Search results for: quantum mechanics of spin dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4011

Search results for: quantum mechanics of spin dynamics

3561 Modification of ZnMgO NPs for Improving Device Performance of Quantum Dot Light-emitting Diodes

Authors: Juyon Lee, Myoungjin Park, Jonghoon Kim, Jaekook Ha, Chanhee Lee

Abstract:

We demonstrated a new positive aging methods of QLEDs devices that can apply in large size inkjet printing display. Conventional positive aging method using photo-curable resin remains unclear mechanism of the phenomenon and also there are many limitations to apply large size panels in commercial process. Through the photo acid generator (PAG) in ETL Ink, we achieved 90% of the efficiency of the conventional method and up to 1000h life time stability (T80). This techniques could be applied to next generation of QLEDs panels and also can prove the working mechanism of positive aging in QLED related to modification of ZnMgO NPs.

Keywords: quantum dots, QLED, printing, positive aging, ZnMgO NPs

Procedia PDF Downloads 140
3560 The Ultimate Scaling Limit of Monolayer Material Field-Effect-Transistors

Authors: Y. Lu, L. Liu, J. Guo

Abstract:

Monolayer graphene and dichaclogenide semiconductor materials attract extensive research interest for potential nanoelectronics applications. The ultimate scaling limit of double gate MoS2 Field-Effect-Transistors (FETs) with a monolayer thin body is examined and compared with ultra-thin-body Si FETs by using self-consistent quantum transport simulation in the presence of phonon scattering. Modelling of phonon scattering, quantum mechanical effects, and self-consistent electrostatics allows us to accurately assess the performance potential of monolayer MoS2 FETs. The results revealed that monolayer MoS2 FETs show 52% smaller Drain Induced Barrier Lowering (DIBL) and 13% Smaller Sub-Threshold Swing (SS) than 3 nm-thick-body Si FETs at a channel length of 10 nm with the same gating. With a requirement of SS<100mV/dec, the scaling limit of monolayer MoS2 FETs is assessed to be 5 nm, comparing with 8nm of the ultra-thin-body Si counterparts due to the monolayer thin body and higher effective mass which reduces direct source-to-drain tunnelling. By comparing with the ITRS target for high performance logic devices of 2023; double gate monolayer MoS2 FETs can fulfil the ITRS requirements.

Keywords: nanotransistors, monolayer 2D materials, quantum transport, scaling limit

Procedia PDF Downloads 236
3559 Periodically Forced Oscillator with Noisy Chaotic Dynamics

Authors: Adedayo Oke Adelakun

Abstract:

The chaotic dynamics of periodically forced oscillators with smooth potential has been extensively investigated via theoretical, numerical and experimental simulations. With the advent of the study of chaotic dynamics by means of method of multiple time scale analysis, Melnikov theory, bifurcation diagram, Poincare's map, bifurcation diagrams and Lyapunov exponents, it has become necessary to seek for a better understanding of nonlinear oscillator with noisy term. In this paper, we examine the influence of noise on complex dynamical behaviour of periodically forced F6 - Duffing oscillator for specific choice of noisy parameters. The inclusion of noisy term improves the dynamical behaviour of the oscillator which may have wider application in secure communication than smooth potential.

Keywords: hierarchical structure, periodically forced oscillator, noisy parameters, dynamical behaviour, F6 - duffing oscillator

Procedia PDF Downloads 326
3558 A Qualitative Description of the Dynamics in the Interactions between Three Populations: Pollinators, Plants, and Herbivores

Authors: Miriam Sosa-Díaz, Faustino Sánchez-Garduño

Abstract:

