convenience sample of 140 practitioners and individuals experiencing grief and loss. Respondents participated in Webinars provided by the National Grief and Loss Center of America (NGLCA). Participants in this cross-sectional research design study completed one of three Grief and Loss Surveys created by the Grief and Loss Centers of America. Data analysis for this study was conducted via SPSS and Survey Hero to examine survey results for respondents. Results indicate that the Energy Model of Cumulative Grief was an effective resource for participants in addressing grief and loss. The majority of participants found the Webinars to be helpful and a conduit to providing them with higher levels of hope. The findings suggest that using The Energy Model of Cumulative Grief is effective in providing culturally responsive grief and loss resources to practitioners and clients. There are far reaching implications with the use of technology to provide hope to those suffering from grief and loss worldwide through The Energy Model of Cumulative Grief.Keywords: grief, loss, grief energy, grieving brain
Procedia PDF Downloads 871989 Vehicle Routing Problem Considering Alternative Roads under Triple Bottom Line Accounting
Authors: Onur Kaya, Ilknur Tukenmez
Abstract:
In this study, we consider vehicle routing problems on networks with alternative direct links between nodes, and we analyze a multi-objective problem considering the financial, environmental and social objectives in this context. In real life, there might exist several alternative direct roads between two nodes, and these roads might have differences in terms of their lengths and durations. For example, a road might be shorter than another but might require longer time due to traffic and speed limits. Similarly, some toll roads might be shorter or faster but require additional payment, leading to higher costs. We consider such alternative links in our problem and develop a mixed integer linear programming model that determines which alternative link to use between two nodes, in addition to determining the optimal routes for different vehicles, depending on the model objectives and constraints. We consider the minimum cost routing as the financial objective for the company, minimizing the CO2 emissions and gas usage as the environmental objectives, and optimizing the driver working conditions/working hours, and minimizing the risks of accidents as the social objectives. With these objective functions, we aim to determine which routes, and which alternative links should be used in addition to the speed choices on each link. We discuss the results of the developed vehicle routing models and compare their results depending on the system parameters.Keywords: vehicle routing, alternative links between nodes, mixed integer linear programming, triple bottom line accounting
Procedia PDF Downloads 4091988 Construction Unit Rate Factor Modelling Using Neural Networks
Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula
Abstract:
Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty-five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using the neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility, overhead and profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.Keywords: construction cost factors, neural networks, roadworks, Zambian construction industry
Procedia PDF Downloads 3661987 Mapping of Solar Radiation Anomalies Based on Climate Change
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini
Abstract:
The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.Keywords: climate change, energy, IPCC, solar radiation
Procedia PDF Downloads 1941986 Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method
Authors: Masoud Mahdavi
Abstract:
During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much.Keywords: steel plate shear wall with opening, cyclic loading, reduced cross-section beam, finite element method, Abaqus software
Procedia PDF Downloads 1231985 Modeling and Monitoring of Agricultural Influences on Harmful Algal Blooms in Western Lake Erie
Authors: Xiaofang Wei
Abstract:
Harmful Algal Blooms are a recurrent disturbing occurrence in Lake Erie that has caused significant negative impacts on water quality and aquatic ecosystem around Great Lakes areas in the United States. Targeting the recent HAB events in western Lake Erie, this paper utilizes satellite imagery and hydrological modeling to monitor HAB cyanobacteria blooms and analyze the impacts of agricultural activities from Maumee watershed, the biggest watershed of Lake Erie and agriculture dominant.SWAT (Soil & Water Assessment Tool) Model for Maumee watershed was established with DEM, land use data, crop data layer, soil data, and weather data, and calibrated with Maumee River gauge stations data for streamflow and nutrients. Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) was applied to remove atmospheric attenuation and cyanobacteria Indices were calculated from Landsat OLI imagery to study the intensity of HAB events in the years 2015, 2017, and 2019. The agricultural practice and nutrients management within the Maumee watershed was studied and correlated with HAB cyanobacteria indices to study the relationship between HAB intensity and nutrient loadings. This study demonstrates that hydrological models and satellite imagery are effective tools in HAB monitoring and modeling in rivers and lakes.Keywords: harmful algal bloom, landsat OLI imagery, SWAT, HAB cyanobacteria
