Search results for: binary logistic regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3921

Search results for: binary logistic regression

3471 A Performance Model for Designing Network in Reverse Logistic

Authors: S. Dhib, S. A. Addouche, T. Loukil, A. Elmhamedi

Abstract:

In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network.

Keywords: reverse logistics, network design, performance model, open loop configuration

Procedia PDF Downloads 435
3470 Predictors of Response to Interferone Therapy in Chronic Hepatitis C Virus Infection

Authors: Ali Kassem, Ehab Fawzy, Mahmoud Sef el-eslam, Fatma Salah- Eldeen, El zahraa Mohamed

Abstract:

Introduction: The combination of interferon (INF) and ribavirin is the preferred treatment for chronic hepatitis C viral (HCV) infection. However, nonresponse to this therapy remains common and is associated with several factors such as HCV genotype and HCV viral load in addition to host factors such as sex, HLA type and cytokine polymorphisms. Aim of the work: The aim of this study was to determine predictors of response to (INF) therapy in chronic HCV infected patients treated with INF alpha and ribavirin combination therapy. Patients and Methods: The present study included 110 patients (62 males, 48 females) with chronic HCV infection. Their ages ranged from 20-59 years. Inclusion criteria were organized according to the protocol of the Egyptian National Committee for control of viral hepatitis. Patients included in this study were recruited to receive INF ribavirin combination therapy; 54 patients received pegylated NF α-2a (180 μg) and weight based ribavirin therapy (1000 mg if < 75 kg, 1200 mg if > 75 kg) for 48 weeks and 53 patients received pegylated INF α-2b (1.5 ug/kg/week) and weight based ribavirin therapy (800 mg if < 65 kg, 1000 mg if 65-75 kg and 1200 mg if > 75kg). One hundred and seven liver biopsies were included in the study and submitted to histopathological examination. Hematoxylin and eosin (H&E) stained sections were done to assess both the grade and the stage of chronic viral hepatitis, in addition to the degree of steatosis. Modified hepatic activity index (HAI) grading, modified Ishak staging and Metavir grading and staging systems were used. Laboratory follow up including: HCV PCR at the 12th week to assess the early virologic response (EVR) and at the 24th week were done. At the end of the course: HCV PCR was done at the end of the course and tested 6 months later to document end virologic response (ETR) and sustained virologic response (SVR) respectively. Results One hundred seven patients; 62 males (57.9 %) and 45 females (42.1%) completed the course and included in this study. The age of patients ranged from 20-59 years with a mean of 40.39±10.03 years. Six months after the end of treatment patients were categorized into two groups: Group (1): patients who achieved sustained virological response (SVR). Group (2): patients who didn't achieve sustained virological response (non SVR) including non-responders, breakthrough and relapsers. In our study, 58 (54.2%) patients showed SVR, 18 (16.8%) patients were non-responders, 15 (14%) patients showed break-through and 16 (15 %) patients were relapsers. Univariate binary regression analysis of the possible risk factors of non SVR showed that the significant factors were higher age, higher fasting insulin level, higher Metavir stage and higher grade of hepatic steatosis. Multivariate binary regression analysis showed that the only independent risk factor for non SVR was high fasting insulin level. Conclusion: Younger age, lower Metavir stage, lower steatosis grade and lower fasting insulin level are good predictors of SVR and could be used in predicting the treatment response of pegylated interferon/ribavirin therapy.

Keywords: chronic HCV infection, interferon ribavirin combination therapy, predictors to antiviral therapy, treatment response

Procedia PDF Downloads 396
3469 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression

Authors: Wanatchapong Kongkaew

Abstract:

This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.

Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness

Procedia PDF Downloads 309
3468 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation

Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski

Abstract:

Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.

Keywords: bootstrap, edgeworth approximation, IID, quantile

Procedia PDF Downloads 159
3467 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction

Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey

Abstract:

In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.

Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization

Procedia PDF Downloads 344
3466 Advanced Statistical Approaches for Identifying Predictors of Poor Blood Pressure Control: A Comprehensive Analysis Using Multivariable Logistic Regression and Generalized Estimating Equations (GEE)

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Effective management of hypertension remains a critical public health challenge, particularly among racially and ethnically diverse populations. This study employs sophisticated statistical models to rigorously investigate the predictors of poor blood pressure (BP) control, with a specific focus on demographic, socioeconomic, and clinical risk factors. Leveraging a large sample of 19,253 adults drawn from the National Health and Nutrition Examination Survey (NHANES) across three distinct time periods (2013-2014, 2015-2016, and 2017-2020), we applied multivariable logistic regression and generalized estimating equations (GEE) to account for the clustered structure of the data and potential within-subject correlations. Our multivariable models identified significant associations between poor BP control and several key predictors, including race/ethnicity, age, gender, body mass index (BMI), prevalent diabetes, and chronic kidney disease (CKD). Non-Hispanic Black individuals consistently exhibited higher odds of poor BP control across all periods (OR = 1.99; 95% CI: 1.69, 2.36 for the overall sample; OR = 2.33; 95% CI: 1.79, 3.02 for 2017-2020). Younger age groups demonstrated substantially lower odds of poor BP control compared to individuals aged 75 and older (OR = 0.15; 95% CI: 0.11, 0.20 for ages 18-44). Men also had a higher likelihood of poor BP control relative to women (OR = 1.55; 95% CI: 1.31, 1.82), while BMI ≥35 kg/m² (OR = 1.76; 95% CI: 1.40, 2.20) and the presence of diabetes (OR = 2.20; 95% CI: 1.80, 2.68) were associated with increased odds of poor BP management. Further analysis using GEE models, accounting for temporal correlations and repeated measures, confirmed the robustness of these findings. Notably, individuals with chronic kidney disease displayed markedly elevated odds of poor BP control (OR = 3.72; 95% CI: 3.09, 4.48), with significant differences across the survey periods. Additionally, higher education levels and better self-reported diet quality were associated with improved BP control. College graduates exhibited a reduced likelihood of poor BP control (OR = 0.64; 95% CI: 0.46, 0.89), particularly in the 2015-2016 period (OR = 0.48; 95% CI: 0.28, 0.84). Similarly, excellent dietary habits were associated with significantly lower odds of poor BP control (OR = 0.64; 95% CI: 0.44, 0.94), underscoring the importance of lifestyle factors in hypertension management. In conclusion, our findings provide compelling evidence of the complex interplay between demographic, clinical, and socioeconomic factors in predicting poor BP control. The application of advanced statistical techniques such as GEE enhances the reliability of these results by addressing the correlated nature of repeated observations. This study highlights the need for targeted interventions that consider racial/ethnic disparities, clinical comorbidities, and lifestyle modifications in improving BP control outcomes.

Keywords: hypertension, blood pressure, NHANES, generalized estimating equations

Procedia PDF Downloads 12
3465 Enhancing the Performance of Automatic Logistic Centers by Optimizing the Assignment of Material Flows to Workstations and Flow Racks

Authors: Sharon Hovav, Ilya Levner, Oren Nahum, Istvan Szabo

Abstract:

In modern large-scale logistic centers (e.g., big automated warehouses), complex logistic operations performed by human staff (pickers) need to be coordinated with the operations of automated facilities (robots, conveyors, cranes, lifts, flow racks, etc.). The efficiency of advanced logistic centers strongly depends on optimizing picking technologies in synch with the facility/product layout, as well as on optimal distribution of material flows (products) in the system. The challenge is to develop a mathematical operations research (OR) tool that will optimize system cost-effectiveness. In this work, we propose a model that describes an automatic logistic center consisting of a set of workstations located at several galleries (floors), with each station containing a known number of flow racks. The requirements of each product and the working capacity of stations served by a given set of workers (pickers) are assumed as predetermined. The goal of the model is to maximize system efficiency. The proposed model includes two echelons. The first is the setting of the (optimal) number of workstations needed to create the total processing/logistic system, subject to picker capacities. The second echelon deals with the assignment of the products to the workstations and flow racks, aimed to achieve maximal throughputs of picked products over the entire system given picker capacities and budget constraints. The solutions to the problems at the two echelons interact to balance the overall load in the flow racks and maximize overall efficiency. We have developed an operations research model within each echelon. In the first echelon, the problem of calculating the optimal number of workstations is formulated as a non-standard bin-packing problem with capacity constraints for each bin. The problem arising in the second echelon is presented as a constrained product-workstation-flow rack assignment problem with non-standard mini-max criteria in which the workload maximum is calculated across all workstations in the center and the exterior minimum is calculated across all possible product-workstation-flow rack assignments. The OR problems arising in each echelon are proved to be NP-hard. Consequently, we find and develop heuristic and approximation solution algorithms based on exploiting and improving local optimums. The LC model considered in this work is highly dynamic and is recalculated periodically based on updated demand forecasts that reflect market trends, technological changes, seasonality, and the introduction of new items. The suggested two-echelon approach and the min-max balancing scheme are shown to work effectively on illustrative examples and real-life logistic data.

Keywords: logistics center, product-workstation, assignment, maximum performance, load balancing, fast algorithm

Procedia PDF Downloads 228
3464 Differences in Innovative Orientation of the Entrepreneurially Active Adults: The Case of Croatia

Authors: Nataša Šarlija, Sanja Pfeifer

Abstract:

This study analyzes the innovative orientation of the Croatian entrepreneurs. Innovative orientation is represented by the perceived extent to which an entrepreneur’s product or service or technology is new, and no other businesses offer the same product. The sample is extracted from the GEM Croatia Adult Population Survey dataset for the years 2003-2013. We apply descriptive statistics, t-test, Chi-square test and logistic regression. Findings indicate that innovative orientations vary with personal, firm, meso and macro level variables, and between different stages in entrepreneurship process. Significant predictors are occupation of the entrepreneurs, size of the firm and export aspiration for both early stage and established entrepreneurs. In addition, fear of failure, expecting to start a new business and seeing an entrepreneurial career as a desirable choice are predictors of innovative orientation among early stage entrepreneurs.

Keywords: multilevel determinants of the innovative orientation, Croatian early stage entrepreneurs, established businesses, GEM evidence

Procedia PDF Downloads 498
3463 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition

Authors: Mohamed Lotfy, Ghada Soliman

Abstract:

Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.

Keywords: computer vision, pattern recognition, optical character recognition, deep learning

Procedia PDF Downloads 95
3462 Views of the Self in Beast and Beauty K-Dramas: The South Korean Paradigm of Beauty

Authors: Patricia P. M. C. Lourenço

Abstract:

South Korean Entertainment Industry has reversed the gender binary through Beast and Beauty Korean dramas that perpetuate Korean unrealistic beauty standards by emphasizing freckles, acne, pimples, excessive weight, fizzy hair, glasses, and braces as ugly and unattractive, therefore in need of correction to fit into society’s pre-established beauty mould. This pursuit of physical beauty as a happiness goal only detracts singularity in favour of mundaneness, sustaining the illusion that unsightly women need to undergo a physical transformation to improve their lives while handsome, wealthy men need not do anything more than altruistically accept them for who they really are inside. Five Beast and Beauty dramas were analysed for this paper. The assessment revealed that there is standardization and typecasting of Beast and Beauty roles in K-Dramas, a reflection of South Korean’s patriarchal society where women and men are continuously expected to fulfil their pre-established gender binary roles and stereotypes.

Keywords: K-dramas, beauty, low self-esteem, plastic surgery, South Korean stereotypes

Procedia PDF Downloads 214
3461 Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: ’Reddit’

Authors: Yasmeen Bassas, Sandra Kuebler, Allen Riddell

Abstract:

Native language identification is one of the growing subfields in natural language processing (NLP). The task of native language identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features, when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL), and then the trained models are evaluated on different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and logistic regression. Results show that content-based features are more accurate and robust than content independent ones when tested within the corpus and across corpus.