In population dynamics the study of both, the abundance and the spatial distribution of the populations in a given habitat, is a fundamental issue a From ecological point of view, the determination of the factors influencing such changes involves important problems. In this paper a mathematical model to describe the temporal dynamic and the spatiotemporal dynamic of the interaction of three populations (pollinators, plants and herbivores) is presented. The study we present is carried out by stages: 1. The temporal dynamics and 2. The spatio-temporal dynamics. In turn, each of these stages is developed by considering three cases which correspond to the dynamics of each type of interaction. For instance, for stage 1, we consider three ODE nonlinear systems describing the pollinator-plant, plant-herbivore and plant-pollinator-herbivore, interactions, respectively. In each of these systems different types of dynamical behaviors are reported. Namely, transcritical and pitchfork bifurcations, existence of a limit cycle, existence of a heteroclinic orbit, etc. For the spatiotemporal dynamics of the two mathematical models a novel factor are introduced. This consists in considering that both, the pollinators and the herbivores, move towards those places of the habitat where the plant population density is high. In mathematical terms, this means that the diffusive part of the pollinators and herbivores equations depend on the plant population density. The analysis of this part is presented by considering pairs of populations, i. e., the pollinator-plant and plant-herbivore interactions and at the end the two mathematical model is presented, these models consist of two coupled nonlinear partial differential equations of reaction-diffusion type. These are defined on a rectangular domain with the homogeneous Neumann boundary conditions. We focused in the role played by the density dependent diffusion term into the coexistence of the populations. For both, the temporal and spatio-temporal dynamics, a several of numerical simulations are included.

Keywords: bifurcation, heteroclinic orbits, steady state, traveling wave

Procedia PDF Downloads 300
3557 Modernizer'ness as Madness: A Comparative Historical Study of Emperor Tewodros II of Ethiopia and Sultan Selim III of Ottoman Turkey's Modernization Reforms

Authors: Seid Ahmed Mohammed, Nedim Yalansiz

Abstract:

Many historians hardly gave due attention for historical comparison as their methods of study. They were still stunt supporter of the use of their own historical research method in their studies. But this method lacks the way to analyze some worldwide dynamics of events in comparative perspectives. Some dynamics like revolution, modernization, societal change and transformation needs broader analysis for broadening our historical knowledge’s by comparing and contrasting of the causes, courses and consequences of such dynamics historical developments in the world at large. In this paper, our study focuses up on ‘the dynamics of modernization’ and the challenge of modernity of the old regimes. For instance, countries like Turkey, Ethiopia, China, Russia, Iran, Afghanistan and Thailand have almost the same dynamics in facing the challenge of modernity. In such countries, the old regimes tried to introduce modernization and ‘reform from the above’ in order to tackle the gradual decline of the empire that faced strong challenge from the outside world. The other similarity of them was that as the rulers attempted to introduce the modernization reforms the old traditional and the religious institutions strongly opposed the reforms as the reforms alienated the power and prestige of the traditional classes. Similarly, the rules introduced modernization for maintaining their own unique socio-cultural and religious dynamics not as borrowing and acculturation of the west by complete destruction of their own. Therefore, this paper attempted to give a comparative analysis of two modernizers Tewodros II (1855-1868) of Ethiopia and Sultan Selim III (1739-1808) of Ottoman Turkey who tried to modernize their empire unfortunately they paid their precious life as a result of modernization.

Keywords: comparative history, Ethiopia, modernization, Ottoman Turkey

Procedia PDF Downloads 207
3556 Development of a Three-Dimensional-Flywheel Robotic System

Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu

Abstract:

In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.

Keywords: gyro, gimbal, lagrange equation, spherical robots

Procedia PDF Downloads 316
3555 Numerical Solutions of Fractional Order Epidemic Model

Authors: Sadia Arshad, Ayesha Sohail, Sana Javed, Khadija Maqbool, Salma Kanwal

Abstract:

The dynamical study of the carriers play an essential role in the evolution and global transmission of infectious diseases and will be discussed in this study. To make this approach novel, we will consider the fractional order model which is generalization of integer order derivative to an arbitrary number. Since the integration involved is non local therefore this property of fractional operator is very useful to study epidemic model for infectious diseases. An extended numerical method (ODE solver) is implemented on the model equations and we will present the simulations of the model for different values of fractional order to study the effect of carriers on transmission dynamics. Global dynamics of fractional model are established by using the reproduction number.