Procedia PDF Downloads 1771984 Internet Economy: Enhancing Information Communication Technology Adaptation, Service Delivery, Content and Digital Skills for Small Holder Farmers in Uganda
Authors: Baker Ssekitto, Ambrose Mbogo
Abstract:
The study reveals that indeed agriculture employs over 70% of Uganda’s population, of which majority are youth and women. The study further reveals that over 70% of the farmers are smallholder farmers based in rural areas, whose operations are greatly affected by; climate change, weak digital skills, limited access to productivity knowledge along value chains, limited access to quality farm inputs, weak logistics systems, limited access to quality extension services, weak business intelligence, limited access to quality markets among others. It finds that the emerging 4th industrial revolution powered by artificial intelligence, 5G and data science will provide possibilities of addressing some of these challenges. Furthermore, the study finds that despite rapid development of ICT4Agric Innovation, their uptake is constrained by a number of factors including; limited awareness of these innovations, low internet and smart phone penetration especially in rural areas, lack of appropriate digital skills, inappropriate programmes implementation models which are project and donor driven, limited articulation of value addition to various stakeholders among others. Majority of farmers and other value chain actors lacked knowledge and skills to harness the power of ICTs, especially their application of ICTs in monitoring and evaluation on quality of service in the extension system and farm level processes.Keywords: artificial intelligence, productivity, ICT4agriculture, value chain, logistics
Procedia PDF Downloads 791983 Use of Quasi-3D Inversion of VES Data Based on Lateral Constraints to Characterize the Aquifer and Mining Sites of an Area Located in the North-East of Figuil, North Cameroon
Authors: Fofie Kokea Ariane Darolle, Gouet Daniel Hervé, Koumetio Fidèle, Yemele David
Abstract:
The electrical resistivity method is successfully used in this paper in order to have a clearer picture of the subsurface of the North-East ofFiguil in northern Cameroon. It is worth noting that this method is most often used when the objective of the study is to image the shallow subsoils by considering them as a set of stratified ground layers. The problem to be solved is very often environmental, and in this case, it is necessary to perform an inversion of the data in order to have a complete and accurate picture of the parameters of the said layers. In the case of this work, thirty-three (33) Schlumberger VES have been carried out on an irregular grid to investigate the subsurface of the study area. The 1D inversion applied as a preliminary modeling tool and in correlation with the mechanical drillings results indicates a complex subsurface lithology distribution mainly consisting of marbles and schists. Moreover, the quasi-3D inversion with lateral constraint shows that the misfit between the observed field data and the model response is quite good and acceptable with a value low than 10%. The method also reveals existence of two water bearing in the considered area. The first is the schist or weathering aquifer (unsuitable), and the other is the marble or the fracturing aquifer (suitable). The final quasi 3D inversion results and geological models indicate proper sites for groundwaters prospecting and for mining exploitation, thus allowing the economic development of the study area.Keywords: electrical resistivity method, 1D inversion, quasi 3D inversion, groundwaters, mining
Procedia PDF Downloads 1571982 The Long-Term Impact of Health Conditions on Social Mobility Outcomes: A Modelling Study
Authors: Lise Retat, Maria Carmen Huerta, Laura Webber, Franco Sassi
Abstract:
Background: Intra-generational social mobility (ISM) can be defined as the extent to which individuals change their socio-economic position over a period of time or during their entire life course. The relationship between poor health and ISM is established. Therefore, quantifying the impact that potential health policies have on ISM now and into the future would provide evidence for how social inequality could be reduced. This paper takes the condition of overweight and obesity as an example and estimates the mean earning change per individual if the UK were to introduce policies to effectively reduce overweight and obesity. Methods: The HealthLumen individual-based model was used to estimate the impact of obesity on social mobility measures, such as earnings, occupation, and wealth. The HL tool models each individual's probability of experiencing downward ISM as a result of their overweight and obesity status. For example, one outcome of interest was the cumulative mean earning per person of implementing a policy which would reduce adult overweight and obesity by 1% each year between 2020 and 2030 in the UK. Results: Preliminary analysis showed that by reducing adult overweight and obesity by 1% each year between 2020 and 2030, the cumulative additional mean earnings would be ~1,000 Euro per adult by 2030. Additional analysis will include other social mobility indicators. Conclusions: These projections are important for illustrating the role of health in social mobility and for providing evidence for how health policy can make a difference to social mobility outcomes and, in turn, help to reduce inequality.Keywords: modelling, social mobility, obesity, health
Procedia PDF Downloads 1221981 Antibacterial Hydrogels for Wound Care
Authors: Saba Atefyekta
Abstract:
Aim: Control of bacterial bioburden in wounds is an important step for minimizing the risk of wound infection. An antimicrobial hydrogel wound dressing is developed out of soft polymeric hydrogels that contain antimicrobial peptides (AMPs). Such wound dressings can bind and kill all types of bacteria, even the resistance types at the wound site. Methods: AMPs are permanently bonded onto a soft nanostructured polymer via covalent attachment and physical entanglement. This improves stability, rapid antibacterial activity, and, most importantly, prevents the leaching of AMPs. Major Findings: Antimicrobial analysis of antimicrobial hydrogels using in-vitro wound models confirmed >99% killing efficiency against multiple bacterial trains, including MRSA, MDR, E. Coli. Furthermore, the hydrogel retained its antibacterial activity for up to 4 days when exposed to human serum. Tests confirmed no release of AMPs, and it was proven non-toxic to mammalian cells. An in-vivo study on human intact skin showed a significant reduction of bacteria for part of the subject’s skin treated with antibacterial hydrogels. A similar result was detected through a qualitative study in veterinary trials on different types of surgery wounds in cats, dogs, and horses. Conclusions: Antimicrobial hydrogels wound dressings developed by permanent attachment of AMPs can effectively and rapidly kill bacteria in contact. Such antibacterial hydrogel wound dressings are non-toxic and do not release any substances into the wound.Keywords: antibacterial wound dressing, antimicrobial peptides, post-surgical wounds, infection
Procedia PDF Downloads 841980 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark
Authors: B. Elshafei, X. Mao
Abstract:
The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation
Procedia PDF Downloads 1371979 Artificial Intelligence in Melanoma Prognosis: A Narrative Review
Authors: Shohreh Ghasemi
Abstract:
Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine
Procedia PDF Downloads 831978 Importance of Road Infrastructure on the People Live in Afghanistan
Authors: Mursal Ibrahim Zada
Abstract:
Since 2001, the new Government of Afghanistan has put the improvement of transportation in rural area as one of the key issues for the development of the country. Since then, about 17,000 km of rural roads were planned to be constructed in the entire country. This thesis will assess the impact of rural road improvement on the development of rural communities and housing facilities. Specifically, this study aims to show that the improved road has leads to an improvement in the community, which in turn has a positive effect on the lives of rural people. To obtain this goal, a questionnaire survey was conducted in March 2015 to the residents of four different districts of Kabul province, Afghanistan, where the road projects were constructed in recent years. The collected data was analyzed using on a regression analysis considering different factors such as land price, waiting time at the station, travel time to the city, number of employed family members and so on. Three models are developed to demonstrate the relationship between different factors before and after the improvement of rural transportation. The results showed a significant change positively in the value of land price and housing facilities, travel time to the city, waiting time at the station, number of employed family members, fare per trip to the city, and number of trips to the city per month after the pavement of the road. The results indicated that the improvement of transportation has a significant impact on the improvement of the community in different parts, especially on the price of land and housing facility and travel time to the city.Keywords: accessibility, Afghanistan, housing facility, rural area, land price