Keywords: NLI, NLP, content-based features, content independent features, social media corpus, ML

Procedia PDF Downloads 137
3460 Idea, Creativity, Design, and Ultimately, Playing with Mathematics

Authors: Yasaman Azarmjoo

Abstract:

Since ancient times, it has been said that mathematics is the mother of all sciences and the foundation of basic concepts in every field and profession. It would be great if, after learning this subject, we could enable students to create games and activities based on the same mathematical concepts. This article explores the design of various mathematical activities in the form of games, utilizing different mathematical topics such as algebra, equations, binary systems, and one-to-one correspondence. The theoretical significance of this article lies in uncovering alternative approaches to teaching and learning mathematics. By employing creative and interactive methods such as game design, it challenges the traditional perception of mathematics as a difficult and laborious subject. The theoretical significance of this article lies in demonstrating that mathematics can be made more accessible and enjoyable, which can result in heightened interest and engagement in the subject. In general, this article reveals another aspect of mathematics.

Keywords: playing with mathematics, algebra and equations, binary systems, one-to-one correspondence

Procedia PDF Downloads 93
3459 Face Sketch Recognition in Forensic Application Using Scale Invariant Feature Transform and Multiscale Local Binary Patterns Fusion

Authors: Gargi Phadke, Mugdha Joshi, Shamal Salunkhe

Abstract:

Facial sketches are used as a crucial clue by criminal investigators for identification of suspects when the description of eyewitness or victims are only available as evidence. A forensic artist develops a sketch as per the verbal description is given by an eyewitness that shows the facial look of the culprit. In this paper, the fusion of Scale Invariant Feature Transform (SIFT) and multiscale local binary patterns (MLBP) are proposed as a feature to recognize a forensic face sketch images from a gallery of mugshot photos. This work focuses on comparative analysis of proposed scheme with existing algorithms in different challenges like illumination change and rotation condition. Experimental results show that proposed scheme can lead to better performance for the defined problem.

Keywords: SIFT feature, MLBP, PCA, face sketch

Procedia PDF Downloads 336
3458 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models

Authors: I. V. Pinto, M. R. Sooriyarachchi

Abstract:

It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.

Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error

Procedia PDF Downloads 142
3457 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.

Keywords: clustering, data analysis, data mining, predictive models

Procedia PDF Downloads 466
3456 The Labor Participation–Fertility Trade-off: The Case of the Philippines

Authors: Daphne Ashley Sze, Kenneth Santos, Ariane Gabrielle Lim

Abstract:

As women are now given more freedom and choice to pursue employment, the world’s over-all fertility has been decreasing mainly due to the shift in time allocation between working and child rearing. As such, we study the case of the Philippines, where there exists a decreasing fertility rate and increasing openness for women labor participation. We focused on the distinction between fertility and fecundity, the former being the manifestation of the latter and aim to trace and compare the effects of both fecundity and fertility to women’s employment status through the estimation of the reproduction function and multinomial logistic function. Findings suggest that the perception of women regarding employment opportunities in the Philippines links the negative relationship observed between fertility, fecundity and women’s employment status. Today, there has been a convergence in the traditional family roles of men and women, as both genders now have identical employment opportunities that continue to shape their preferences.

Keywords: multinomial logistic function, tobit, fertility, women employment status, fecundity

Procedia PDF Downloads 606
3455 The Labor Participation-Fertility Trade-Off: Exploring Fecundity and Its Consequences to Women's Employment in the Philippines

Authors: Ariane C. Lim, Daphne Ashley L. Sze, Kenneth S. Santos

Abstract:

As women are now given more freedom and choice to pursue employment, the world’s over-all fertility has been decreasing mainly due to the shift in time allocation between working and child-rearing. As such, we study the case of the Philippines, where there exists a decreasing fertility rate and increasing openness for women labor participation. We focused on the distinction between fertility and fecundity, the former being the manifestation of the latter and aim to trace and compare the effects of both fecundity and fertility to women’s employment status through the estimation of the reproduction function and multinomial logistic function. Findings suggest that the perception of women regarding employment opportunities in the Philippines links the negative relationship observed between fertility, fecundity and women’s employment status. Today, there has been a convergence in the traditional family roles of men and women, as both genders now have identical employment opportunities that continue to shape their preferences.