Keywords: Fractional differential equation, Numerical simulations, epidemic model, transmission dynamics

Procedia PDF Downloads 602
3554 Gaussian Operations with a Single Trapped Ion

Authors: Bruna G. M. Araújo, Pedro M. M. Q. Cruz

Abstract:

In this letter, we review the literature of the major concepts that govern Gaussian quantum information. As we work with quantum information and computation with continuous variables, Gaussian states are needed to better describe these systems. Analyzing a single ion locked in a Paul trap we use the interaction picture to obtain a toolbox of Gaussian operations with the ion-laser interaction Hamiltionian. This is achieved exciting the ion through the combination of two lasers of distinct frequencies corresponding to different sidebands of the external degrees of freedom. First we study the case of a trap with 1 mode and then the case with 2 modes. In this way, we achieve different continuous variables gates just by changing the external degrees of freedom of the trap and combining the Hamiltonians of blue and red sidebands.

Keywords: Paul trap, ion-laser interaction, Gaussian operations

Procedia PDF Downloads 688
3553 Theoretical Investigation of the Singlet and Triplet Electronic States of ⁹⁰ZrS Molecules

Authors: Makhlouf Sandy, Adem Ziad, Taher Fadia, Magnier Sylvie

Abstract:

The electronic structure of 90ZrS has been investigated using Ab-initio methods based on Complete Active Space Self Consistent Field and Multi-reference Configuration Interaction (CASSCF/MRCI). The number of predicted states has been extended to 14 singlet and 12 triplet lowest-lying states situated below 36000cm-1. The equilibrium energies of these 26 lowest-lying electronic states have been calculated in the 2S+1Λ(±) representation. The potential energy curves have been plotted in function of the inter-nuclear distances in a range of 1.5 to 4.5Å. Spectroscopic constants, permanent electric dipole moments and transition dipole moments between the different electronic states have also been determined. A discrepancy error of utmost 5% for the majority of values shows a good agreement with available experimental data. The ground state is found to be of symmetry X1Σ+ with an equilibrium inter-nuclear distance Re= 2.16Å. However, the (1)3Δ is the closest state to X1Σ+ and is situated at 514 cm-1. To the best of our knowledge, this is the first time that the spin-orbit coupling has been investigated for all the predicted states of ZrS. 52 electronic components in the Ω(±) representation have been predicted. The energies of these components, the spectroscopic constants ωe, ωeχe, βe and the equilibrium inter-nuclear distances have been also obtained. The percentage composition of the Ω state wave-functions in terms of S-Λ states was calculated to identify their corresponding main parents. These (SOC) calculations have determined the shift between (1)3Δ1 and X1Σ+ states and confirmed the ground state type being 1Σ+.

Keywords: CASSCF/MRCI, electronic structure, spin-orbit effect, zirconium monosulfide

Procedia PDF Downloads 168
3552 Thermodynamic and Magnetic Properties of Heavy Fermion UTE₂ Superconductor

Authors: Habtamu Anagaw Muluneh, Gebregziabher Kahsay, Tamiru Negussie

Abstract:

Theoretical study of the density of state, condensation energy, specific heat, and magnetization in a spin-triplet superconductor are the main goals of this work. Utilizing the retarded double-time temperature-dependent Green's function formalism and building a model Hamiltonian for the system at hand, we were able to derive the expressions for the parameters mentioned above. The phase diagrams are plotted using MATLAB scripts. From the phase diagrams, the density of electrons increases as the excitation energy increases, and the maximum excitation energy is equal to the superconducting gap, but it decreases when the value exceeds the gap and finally becomes the same as the density of the normal state. On the other hand, the condensation energy decreases with the increase in temperature and attains its minimum value at the superconducting transition temperature but increases with the increase in superconducting transition temperature (TC) and finally becomes zero, implying the superconducting energy is equal to the normal state energy. The specific heat increases with the increase in temperature, attaining its maximum value at the TC and then undergoing a jump, showing the presence of a second-order phase transition from the superconducting state to the normal state. Finally, the magnetization of both the itinerant and localized electrons decreases with the increase in temperature and finally becomes zero at TC = 1.6 K and magnetic phase transition temperature T = 2 K, respectively, which results in a magnetic phase transition from a ferromagnetic to a paramagnetic state. Our finding is in good agreement with the previous findings.

