Search results for: amazon forest
583 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 320582 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 134581 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 231580 Impact of Similarity Ratings on Human Judgement
Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos
Abstract:
Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.Keywords: ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval
Procedia PDF Downloads 131579 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 101578 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 40577 Learning Recomposition after the Remote Period with Finalist Students of the Technical Course in the Environment of the Ifpa, Paragominas Campus, Pará State, Brazilian Amazon
Authors: Liz Carmem Silva-Pereira, Raffael Alencar Mesquita Rodrigues, Francisco Helton Mendes Barbosa, Emerson de Freitas Ferreira
Abstract:
Due to the Covid-19 pandemic declared in March 2020 by the World Health Organization, the way of social coexistence across the planet was affected, especially in educational processes, from the implementation of the remote modality as a teaching strategy. This teaching-learning modality caused a change in the routine and learning of basic education students, which resulted in serious consequences for the return to face-to-face teaching in 2021. 2022, at the Federal Institute of Education, Science and Technology of Pará (IFPA) – Campus Paragominas had their training process severely affected, having studied the initial half of their training in the remote modality, which compromised the carrying out of practical classes, technical visits and field classes, essential for the student formation on the environmental technician. With the objective of promoting the recomposition of these students' learning after returning to the face-to-face modality, an educational strategy was developed in the last period of the course. As teaching methodologies were used for research as an educational principle, the integrative project and the parallel recovery action applied jointly, aiming at recomposing the basic knowledge of the natural sciences, together with the technical knowledge of the environmental area applied to the course. The project assisted 58 finalist students of the environmental technical course. A research instrument was elaborated with parameters of evaluation of the environmental quality for study in 19 collection points, in the Uraim River urban hydrographic basin, in the Paragominas City – Pará – Brazilian Amazon. Students were separated into groups under the professors' and laboratory assistants’ orientation, and in the field, they observed and evaluated the places' environmental conditions and collected physical data and water samples, which were taken to the chemistry and biology laboratories at Campus Paragominas for further analysis. With the results obtained, each group prepared a technical report on the environmental conditions of each evaluated point. This work methodology enabled the practical application of theoretical knowledge received in various disciplines during the remote teaching modality, contemplating the integration of knowledge, people, skills, and abilities for the best technical training of finalist students. At the activity end, the satisfaction of the involved students in the project was evaluated, through a form, with the signing of the informed consent term, using the Likert scale as an evaluation parameter. The results obtained in the satisfaction survey were: on the use of research projects within the disciplines attended, 82% of satisfaction was obtained; regarding the revision of contents in the execution of the project, 84% of satisfaction was obtained; regarding the acquired field experience, 76.9% of satisfaction was obtained, regarding the laboratory experience, 86.2% of satisfaction was obtained, and regarding the use of this methodology as parallel recovery, 71.8% was obtained of satisfaction. In addition to the excellent performance of students in acquiring knowledge, it was possible to remedy the deficiencies caused by the absence of practical classes, technical visits, and field classes, which occurred during the execution of the remote teaching modality, fulfilling the desired educational recomposition.Keywords: integrative project, parallel recovery, research as an educational principle, teaching-learning
Procedia PDF Downloads 66576 Coprophagus Beetles (Scarabaeidae: Coleoptera) of Buxa Tiger Reserve, West Bengal, India
Authors: Subhankar Kumar Sarkar
Abstract:
Scarab beetles composing the family Scarabaeidae is one of the largest families in the order Coleoptera. The family is comprised of 11 subfamilies. Of these, the subfamily Scarabaeinae includes 13 tribes globally. Indian species are however considered within 2 tribes Scarabaeini and Coprini. Scarab beetles under this subfamily also known as Coprophagus beetles play an indispensable role in forestry and agriculture. Both adults and larvae of these beetles do a remarkable job of carrying excrement into the soil thus enriching the soil to a great extent. Eastern and North Eastern states of India are heavily rich in diversity of organisms as this region exhibits the tropical rain forests of the eastern Himalayas, which exhibits one of the 18 biodiversity hotspots of the world and one of the three of India. Buxa Tiger Reserve located in Dooars between latitudes 26°30” to 26°55” North & longitudes 89°20” to 89°35” East is one such fine example of rain forests of the eastern Himalayas. Despite this, the subfamily is poorly known, particularly from this part of the globe and demands serious revisionary studies. It is with this background; the attempt is being made to assess the Scarabaeinae fauna of the forest. Both extensive and intensive surveys were conducted in different beats under different ranges of Buxa Tiger Reserve. For collection sweep nets, bush beating and collection in inverted umbrella, hand picking techniques were used. Several pit fall traps were laid in the collection localities of the Reserve to trap ground dwelling scarabs. Dung of various animals was also examined to make collections. In the evening hours UV light, trap was used to collect nocturnal beetles. The collected samples were studied under Stereozoom Binocular Microscopes Zeiss SV6, SV11 and Olympus SZ 30. The faunistic investigation of the forest revealed in the recognition of 19 species under 6 genera distributed over 2 tribes. Of these Heliocopris tyrannus Thomson, 1859 was recorded new from the Country, while Catharsius javanus Lansberge, 1886, Copris corpulentus Gillet, 1910, C. doriae Harold, 1877 and C. sarpedon Harold, 1868 from the state. 4 species are recorded as endemic to India. The forest is dominated by the members of the Genus Onthophagus, of which Onthophagus (Colobonthophagus) dama (Fabricius, 1798) is represented by highest number of individuals. Their seasonal distribution is most during Premonsoon followed by Monsoon and Postmonsoon. Zoogeographically all the recorded species are of oriental distribution.Keywords: buxa tiger reserve, diversity, India, new records, scarabaeinae, scarabaeidae
Procedia PDF Downloads 241575 Assessing the Legacy Effects of Wildfire on Eucalypt Canopy Structure of South Eastern Australia
Authors: Yogendra K. Karna, Lauren T. Bennett
Abstract:
Fire-tolerant eucalypt forests are one of the major forest ecosystems of south-eastern Australia and thought to be highly resistant to frequent high severity wildfires. However, the impact of different severity wildfires on the canopy structure of fire-tolerant forest type is under-studied, and there are significant knowledge gaps in relation to the assessment of tree and stand level canopy structural dynamics and recovery after fire. Assessment of canopy structure is a complex task involving accurate measurements of the horizontal and vertical arrangement of the canopy in space and time. This study examined the utility of multitemporal, small-footprint lidar data to describe the changes in the horizontal and vertical canopy structure of fire-tolerant eucalypt forests seven years after wildfire of different severities from the tree to stand level. Extensive ground measurements were carried out in four severity classes to describe and validate canopy cover and height metrics as they change after wildfire. Several metrics such as crown height and width, crown base height and clumpiness of crown were assessed at tree and stand level using several individual tree top detection and measurement algorithm. Persistent effects of high severity fire 8 years after both on tree crowns and stand canopy were observed. High severity fire increased the crown depth but decreased the crown projective cover leading to more open canopy.Keywords: canopy gaps, canopy structure, crown architecture, crown projective cover, multi-temporal lidar, wildfire severity
Procedia PDF Downloads 175574 Woodfuels as Alternative Source of Energy in Rural and Urban Areas in the Philippines
Authors: R. T. Aggangan
Abstract:
Woodfuels continue to be a major component of the energy supply mix of the Philippines due to increasing demand for energy that are not adequately met by decreasing supply and increasing prices of fuel oil such as liquefied petroleum gas (LPG) and kerosene. The Development Academy of the Philippines projects the demand of woodfuels in 2016 as 28.3 million metric tons in the household sector and about 105.4 million metric tons combined supply potentials of both forest and non-forest lands. However, the Revised Master Plan for Forestry Development projects a demand of about 50 million cu meters of fuelwood in 2016 but the capability to supply from local sources is only about 28 million cu meters indicating a 44 % deficiency. Household demand constitutes 82% while industries demand is 18%. Domestic household demand for energy is for cooking needs while the industrial demand is for steam power generation, curing barns of tobacco: brick, ceramics and pot making; bakery; lime production; and small scale food processing. Factors that favour increased use of wood-based energy include the relatively low prices (increasing oil-based fuel prices), availability of efficient wood-based energy utilization technology, increasing supply, and increasing population that cannot afford conventional fuels. Moreover, innovations in combustion technology and cogeneration of heat and power from biomass for modern applications favour biomass energy development. This paper recommends policies and strategic directions for the development of the woodfuel industry with the twin goals of sustainably supplying the energy requirements of households and industry.Keywords: biomass energy development, fuelwood, households and industry, innovations in combustion technology, supply and demand
Procedia PDF Downloads 333573 Desertification of Earth and Reverting Strategies
Authors: V. R. Venugopal
Abstract:
Human being evolved 200,000 years ago in an area which is now the Sahara desert and lived all along in the northern part of Africa. It was around 10,000 to15,00 years that he moved out of Africa. Various ancient civilizations – mainly the Egyptian, Mesopotamian, Indus valley and the Chinese yellow river valley civilizations - developed and perished till the beginning of the Christian era. Strangely the regions where all these civilizations flourished are no deserts. After the ancient civilizations the two major religions of the world the Christianity and Islam evolved. These too evolved in the regions of Jerusalem and Mecca which are now in the deserts of the present Israel and Saudi Arabia. Human activity since ancient age right from his origin was in areas which are now deserts. This is only because wherever Man lived in large numbers he has turned them into deserts. Unfortunately, this is not the case with the ancient days alone. Over the last 500 years the forest cover on the earth is reduced by 80 percent. Even more currently Just over the last forty decades human population has doubled but the number of bugs, beetles, worms and butterflies (micro fauna) have declined by 45%. Deforestation and defaunation are the first signs of desertification and Desertification is a process parallel to the extinction of life. There is every possibility that soon most of the earth will be in deserts. This writer has been involved in the process of forestation and increase of fauna as a profession since twenty years and this is a report of his efforts made in the process, the results obtained and concept generated to revert the ongoing desertification of this earth. This paper highlights how desertification can be reverted by applying these basic principles. 1) Man is not owner of this earth and has no right destroy vegetation and micro fauna. 2) Land owner shall not have the freedom to do anything that he wishes with the land. 3) The land that is under agriculture shall be reduced at least by a half. 4) Irrigation and modern technology shall be used for the forest growth also. 5) Farms shall have substantial permanent vegetation and the practice of all in all out shall stop.Keywords: desertification, extinction, micro fauna, reverting
Procedia PDF Downloads 312572 Landscape Pattern Evolution and Optimization Strategy in Wuhan Urban Development Zone, China
Abstract:
With the rapid development of urbanization process in China, its environmental protection pressure is severely tested. So, analyzing and optimizing the landscape pattern is an important measure to ease the pressure on the ecological environment. This paper takes Wuhan Urban Development Zone as the research object, and studies its landscape pattern evolution and quantitative optimization strategy. First, remote sensing image data from 1990 to 2015 were interpreted by using Erdas software. Next, the landscape pattern index of landscape level, class level, and patch level was studied based on Fragstats. Then five indicators of ecological environment based on National Environmental Protection Standard of China were selected to evaluate the impact of landscape pattern evolution on the ecological environment. Besides, the cost distance analysis of ArcGIS was applied to simulate wildlife migration thus indirectly measuring the improvement of ecological environment quality. The result shows that the area of land for construction increased 491%. But the bare land, sparse grassland, forest, farmland, water decreased 82%, 47%, 36%, 25% and 11% respectively. They were mainly converted into construction land. On landscape level, the change of landscape index all showed a downward trend. Number of patches (NP), Landscape shape index (LSI), Connection index (CONNECT), Shannon's diversity index (SHDI), Aggregation index (AI) separately decreased by 2778, 25.7, 0.042, 0.6, 29.2%, all of which indicated that the NP, the degree of aggregation and the landscape connectivity declined. On class level, the construction land and forest, CPLAND, TCA, AI and LSI ascended, but the Distribution Statistics Core Area (CORE_AM) decreased. As for farmland, water, sparse grassland, bare land, CPLAND, TCA and DIVISION, the Patch Density (PD) and LSI descended, yet the patch fragmentation and CORE_AM increased. On patch level, patch area, Patch perimeter, Shape index of water, farmland and bare land continued to decline. The three indexes of forest patches increased overall, sparse grassland decreased as a whole, and construction land increased. It is obvious that the urbanization greatly influenced the landscape evolution. Ecological diversity and landscape heterogeneity of ecological patches clearly dropped. The Habitat Quality Index continuously declined by 14%. Therefore, optimization strategy based on greenway network planning is raised for discussion. This paper contributes to the study of landscape pattern evolution in planning and design and to the research on spatial layout of urbanization.Keywords: landscape pattern, optimization strategy, ArcGIS, Erdas, landscape metrics, landscape architecture
Procedia PDF Downloads 165571 The Role of Sustainable Financing Models for Smallholder Tree Growers in Ghana
Authors: Raymond Awinbilla
Abstract:
The call for tree planting has long been set in motion by the government of Ghana. The Forestry Commission encourages plantation development through numerous interventions including formulating policies and enacting legislations. However, forest policies have failed and that has generated a major concern over the vast gap between the intentions of national policies and the realities established. This study addresses three objectives;1) Assessing the farmers' response and contribution to the tree planting initiative, 2) Identifying socio-economic factors hindering the development of smallholder plantations as a livelihood strategy, and 3) Determining the level of support available for smallholder tree growers and the factors influencing it. The field work was done in 12 farming communities in Ghana. The article illuminates that farmers have responded to the call for tree planting and have planted both exotic and indigenous tree species. Farmers have converted 17.2% (369.48ha) of their total land size into plantations and have no problem with land tenure. Operations and marketing constraints include lack of funds for operations, delay in payment, low price of wood, manipulation of price by buyers, documentation by buyers, and no ready market for harvesting wood products. Environmental institutions encourage tree planting; the only exception is with the Lands Commission. Support availed to farmers includes capacity building in silvicultural practices, organisation of farmers, linkage to markets and finance. Efforts by the Government of Ghana to enhance forest resources in the country could rely on the input of local populations.Keywords: livelihood strategy, marketing constraints, environmental institutions, silvicultural practices
Procedia PDF Downloads 58570 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 122569 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering
Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher
Abstract:
Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing
Procedia PDF Downloads 169568 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population
Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath
Abstract:
Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics
Procedia PDF Downloads 161567 A Study on Soil Micro-Arthropods Assemblage in Selected Plantations in The Nilgiris, Tamilnadu
Authors: J. Dharmaraj, C. Gunasekaran
Abstract:
Invertebrates are the reliable ecological indicators of disturbance of the forest ecosystems and they respond to environment changes more quickly than other fauna. Among these the terrestrial invertebrates are vital to functioning ecosystems, contributing to processes such as decomposition, nutrient cycling and soil fertility. The natural ecosystems of the forests have been subject to various types of disturbances, which lead to decline of flora and fauna. The comparative diversity of micro-arthropods in natural forest, wattle plantation and eucalyptus plantations were studied in Nilgiris. The study area was divided in to five major sites (Emerald (Site-I), Thalaikundha (Site-II), Kodapmund (Site-III), Aravankad (Site-IV), Kattabettu (Site-V). The research was conducted during period from March 2014 to August 2014. The leaf and soil samples were collected and isolated by using Berlese funnel extraction methods. Specimens were isolated and identified according to their morphology (Balogh 1972). In the present study results clearly showed the variation in soil pH, NPK (Major Nutrients) and organic carbon among the study sites. The chemical components of the leaf litters of the plantation decreased the diversity of micro-arthropods and decomposition rate leads to low amount of carbon and other nutrients present in the soil. Moreover eucalyptus and wattle plantations decreases the availability of the ground water source to other plantations and micro-arthropods and hences affects the soil fertility. Hence, the present study suggests to minimize the growth of wattle and eucalyptus tree plantations in the natural areas which may help to reduce the decline of forests.Keywords: micro-arthropods, assemblage, berlese funnel, morphology, NPK, nilgiris
Procedia PDF Downloads 308566 Investigation and Comprehensive Benefit Analysis of 11 Typical Polar-Based Agroforestry Models Based on Analytic Hierarchy Process in Anhui Province, Eastern China
Authors: Zhihua Cao, Hongfei Zhao, Zhongneng Wu
Abstract:
The development of polar-based agroforestry was necessary due to the influence of the timber market environment in China, which can promote the coordinated development of forestry and agriculture, and gain remarkable ecological, economic and social benefits. The main agroforestry models of the main poplar planting area in Huaibei plain and along the Yangtze River plain were carried out. 11 typical management models of poplar were selected to sum up: pure poplar forest, poplar-rape-soybean, poplar-wheat-soybean, poplar-rape-cotton, poplar-wheat, poplar-chicken, poplar-duck, poplar-sheep, poplar-Agaricus blazei, poplar-oil peony, poplar-fish, represented by M0-M10, respectively. 12 indexes related with economic, ecological and social benefits (annual average cost, net income, ratio of output to investment, payback period of investment, land utilization ratio, utilization ratio of light energy, improvement and system stability of ecological and production environment, product richness, labor capacity, cultural quality of labor force, sustainability) were screened out to carry on the comprehensive evaluation and analysis to 11 kinds of typical agroforestry models based on analytic hierarchy process (AHP). The results showed that the economic benefit of each agroforestry model was in the order of: M8 > M6 > M9 > M7 > M5 > M10 > M4 > M1 > M2 > M3 > M0. The economic benefit of poplar-A. blazei model was the highest (332, 800 RMB / hm²), followed by poplar-duck and poplar-oil peony model (109, 820RMB /hm², 5, 7226 RMB /hm²). The order of comprehensive benefit was: M8 > M4 > M9 > M6 > M1 > M2 > M3 > M7 > M5 > M10 > M0. The economic benefit and comprehensive benefit of each agroforestry model were higher than that of pure poplar forest. The comprehensive benefit of poplar-A. blazei model was the highest, and that of poplar-wheat model ranked second, while its economic benefit was not high. Next were poplar-oil peony and poplar-duck models. It was suggested that the model of poplar-wheat should be adopted in the plain along the Yangtze River, and the whole cycle mode of poplar-grain, popalr-A. blazei, or poplar-oil peony should be adopted in Huaibei plain, northern Anhui. Furthermore, wheat, rape, and soybean are the main crops before the stand was closed; the agroforestry model of edible fungus or Chinese herbal medicine can be carried out when the stand was closed in order to maximize the comprehensive benefit. The purpose of this paper is to provide a reference for forest farmers in the selection of poplar agroforestry model in the future and to provide the basic data for the sustainable and efficient study of poplar agroforestry in Anhui province, eastern China.Keywords: agroforestry, analytic hierarchy process (AHP), comprehensive benefit, model, poplar