Procedia PDF Downloads 2661977 Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration
Authors: Smaran Manchala
Abstract:
Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations.Keywords: CKKS scheme, runtime efficiency, fully homomorphic encryption (FHE), GPU acceleration, vector parallelization
Procedia PDF Downloads 281976 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load
Authors: David Koren, Vojko Kilar
Abstract:
The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab. The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.Keywords: extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction
Procedia PDF Downloads 3041975 Revealing of the Wave-Like Process in Kinetics of the Structural Steel Radiation Degradation
Authors: E. A. Krasikov
Abstract:
Dependence of the materials properties on neutron irradiation intensity (flux) is a key problem while usage data of the accelerated materials irradiation in test reactors for forecasting of their capacity for work in realistic (practical) circumstances of operation. Investigations of the reactor pressure vessel steel radiation degradation dependence on fast neutron fluence (embrittlement kinetics) at low flux reveal the instability in the form of the scatter of the experimental data and wave-like sections of embrittlement kinetics appearance. Disclosure of the steel degradation oscillating is a sign of the steel structure cyclic self-recovery transformation as it take place in self-organization processes. This assumption has received support through the discovery of the similar ‘anomalous’ data in scientific publications and by means of own additional experiments. Data obtained stimulate looking-for ways to management of the structural steel radiation stability (for example, by means of nano - structure modification for radiation defects annihilation intensification) for creation of the intelligent self-recovering material. Expected results: - radiation degradation theory and mechanisms development, - more adequate models of the radiation embrittlement elaboration, - surveillance specimen programs improvement, - methods and facility development for usage data of the accelerated materials irradiation for forecasting of their capacity for work in realistic (practical) circumstances of operation, - search of the ways for creating of the radiation stable self-recovery intelligent materials.Keywords: degradation, radiation, steel, wave-like kinetics
Procedia PDF Downloads 3051974 Supersonic Combustion (Scramjet) Containing Flame-Holder with Slot Injection
Authors: Anupriya, Bikramjit Sinfh, Radhay Shyam
Abstract:
In order to improve mixing phenomena and combustion processes in supersonic flow, the current work has concentrated on identifying the ideal cavity parameters using CFD ANSYS Fluent. Offset ratios (OR) and aft ramp angles () have been manipulated in simulations of several models, but the length-to-depth ratio has remained the same. The length-to-depth ratio of all cavity flows is less than 10, making them all open. Hydrogen fuel was injected into a supersonic air flow with a Mach number of 3.75 using a chamber with a 1 mm diameter and a transverse slot nozzle. The free stream had conditions of a pressure of 1.2 MPa, a temperature of 299K, and a Reynolds number of 2.07x107. This method has the ability to retain a flame since the cavity facilitates rapid mixing of fuel and oxidizer and decreases total pressure losses. The impact of the cavity on combustion efficiency and total pressure loss is discussed, and the results are compared to those of a model without a cavity. Both the mixing qualities and the combustion processes were enhanced in the model with the cavity. The overall pressure loss as well as the effectiveness of the combustion process both increase with the increase in the ramp angle to the rear. When OR is increased, however, resistance to the supersonic flow field is reduced, which has a detrimental effect on both parameters. For a given ramp height, larger pressure losses were observed at steeper ramp angles due to increased eddy-viscous turbulent flow and increased wall drag.Keywords: total pressure loss, flame holder, supersonic combustion, combustion efficiency, cavity, nozzle
Procedia PDF Downloads 951973 The Determinants of Financial Stability: Evidence from Jordan
Authors: Wasfi Al Salamat, Shaker Al-Kharouf
Abstract:
This study aims to examine the determinants of financial stability for 13 commercial banks listed on the Amman stock exchange (ASE) over the period (2007-2016) after controlling for the independent variables: return on equity (ROE), return on assets (ROA), earnings per share (EPS), growth in gross domestic product (GDP), inflation rate and debt ratio to measure the financial stability by three main variables: capital adequacy, non-performing loans and the number of returned checks. The balanced panel data statistical approach has been used for data analysis. Results are estimated by using multiple regression models. The empirical results suggested that there is statistically significant negative effect of inflation rate and debt ratio on the capital adequacy while there is statistically significant positive effect of growth in gross domestic product on capital adequacy. In contrast, there is statistically significant negative effect of return on equity and growth in gross domestic product on the non-performing loans while there is statistically significant positive effect of inflation rate on non-performing loans. Finally, there is statistically significant negative effect of growth in gross domestic product on the number of returned checks while there is statistically significant positive effect of inflation rate on the number of returned checks.Keywords: capital adequacy, financial stability, non-performing loans, number of returned checks, ASE
Procedia PDF Downloads 2271972 Effect of Acid-Basic Treatments of Lingocellulosic Material Forest Wastes Wild Carob on Ethyl Violet Dye Adsorption
Authors: Abdallah Bouguettoucha, Derradji Chebli, Tariq Yahyaoui, Hichem Attout
Abstract:
The effect of acid -basic treatment of lingocellulosic material (forest wastes wild carob) on Ethyl violet adsorption was investigated. It was found that surface chemistry plays an important role in Ethyl violet (EV) adsorption. HCl treatment produces more active acidic surface groups such as carboxylic and lactone, resulting in an increase in the adsorption of EV dye. The adsorption efficiency was higher for treated of lingocellulosic material with HCl than for treated with KOH. Maximum biosorption capacity was 170 and 130 mg/g, for treated of lingocellulosic material with HCl than for treated with KOH at pH 6 respectively. It was also found that the time to reach equilibrium takes less than 25 min for both treated materials. The adsorption of basic dye (i.e., ethyl violet or basic violet 4) was carried out by varying some process parameters, such as initial concentration, pH and temperature. The adsorption process can be well described by means of a pseudo-second-order reaction model showing that boundary layer resistance was not the rate-limiting step, as confirmed by intraparticle diffusion since the linear plot of Qt versus t^0.5 did not pass through the origin. In addition, experimental data were accurately expressed by the Sips equation if compared with the Langmuir and Freundlich isotherms. The values of ΔG° and ΔH° confirmed that the adsorption of EV on acid-basic treated forest wast wild carob was spontaneous and endothermic in nature. The positive values of ΔS° suggested an irregular increase of the randomness at the treated lingocellulosic material -solution interface during the adsorption process.Keywords: adsorption, isotherm models, thermodynamic parameters, wild carob
Procedia PDF Downloads 2781971 A Collective Intelligence Approach to Safe Artificial General Intelligence
Authors: Craig A. Kaplan
Abstract:
If AGI proves to be a “winner-take-all” scenario where the first company or country to develop AGI dominates, then the first AGI must also be the safest. The safest, and fastest, path to Artificial General Intelligence (AGI) may be to harness the collective intelligence of multiple AI and human agents in an AGI network. This approach has roots in seminal ideas from four of the scientists who founded the field of Artificial Intelligence: Allen Newell, Marvin Minsky, Claude Shannon, and Herbert Simon. Extrapolating key insights from these founders of AI, and combining them with the work of modern researchers, results in a fast and safe path to AGI. The seminal ideas discussed are: 1) Society of Mind (Minsky), 2) Information Theory (Shannon), 3) Problem Solving Theory (Newell & Simon), and 4) Bounded Rationality (Simon). Society of Mind describes a collective intelligence approach that can be used with AI and human agents to create an AGI network. Information theory helps address the critical issue of how an AGI system will increase its intelligence over time. Problem Solving Theory provides a universal framework that AI and human agents can use to communicate efficiently, effectively, and safely. Bounded Rationality helps us better understand not only the capabilities of SuperIntelligent AGI but also how humans can remain relevant in a world where the intelligence of AGI vastly exceeds that of its human creators. Each key idea can be combined with recent work in the fields of Artificial Intelligence, Machine Learning, and Large Language Models to accelerate the development of a working, safe, AGI system.Keywords: AI Agents, Collective Intelligence, Minsky, Newell, Shannon, Simon, AGI, AGI Safety
Procedia PDF Downloads 93