Keywords: spin triplet superconductivity, Green’s function, condensation energy, density of state, specific heat, magnetization

Procedia PDF Downloads 24
3551 Weak Mutually Unbiased Bases versus Mutually Unbiased Bases in Terms of T-Designs

Authors: Mohamed Shalaby, Yasser Kamal, Negm Shawky

Abstract:

Mutually unbiased bases (MUBs) have an important role in the field of quantum computation and information. A complete set of these bases can be constructed when the system dimension is the power of the prime. Constructing such complete set in composite dimensions is still an open problem. Recently, the concept of weak mutually unbiased bases (WMUBs) in composite dimensions was introduced. A complete set of such bases can be constructed by combining the MUBs in each subsystem. In this paper, we present a comparative study between MUBs and WMUBs in the context of complex projective t-design. Explicit proofs are presented.

Keywords: complex projective t-design, finite quantum systems, mutually unbiased bases, weak mutually unbiased bases

Procedia PDF Downloads 451
3550 A Qualitative Study of the Effect of Sibling and Parental Relationships on Coping Mechanisms in Families of Children with Autism Spectrum Disorder

Authors: Smriti Gour, Neelam Pandey

Abstract:

The objective of this study was to describe and analyse the mutual relationship between the coping mechanisms used by the families of a child with Autism Spectrum Disorder (ASD) and family dynamics and the effect sibling interactions have on the dynamics and coping mechanisms in an urban setup. In-depth interviews were conducted for 25 families, with 4 members each in the Delhi NCR area in India. The families who were interviewed had a younger child who had received a diagnosis of ASD between the ages of 5-12. The in-depth questionnaires contained open-ended questions and the interviews were conducted separately for the mother, father and the typically developing sibling. The key findings of the study suggested that lack of communication was a common factor in most families (n=19) leading to other difficulties like stress and relationship dysfunction. It also fostered a fallacious perception of the relationship dynamics in the family in most of the interviewed families and changed depending on the family member being interviewed. In families where the typically developing elder sibling had a good relationship with the autistic child, the family dynamics were found to be more stable, and the overall family well-being was better maintained. The coping mechanisms employed by the families were also more positive and tended to work better if the typically developing sibling maintained a positive and interactive relationship with the parents and the autistic child. The type of coping mechanisms had a major impact on the relationship between the parents and in dictating the dynamics of the family of the child with ASD. Spirituality, professional help, family support and household help emerged to be the most effective coping mechanisms for the families, with spirituality emerging to be the most positive and effective coping mechanism in the families interviewed.

Keywords: autism spectrum disorder, coping mechanism, family dynamics, parental relationships, siblings

Procedia PDF Downloads 319
3549 Short-Range and Long-Range Ferrimagnetic Order in Fe(Te₁.₅Se₀.₅)O₅Cl

Authors: E. S. Kozlyakova, A. A. Eliseev, A. V. Moskin, A. Y. Akhrorov, P. S. Berdonosov, V. A. Dolgikh, K. N. Denisova, P. Lemmens, B. Rahaman, S. Das, T. Saha-Dasgupta, A. N. Vasiliev, O. S. Volkova

Abstract:

Considerable attention has been paid recently to FeTe₂O₅Cl due to reduced dimensionality and frustration in the magnetic subsystem, succession of phase transitions, and multiferroicity. The efforts to grow its selenite sibling resulted in mixed halide compound, Fe(Te₁.₅Se₀.₅)O₅Cl, which was found crystallizing in a new structural type and possessing properties drastically different from those of a parent system. Hereby we report the studies of magnetization M and specific heat Cₚ, combined with Raman spectroscopy and density functional theory calculations in Fe(Te₁.₅Se₀.₅)O₅Cl. Its magnetic subsystem features weakly coupled Fe³⁺ - Fe³⁺ dimers showing the regime of short-range correlations at TM ~ 70 K and long-range order at TN = 22 K. In a magnetically ordered state, sizable spin-orbital interactions lead to a small canting of Fe³⁺ moments. The density functional theory calculations of leading exchange interactions were found in agreement with measurements of thermodynamic properties and Raman spectroscopy. Besides, because of the relatively large magnetic moment of the Fe³⁺ ion, we found that magnetic dipole-dipole interactions contribute significantly to experimentally observed orientation of magnetization easy axis in ac-plane. As a conclusion, we suggest a model of magnetic subsystem in magnetically ordered state of Fe(Te₁.₅Se₀.₅)O₅Cl based on a model of interacting dimers.