Keywords: multinomial logistic function, tobit, fertility, women employment status, fecundity

Procedia PDF Downloads 629
3454 Prevalence of Fast-Food Consumption on Overweight or Obesity on Employees (Age Between 25-45 Years) in Private Sector; A Cross-Sectional Study in Colombo, Sri Lanka

Authors: Arosha Rashmi De Silva, Ananda Chandrasekara

Abstract:

This study seeks to comprehensively examine the influence of fast-food consumption and physical activity levels on the body weight of young employees within the private sector of Sri Lanka. The escalating popularity of fast food has raised concerns about its nutritional content and associated health ramifications. To investigate this phenomenon, a cohort of 100 individuals aged between 25 and 45, employed in Sri Lanka's private sector, participated in this research. These participants provided socio-demographic data through a standardized questionnaire, enabling the characterization of their backgrounds. Additionally, participants disclosed their frequency of fast-food consumption and engagement in physical activities, utilizing validated assessment tools. The collected data was meticulously compiled into an Excel spreadsheet and subjected to rigorous statistical analysis. Descriptive statistics, such as percentages and proportions, were employed to delineate the body weight status of the participants. Employing chi-square tests, our study identified significant associations between fast-food consumption, levels of physical activity, and body weight categories. Furthermore, through binary logistic regression analysis, potential risk factors contributing to overweight and obesity within the young employee cohort were elucidated. Our findings revealed a disconcerting trend, with 6% of participants classified as underweight, 32% within the normal weight range, and a substantial 62% categorized as overweight or obese. These outcomes underscore the alarming prevalence of overweight and obesity among young private-sector employees, particularly within the bustling urban landscape of Colombo, Sri Lanka. The data strongly imply a robust correlation between fast-food consumption, sedentary behaviors, and higher body weight categories, reflective of the evolving lifestyle patterns associated with the nation's economic growth. This study emphasizes the urgent need for effective interventions to counter the detrimental effects of fast-food consumption. The implementation of awareness campaigns elucidating the adverse health consequences of fast food, coupled with comprehensive nutritional education, can empower individuals to make informed dietary choices. Workplace interventions, including the provision of healthier meal alternatives and the facilitation of physical activity opportunities, are essential in fostering a healthier workforce and mitigating the escalating burden of overweight and obesity in Sri Lanka

Keywords: fast food consumption, obese, overweight, physical activity level

Procedia PDF Downloads 51
3453 Economic Analysis of Cowpea (Unguiculata spp) Production in Northern Nigeria: A Case Study of Kano Katsina and Jigawa States

Authors: Yakubu Suleiman, S. A. Musa

Abstract:

Nigeria is the largest cowpea producer in the world, accounting for about 45%, followed by Brazil with about 17%. Cowpea is grown in Kano, Bauchi, Katsina, Borno in the north, Oyo in the west, and to the lesser extent in Enugu in the east. This study was conducted to determine the input–output relationship of Cowpea production in Kano, Katsina, and Jigawa states of Nigeria. The data were collected with the aid of 1000 structured questionnaires that were randomly distributed to Cowpea farmers in the three states mentioned above of the study area. The data collected were analyzed using regression analysis (Cobb–Douglass production function model). The result of the regression analysis revealed the coefficient of multiple determinations, R2, to be 72.5% and the F ration to be 106.20 and was found to be significant (P < 0.01). The regression coefficient of constant is 0.5382 and is significant (P < 0.01). The regression coefficient with respect to labor and seeds were 0.65554 and 0.4336, respectively, and they are highly significant (P < 0.01). The regression coefficient with respect to fertilizer is 0.26341 which is significant (P < 0.05). This implies that a unit increase of any one of the variable inputs used while holding all other variables inputs constants, will significantly increase the total Cowpea output by their corresponding coefficient. This indicated that farmers in the study area are operating in stage II of the production function. The result revealed that Cowpea farmer in Kano, Jigawa and Katsina States realized a profit of N15,997, N34,016 and N19,788 per hectare respectively. It is hereby recommended that more attention should be given to Cowpea production by government and research institutions.