Keywords: dipole-dipole interactions, low dimensional magnetism, selenite, spin canting

Procedia PDF Downloads 167
3548 Molecular Dynamics Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of high-intensity, nanosecond electric pulses has been a recent development in biomedical. High-intensity (∼100 kV/cm), nanosecond duration-pulsed electric fields have been shown to induce cellular electroporation. This will lead to an increase in transmembrane conductivity and diffusive permeability. These effects will also alter the electrical potential across the membrane. The applications include electrically triggered intracellular calcium release, shrinkage of tumors, and temporary blockage of the action potential in nerves. In this research, the dynamics of pore formation with the presence of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations show pore formation occurs for a pulse with the amplitude of 0.5V/nm at 1ns at temperature 316°K. Also increasing temperatures facilitate pore formation. When the temperature is increased to 323°K, pore forms at 0.75ns with the pulse amplitude of 0.5V/nm. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. Also, actual experimental observations are compared against MD simulation results.

Keywords: molecular dynamics, high-intensity, nanosecond, electroporation

Procedia PDF Downloads 113
3547 Stationary Energy Partition between Waves in a Carbyne Chain

Authors: Svetlana Nikitenkova, Dmitry Kovriguine

Abstract:

Stationary energy partition between waves in a one dimensional carbyne chain at ambient temperatures is investigated. The study is carried out by standard asymptotic methods of nonlinear dynamics in the framework of classical mechanics, based on a simple mathematical model, taking into account central and noncentral interactions between carbon atoms. Within the first-order nonlinear approximation analysis, triple-mode resonant ensembles of quasi-harmonic waves are revealed. Any resonant triad consists of a single primary high-frequency longitudinal mode and a pair of secondary low-frequency transverse modes of oscillations. In general, the motion of the carbyne chain is described by a superposition of resonant triads of various spectral scales. It is found that the stationary energy distribution is obeyed to the classical Rayleigh–Jeans law, at the expense of the proportional amplitude dispersion, except a shift in the frequency band, upwards the spectrum.

Keywords: resonant triplet, Rayleigh–Jeans law, amplitude dispersion, carbyne

Procedia PDF Downloads 444
3546 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film

Procedia PDF Downloads 115
3545 Mathematical Model of Cancer Growth under the Influence of Radiation Therapy

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of cancer growth under the influence of radiation therapy. The effect of this type of therapy is considered as an additional equation of discussed model. Numerical simulations show that delay, which is added to ordinary differential equations and represent time needed for transformation from one type of cells to the other one, affects the behavior of the system. The validation and verification of proposed model is based on medical data. Analytical results are illustrated by numerical examples of the model dynamics. The model is able to reconstruct dynamics of treatment of cancer and may be used to determine the most effective treatment regimen based on the study of the behavior of individual treatment protocols.

Keywords: mathematical modeling, numerical simulation, ordinary differential equations, radiation therapy

Procedia PDF Downloads 409
3544 Bifurcation and Stability Analysis of the Dynamics of Cholera Model with Controls

Authors: C. E. Madubueze, S. C. Madubueze, S. Ajama

Abstract:

Cholera is a disease that is predominately common in developing countries due to poor sanitation and overcrowding population. In this paper, a deterministic model for the dynamics of cholera is developed and control measures such as health educational message, therapeutic treatment, and vaccination are incorporated in the model. The effective reproduction number is computed in terms of the model parameters. The existence and stability of the equilibrium states, disease free and endemic equilibrium states are established and showed to be locally and globally asymptotically stable when R0 < 1 and R0 > 1 respectively. The existence of backward bifurcation of the model is investigated. Furthermore, numerical simulation of the model developed is carried out to show the impact of the control measures and the result indicates that combined control measures will help to reduce the spread of cholera in the population

Keywords: backward bifurcation, cholera, equilibrium, dynamics, stability

Procedia PDF Downloads 432
3543 Photoluminescent Properties of Noble Metal Nanoparticles Supported Yttrium Aluminum Garnet Nanoparticles Doped with Cerium (Ⅲ) Ions

Authors: Mitsunobu Iwasaki, Akifumi Iseda

Abstract:

Yttrium aluminum garnet doped with cerium (Ⅲ) ions (Y3Al5O12:Ce3+, YAG:Ce3+) has attracted a great attention because it can efficiently convert the blue light into a very broad yellow emission band, which produces white light emitting diodes and is applied for panel displays. To improve the brightness and resolution of the display, a considerable attention has been directed to develop fine phosphor particles. We have prepared YAG:Ce3+ nanophosphors by environmental-friendly wet process. The peak maximum of absorption spectra of surface plasmon of Ag nanopaticles are close to that of the excitation spectra (460 nm) of YAG:Ce3+. It can be expected that Ag nanoparticles supported onto the surface of YAG:Ce3+ (Ag-YAG:Ce3+) enhance the absorption of Ce3+ ions. In this study, we have prepared Ag-YAG:Ce3+ nanophosphors and investigated their photoluminescent properties. YCl3・6H2O and AlCl3・6H2O with a molar ratio of Y:Al=3:5 were dissolved in ethanol (100 ml), and CeCl3•7H2O (0.3 mol%) was further added to the above solution. Then, NaOH (4.6×10-2 mol) dissolved in ethanol (50 ml) was added dropwise to the mixture under reflux over 2 hours, and the solution was further refluxed for 1 hour. After cooling to room temperature, precipitates in the reaction mixture were heated at 673 K for 1 hour. After the calcination, the particles were immersed in AgNO3 solution for 1 hour, followed by sintering at 1123 K for 1 hour. YAG:Ce3+ were confirmed to be nanocrystals with a crystallite size of 50-80 nm in diameter. Ag nanoparticles supported onto YAG:Ce3+ were single nanometers in diameter. The excitation and emission spectra were 454 nm and 539 nm at a maximum wavelength, respectively. The emission intensity was maximum for Ag-YAG:Ce3+ immersed into 0.5 mM AgCl (Ag-YAG:Ce (0.5 mM)). The absorption maximum (461 nm) was increased for Ag-YAG:Ce3+ in comparison with that for YAG:Ce3+, indicating that the absorption was enhanced by the addition of Ag. The external and internal quantum efficiencies became 11.2 % and 36.9 % for Ag-YAG:Ce (0.5 mM), respectively. The emission intensity and absorption maximum of Ag-YAG:Ce (0.5 mM)×n (n=1, 2, 3) were increased with an increase of the number of supporting times (n), respectively. The external and internal quantum efficiencies were increased for the increase of n, respectively. The external quantum efficiency of Ag-YAG:Ce (0.5 mM) (n=3) became twice as large as that of YAG:Ce. In conclusion, Ag nanoparticles supported onto YAG:Ce3+ increased absorption and quantum efficiency. Therefore, the support of Ag nanoparticles enhanced the photoluminescent properties of YAG:Ce3+.

Keywords: plasmon, quantum efficiency, silver nanoparticles, yttrium aluminum garnet

Procedia PDF Downloads 268
3542 Complexity in Managing Higher Education Institutions in Mexico: A System Dynamics Approach

Authors: José Carlos Rodríguez, Mario Gómez, Medardo Serna

Abstract:

This paper analyses managing higher education institutions in emerging economies. The paper investigates the case of postgraduate studies development at public universities. In so doing, it adopts the complex theory approach to evaluate how postgraduate studies have evolved in these countries. The investigation suggests that the postgraduate studies sector at public universities can be seen as a complex adaptive system (CAS). Therefore, the paper adopts system dynamics (SD) methods to develop this analysis. The case of postgraduate studies at Universidad Michoacana de San Nicolás de Hidalgo in Mexico is investigated in this paper.