Keywords: coefficient, constant, inputs, regression

Procedia PDF Downloads 410
3452 Ketones Emission during Pad Printing Process

Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Oros B. Ivana, Kecić S. Vesna, Djogo Z. Maja

Abstract:

The paper investigates the effect of light intensity on the formation of two ketones, acetone and methyl ethyl ketone, in working premises of five pad printing departments in Novi Sad, Serbia. Multiple linear regression analysis examined the form of interdependency concentrations of methyl ethyl ketone, acetone and light intensity in five printing presses at seven sampling points, using Statistica software package version 10th. The results show an average stacking variation investigated variable and can be presented by the general regression model: y = b0 + b1xi1 + b2xi2.

Keywords: acetone, methyl ethyl ketone, multiple linear regression analysis, pad printing

Procedia PDF Downloads 420
3451 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 84
3450 Automatic API Regression Analyzer and Executor

Authors: Praveena Sridhar, Nihar Devathi, Parikshit Chakraborty

Abstract:

As the software product changes versions across releases, there are changes to the API’s and features and the upgrades become necessary. Hence, it becomes imperative to get the impact of upgrading the dependent components. This tool finds out API changes across two versions and their impact on other API’s followed by execution of the automated regression suites relevant to updates and their impacted areas. This tool has 4 layer architecture, each layer with its own unique pre-assigned capability which it does and sends the required information to next layer. This are the 4 layers. 1) Comparator: Compares the two versions of API. 2) Analyzer: Analyses the API doc and gives the modified class and its dependencies along with implemented interface details. 3) Impact Filter: Find the impact of the modified class on the other API methods. 4) Auto Executer: Based on the output given by Impact Filter, Executor will run the API regression Suite. Tool reads the java doc and extracts the required information of classes, interfaces and enumerations. The extracted information is saved into a data structure which shows the class details and its dependencies along with interfaces and enumerations that are listed in the java doc.

Keywords: automation impact regression, java doc, executor, analyzer, layers

Procedia PDF Downloads 488
3449 Experimental Study of Mechanical and Durability Properties of HPC Made with Binary Blends of Cement

Authors: Vatsal Patel, Niraj Shah

Abstract:

The aim of the research reported in this paper is to assess the Strength and durability performance of High Performance Concrete containing different percentages of waste marble powder produced from marble industry. Concrete mixes possessing a target mean compressive strength of 70MPa were prepared with 0%,5%,10%,15% and 20% cement replacement by waste marble powder with W/B =0.33. More specifically, the compressive strength, flexural strength, chloride penetration, sorptivity and accelerated corrosion were determined. Concrete containing 10% waste marble powder proved to have best Mechanical and durability properties than other mixtures made with binary blends. However, poorer performance was noticeable when replacement percentage was higher. The replacement of Waste Marble Powder will have major environmental benefits.

Keywords: durability, high performance concrete, marble waste powder, sorptivity, accelerated corrosion

Procedia PDF Downloads 345
3448 Determining Antecedents of Employee Turnover: A Study on Blue Collar vs White Collar Workers on Marco Level

Authors: Evy Rombaut, Marie-Anne Guerry

Abstract:

Predicting voluntary turnover of employees is an important topic of study, both in academia and industry. Researchers try to uncover determinants for a broader understanding and possible prevention of turnover. In the current study, we use a data set based approach to reveal determinants for turnover, differing for blue and white collar workers. Our data set based approach made it possible to study actual turnover for more than 500000 employees in 15692 Belgian corporations. We use logistic regression to calculate individual turnover probabilities and test the goodness of our model with the AUC (area under the ROC-curve) method. The results of the study confirm the relationship of known determinants to employee turnover such as age, seniority, pay and work distance. In addition, the study unravels unknown and verifies known differences between blue and white collar workers. It shows opposite relationships to turnover for gender, marital status, the number of children, nationality, and pay.