Keywords: complex adaptive systems, higher education institutions, Mexico, system dynamics

Procedia PDF Downloads 319
3541 MAS Capped CdTe/ZnS Core/Shell Quantum Dot Based Sensor for Detection of Hg(II)

Authors: Dilip Saikia, Suparna Bhattacharjee, Nirab Adhikary

Abstract:

In this piece of work, we have presented the synthesis and characterization of CdTe/ZnS core/shell (CS) quantum dots (QD). CS QDs are used as a fluorescence probe to design a simple cost-effective and ultrasensitive sensor for the detection of toxic Hg(II) in an aqueous medium. Mercaptosuccinic acid (MSA) has been used as a capping agent for the synthesis CdTe/ZnS CS QD. Photoluminescence quenching mechanism has been used in the detection experiment of Hg(II). The designed sensing technique shows a remarkably low detection limit of about 1 picomolar (pM). Here, the CS QDs are synthesized by a simple one-pot aqueous method. The synthesized CS QDs are characterized by using advanced diagnostics tools such as UV-vis, Photoluminescence, XRD, FTIR, TEM and Zeta potential analysis. The interaction between CS QDs and the Hg(II) ions results in the quenching of photoluminescence (PL) intensity of QDs, via the mechanism of excited state electron transfer. The proposed mechanism is explained using cyclic voltammetry and zeta potential analysis. The designed sensor is found to be highly selective towards Hg (II) ions. The analysis of the real samples such as drinking water and tap water has been carried out and the CS QDs show remarkably good results. Using this simple sensing method we have designed a prototype low-cost electronic device for the detection of Hg(II) in an aqueous medium. The findings of the experimental results of the designed sensor is crosschecked by using AAS analysis.

Keywords: photoluminescence, quantum dots, quenching, sensor

Procedia PDF Downloads 267
3540 Exploring the Difficulties of Acceleration Concept from the Perspective of Historical Textual Analysis

Authors: Yun-Ju Chiu, Feng-Yi Chen

Abstract:

Kinematics is the beginning to learn mechanics in physics course. The concept of acceleration plays an important role in learning kinematics. Teachers usually instruct the conception through the formulas and graphs of kinematics and the well-known law F = ma. However, over the past few decades, a lot of researchers reveal numerous students’ difficulties in learning acceleration. One of these difficulties is that students frequently confuse acceleration with velocity and force. Why is the concept of acceleration so difficult to learn? The aim of this study is to understand the conceptual evolution of acceleration through the historical textual analysis. Text analysis and one-to-one interviews with high school students and teachers are used in this study. This study finds the history of science constructed from textbooks is usually quite different from the real evolution of history. For example, most teachers and students believe that the best-known law F = ma was written down by Newton. The expression of the second law is not F = ma in Newton’s best-known book Principia in 1687. Even after more than one hundred years, a famous Cambridge textbook titled An Elementary Treatise on Mechanics by Whewell of Trinity College did not express this law as F = ma. At that time of Whewell, the early mid-nineteenth century Britain, the concept of acceleration was not only ambiguous but also confused with the concept of force. The process of learning the concept of acceleration is analogous to its conceptual development in history. The study from the perspective of historical textual analysis will promote the understanding of the concept learning difficulties, the development of professional physics teaching, and the improvement of the context of physics textbooks.

Keywords: acceleration, textbooks, mechanics, misconception, history of science

Procedia PDF Downloads 252
3539 Numerical Simulation of Fluid Structure Interaction Using Two-Way Method

Authors: Samira Laidaoui, Mohammed Djermane, Nazihe Terfaya

Abstract:

The fluid-structure coupling is a natural phenomenon which reflects the effects of two continuums: fluid and structure of different types in the reciprocal action on each other, involving knowledge of elasticity and fluid mechanics. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. In this paper, a problem of fluid structure interaction is investigated with two-way coupling method. The formulation Arbitrary Lagrangian-Eulerian (ALE) was used, by considering a dynamic grid, where the solid is described by a Lagrangian formulation and the fluid by a Eulerian formulation. The simulation was made on the ANSYS software.

Keywords: ALE, coupling, FEM, fluid-structure, interaction, one-way method, two-way method

Procedia PDF Downloads 679
3538 An Experimental Investigation on the Amount of Drag Force of Sand on a Cone Moving at Low Uniform Speed

Authors: M. Jahanandish, Gh. Sadeghian, M. H. Daneshvar, M. H. Jahanandish

Abstract:

The amount of resistance of a particular medium like soil to the moving objects is the interest of many areas in science. These include soil mechanics, geotechnical engineering, powder mechanics etc. Knowledge of drag force is also used for estimating the amount of momentum of fired objects like bullets. This paper focuses on measurement of drag force of sand on a cone when it moves at a low constant speed. A 30-degree apex angle cone has been used for this purpose. The study consisted of both loose and dense conditions of the soil. The applied speed has been in the range of 0.1 to 10 mm/min. The results indicate that the required force is basically independent of the cone speed; but, it is very dependent on the material densification and confining stress.

Keywords: drag force, sand, moving speed, friction angle, densification, confining stress

Procedia PDF Downloads 367
3537 GE as a Channel Material in P-Type MOSFETs

Authors: S. Slimani, B. Djellouli

Abstract:

Novel materials and innovative device structures has become necessary for the future of CMOS. High mobility materials like Ge is a very promising material due to its high mobility and is being considered to replace Si in the channel to achieve higher drive currents and switching speeds .Various approaches to circumvent the scaling limits to benchmark the performance of nanoscale MOSFETS with different channel materials, the optimized structure is simulated within nextnano in order to highlight the quantum effects on DG MOSFETs when Si is replaced by Ge and SiO2 is replaced by ZrO2 and HfO2as the gate dielectric. The results have shown that Ge MOSFET have the highest mobility and high permittivity oxides serve to maintain high drive current. The simulations show significant improvements compared with DGMOSFET using SiO2 gate dielectric and Si channel.

Keywords: high mobility, high-k, quantum effects, SOI-DGMOSFET

Procedia PDF Downloads 367
3536 Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents

Authors: Rajesh Kumar Gautam, Debabrata Seth

Abstract:

Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT.

Keywords: deep eutectic solvent, photophysics, Thioflavin T, the torsional rate constant

Procedia PDF Downloads 163
3535 Monitoring Land Productivity Dynamics of Gombe State, Nigeria

Authors: Ishiyaku Abdulkadir, Satish Kumar J

Abstract:

Land Productivity is a measure of the greenness of above-ground biomass in health and potential gain and is not related to agricultural productivity. Monitoring land productivity dynamics is essential to identify, especially when and where the trend is characterized degraded for mitigation measures. This research aims to monitor the land productivity trend of Gombe State between 2001 and 2015. QGIS was used to compute NDVI from AVHRR/MODIS datasets in a cloud-based method. The result appears that land area with improving productivity account for 773sq.km with 4.31%, stable productivity traced to 4,195.6 sq.km with 23.40%, stable but stressed productivity represent 18.7sq.km account for 0.10%, early sign of decline productivity occupied 5203.1sq.km with 29%, declining productivity account for 7019.7sq.km, represent 39.2%, water bodies occupied 718.7sq.km traced to 4% of the state’s area.

Keywords: above-ground biomass, dynamics, land productivity, man-environment relationship

Procedia PDF Downloads 145
3534 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-car Model

Authors: Quy Dang Nguyen, Reza Nakhaie Jazar

Abstract:

The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.

Keywords: quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation

Procedia PDF Downloads 93
3533 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem

Authors: Feng Yang

Abstract:

Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.

Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics

Procedia PDF Downloads 150
3532 Modeling and System Identification of a Variable Excited Linear Direct Drive

Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke

Abstract:

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux

Procedia PDF Downloads 370