Keywords: employee turnover, blue collar, white collar, dataset analysis

Procedia PDF Downloads 291
3447 Multiobjective Optimization of a Pharmaceutical Formulation Using Regression Method

Authors: J. Satya Eswari, Ch. Venkateswarlu

Abstract:

The formulation of a commercial pharmaceutical product involves several composition factors and response characteristics. When the formulation requires to satisfy multiple response characteristics which are conflicting, an optimal solution requires the need for an efficient multiobjective optimization technique. In this work, a regression is combined with a non-dominated sorting differential evolution (NSDE) involving Naïve & Slow and ε constraint techniques to derive different multiobjective optimization strategies, which are then evaluated by means of a trapidil pharmaceutical formulation. The analysis of the results show the effectiveness of the strategy that combines the regression model and NSDE with the integration of both Naïve & Slow and ε constraint techniques for Pareto optimization of trapidil formulation. With this strategy, the optimal formulation at pH=6.8 is obtained with the decision variables of micro crystalline cellulose, hydroxypropyl methylcellulose and compression pressure. The corresponding response characteristics of rate constant and release order are also noted down. The comparison of these results with the experimental data and with those of other multiple regression model based multiobjective evolutionary optimization strategies signify the better performance for optimal trapidil formulation.

Keywords: pharmaceutical formulation, multiple regression model, response surface method, radial basis function network, differential evolution, multiobjective optimization

Procedia PDF Downloads 409
3446 Determinants of Never Users of Contraception-Results from Pakistan Demographic and Health Survey 2012-13

Authors: Arsalan Jabbar, Wajiha Javed, Nelofer Mehboob, Zahid Memon

Abstract:

Introduction: There are multiple social, individual and cultural factors that influence an individual’s decision to adopt family planning methods especially among non-users in patriarchal societies like Pakistan.Non-users, if targeted efficiently, can contribute significantly to country’s CPR. A research study showed that non-users if convinced to adopt lactational amenorrhea method can shift to long-term methods in future. Research shows that if non-users are targeted efficiently a 59% reduction in unintended pregnancies in Saharan Africa and South-Central and South-East Asia is anticipated. Methods: We did secondary data analysis on Pakistan Demographic Heath Survey (2012-13) dataset. Use of contraception (never-use/ever-use) was the outcome variable. At univariate level Chi-square/Fisher Exact test was used to assess relationship of baseline covariates with contraception use. Then variables to be incorporated in the model were checked for multi-collinearity, confounding, and interaction. Then binary logistic regression (with an urban-rural stratification) was done to find the relationship between contraception use and baseline demographic and social variables. Results: The multivariate analyses of the study showed that younger women (≤ 29 years) were more prone to be never users as compared to those who were > 30 years and this trend was seen in urban areas (AOR 1.92, CI 1.453-2.536) as well as rural areas (AOR 1.809, CI 1.421-2.303). While looking at regional variation, women from urban Sindh (AOR 1.548, CI 1.142-2.099) and urban Balochistan (AOR 2.403, CI 1.504-3.839) had more never users as compared to other urban regions. Women in the rich wealth quintile were more never users and this was seen both in urban and rural localities (urban (AOR 1.106 CI .753-1.624); rural areas (AOR 1.162, CI .887-1.524)) even though these were not statistically significant. Women idealizing more children(> 4) are more never users as compared to those idealizing less children in both urban (AOR 1.854, CI 1.275-2.697) and rural areas (AOR 2.101, CI 1.514-2.916). Women who never lost a pregnancy were more inclined to be non-users in rural areas (AOR 1.394, CI 1.127-1.723) .Women familiar with only traditional or no method had more never users in rural areas (AOR 1.717, CI 1.127-1.723) but in urban areas it wasn’t significant. Women unaware of Lady Health Worker’s presence in their area were more never users especially in rural areas (AOR 1.276, CI 1.014-1.607). Women who did not visit any care provider were more never users (urban (AOR 11.738, CI 9.112-15.121) rural areas (AOR 7.832, CI 6.243-9.826)). Discussion/Conclusion: This study concluded that government, policy makers and private sector family planning programs should focus on the untapped pool of never users (younger women from underserved provinces, in higher wealth quintiles, who desire more children.). We need to make sure to cover catchment areas where there are less LHWs and less providers as ignorance to modern methods and never been visited by an LHW are important determinants of never use. This all is in sync with previous literate from similar developing countries.

Keywords: contraception, demographic and health survey, family planning, never users

Procedia PDF Downloads 408
3445 Measuring Enterprise Growth: Pitfalls and Implications

Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić

Abstract:

Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.

Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises

Procedia PDF Downloads 252
3444 Biotechnological Recycling of Apple By-Products: A Reservoir Model to Produce a Dietary Supplement Fortified with Biogenic Phenolic Compounds

Authors: Ali Zein Aalabiden Tlais, Alessio Da Ros, Pasquale Filannino, Olimpia Vincentini, Marco Gobbetti, Raffaella Di Cagno

Abstract:

This study is an example of apple by-products (AP) recycling through a designed fermentation by selected autochthonous Lactobacillus plantarum AFI5 and Lactobacillus fabifermentans ALI6 used singly or as binary cultures with the selected Saccharomyces cerevisiae AYI7. Compared to Raw-, Unstarted- and Chemically Acidified-AP, Fermented-AP promoted the highest levels of total and insoluble dietary fibers, antioxidant activity, and free phenolics. The binary culture of L. plantarum AFI5 and S. cerevisiae AYI7 had the best effect on the bioavailability phenolic compounds as resulted by the Liquid chromatography-mass spectrometry validated method. The accumulation of phenolic acid derivatives highlighted microbial metabolism during AP fermentation. Bio-converted phenolic compounds were likely responsible for the increased antioxidant activity. The potential health-promoting effects of Fermented-AP were highlighted using Caco-2 cells. With variations among single and binary cultures, fermented-AP counteracted the inflammatory processes and the effects of oxidative stress in Caco-2 cells and preserved the integrity of tight junctions. An alternative and suitable model for food by-products recycling to manufacture a dietary supplement fortified with biogenic compounds was proposed. Highlighting the microbial metabolism of several phenolic compounds, undoubted additional value to such downstream wastes was created.

Keywords: apple by-products, antioxidant, fermentation, phenolic compounds

Procedia PDF Downloads 141
3443 Influence of HIV Testing on Knowledge of HIV/AIDS Prevention Practices and Transmission among Undergraduate Youths in North-West University, Mafikeng

Authors: Paul Bigala, Samuel Oladipo, Steven Adebowale

Abstract:

This study examines factors influencing knowledge of HIV/AIDS Prevention Practices and Transmission (KHAPPT) among young undergraduate students (15-24 years). Knowledge composite index was computed for 820 randomly selected students. Chi-square, ANOVA, and multinomial logistic regression were used for the analyses (α=.05). The overall mean knowledge score was 16.5±3.4 out of a possible score of 28. About 83% of the students have undergone HIV test, 21.0% have high KHAPPT, 18% said there is cure for the disease, 23% believed that asking for condom is embarrassing and 11.7% said it is safe to share unsterilized sharp objects with friends or family members. The likelihood of high KHAPPT was higher among students who have had HIV test (OR=3.314; C.I=1.787-6.145, p<0.001) even when other variables were used as control. The identified predictors of high KHAPPT were; ever had HIV test, faculty, and ever used any HIV/AIDS prevention services. North-West University Mafikeng should intensify efforts on the HIV/AIDS awareness program on the campus.

Keywords: HIV/AIDS knowledge, undergraduate students, HIV testing, Mafikeng

Procedia PDF Downloads 443
3442 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 600. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modelling mass transfer by multiple plunging jets.

Keywords: mass transfer, multiple plunging jets, multi-linear regression, earth sciences

Procedia PDF Downloads 463