Procedia PDF Downloads 165565 Challenges of Landscape Design with Tree Species Diversity
Authors: Henry Kuppen
Abstract:
In the last decade, tree managers have faced many threats of pests and diseases and the effects of climate change. Managers will recognize that they have to put more energy and more money into tree management. By recognizing the cause behind this, the opportunity will arise to build sustainable tree populations for the future. More and more, unwanted larvae are sprayed, ash dieback infected trees are pruned or felled, and emerald ash borer is knocking at the door of West Europe. A lot of specific knowledge is needed to produce management plans and best practices. If pest and disease have a large impact, society loses complete tree species and need to start all over again building urban forest. But looking at the cause behind it, landscape design, and tree species selection, the sustainable solution does not present itself in managing these threats. Every pest or disease needs two important basic ingredients to be successful: climate and food. The changing climate is helping several invasive pathogens to survive. Food is often designed by the landscapers and managers of the urban forest. Monocultures promote the success of pathogens. By looking more closely at the basics, tree managers will realise very soon that the solution will not be the management of pathogens. The long-term solution for sustainable tree populations is a different design of our urban landscape. The use of tree species diversity can help to reduce the impact of climate change and pathogens. Therefore landscapers need to be supported. They are the specialists in designing the landscape using design values like canopy volume, ecosystem services, and seasonal experience. It’s up to the species specialist to show what the opportunities are for different species that meet the desired interpretation of the landscape. Based on landscapers' criteria, selections can be made, including tree species related requirements. Through this collaboration and formation of integral teams, sustainable plant design will be possible.Keywords: climate change, landscape design, resilient landscape, tree species selection
Procedia PDF Downloads 130564 Descriptive Study of Tropical Tree Species in Commercial Interest Biosphere Reserve Luki in the Democratic Republic of Congo (DRC)
Authors: Armand Okende, Joëlle De Weerdt, Esther Fichtler, Maaike De Ridder, Hans Beeckman
Abstract:
The rainforest plays a crucial role in regulating the climate balance. The biodiversity of tropical rainforests is undeniable, but many aspects remain poorly known, which directly influences its management. Despite the efforts of sustainable forest management, human pressure in terms of exploitation and smuggling of timber forms a problem compared to exploited species whose status is considered "vulnerable" on the IUCN red list compiled by. Commercial species in Class III of the Democratic Republic of Congo are the least known in the market operating, and their biology is unknown or non-existent. Identification of wood in terms of descriptions and anatomical measurements of the wood is in great demand for various stakeholders such as scientists, customs, IUCN, etc. The objective of this study is the qualitative and quantitative description of the anatomical characteristics of commercial species in Class III of DR Congo. The site of the Luki Biosphere Reserve was chosen because of its high tree species richness. This study focuses on the wood anatomy of 14 commercial species of Class III of DR Congo. Thirty-four wooden discs were collected for these species. The following parameters were measured in the field: Diameter at breast height (DBH), total height and geographic coordinates. Microtomy, identification of vessel parameters (diameter, density and grouping) and photograph of the microscopic sections and determining age were performed in this study. The results obtained are detailed anatomical descriptions of species in Class III of the Democratic Republic of Congo.Keywords: sustainable management of forest, rainforest, commercial species of class iii, vessel diameter, vessel density, grouping vessel
Procedia PDF Downloads 214563 Significant Influence of Land Use Type on Earthworm Communities but Not on Soil Microbial Respiration in Selected Soils of Hungary
Authors: Tsedekech Gebremeskel Weldmichael, Tamas Szegi, Lubangakene Denish, Ravi Kumar Gangwar, Erika Micheli, Barbara Simon
Abstract:
Following the 1992 Earth Summit in Rio de Janeiro, soil biodiversity has been recognized globally as a crucial player in guaranteeing the functioning of soil and a provider of several ecosystem services essential for human well-being. The microbial fraction of the soil is a vital component of soil fertility as soil microbes play key roles in soil aggregate formation, nutrient cycling, humification, and degradation of pollutants. Soil fauna, such as earthworms, have huge impacts on soil organic matter dynamics, nutrient cycling, and infiltration and distribution of water in the soil. Currently, land-use change has been a global concern as evidence accumulates that it adversely affects soil biodiversity and the associated ecosystem goods and services. In this study, we examined the patterns of soil microbial respiration (SMR) and earthworm (abundance, biomass, and species richness) across three land-use types (grassland, arable land, and forest) in Hungary. The objectives were i) to investigate whether there is a significant difference in SMR and earthworm (abundance, biomass, and species richness) among land-use types. ii) to determine the key soil properties that best predict the variation in SMR and earthworm communities. Soil samples, to a depth of 25 cm, were collected from the surrounding areas of seven soil profiles. For physicochemical parameters, soil organic matter (SOM), pH, CaCO₃, E₄/E₆, available nitrogen (NH₄⁺-N and NO₃⁻-N), potassium (K₂O), phosphorus (P₂O₅), exchangeable Ca²⁺, Mg²⁺, soil moisture content (MC) and bulk density were measured. The analysis of SMR was determined by basal respiration method, and the extraction of earthworms was carried out by hand sorting method as described by ISO guideline. The results showed that there was no statistically significant difference among land-use types in SMR (p > 0.05). However, the highest SMR was observed in grassland soils (11.77 mgCO₂ 50g⁻¹ soil 10 days⁻¹) and lowest in forest soils (8.61 mgCO₂ 50g⁻¹ soil 10 days⁻¹). SMR had strong positive correlations with exchangeable Ca²⁺ (r = 0.80), MC (r = 0.72), and exchangeable Mg²⁺(r = 0.69). We found a pronounced variation in SMR among soil texture classes (p < 0.001), where the highest value in silty clay loam soils and the lowest in sandy soils. This study provides evidence that agricultural activities can negatively influence earthworm communities, in which the arable land had significantly lower earthworm communities compared to forest and grassland respectively. Overall, in our study, land use type had minimal effects on SMR whereas, earthworm communities were profoundly influenced by land-use type particularly agricultural activities related to tillage. Exchangeable Ca²⁺, MC, and texture were found to be the key drivers of the variation in SMR.Keywords: earthworm community, land use, soil biodiversity, soil microbial respiration, soil property
Procedia PDF Downloads 140562 Quantifying the Impacts of Elevated CO2 and N Fertilization on Wood Density in Loblolly Pine
Authors: Y. Cochet, A. Achim, Tom Flatman, J-C. Domec, J. Ogée, L. Wingate, Ram Oren
Abstract:
It is accepted that atmospheric CO2 concentration will increase in the future. For the past 30 years, researchers have used FACE (Free-Air Carbon Dioxide Enrichment) facilities to study the development of terrestrial ecosystems under elevated CO2 (eCO2). Forest responses to eCO2 are likely to impact timber industries with potential feedbacks towards the atmosphere. The main objectives of this study were to examine whether eCO2 alone or in combination with N-fertilization alter wood properties and to identify changes in wood anatomy related to water transport. Wood disks were sampled at breast height from mature loblolly pine trees (Pinus taeda L.) harvested at the Duke FACE site (NC, USA). By measuring ring width and intra-ring changes in density (X-ray densitometry) and tracheid size (lumen and cell wall thickness) from pith to bark, the following hypotheses were tested: 1) eCO2 and N-fertilization interact positively to increase significantly above-ground primary productivity; 2) eCO2 and N-fertilization lead to a decrease in density; 3) eCO2 and N-fertilization increase lumen diameter and decrease cell wall thickness, thus affecting water transport capacity. Our results revealed a boost in earlywood tracheid production induced by eCO2 lasting a few years. The following decrease seemed to be buffered by N-fertilization. X-ray profiles did not show a marked decrease in wood density under eCO2 or N-fertilization, although there were changes in cell anatomical properties such as a reduction in cell-wall thickness and an increase in lumen diameter. If such effects of eCO2 are confirmed, forest management strategies for example N-fertilization should be redesigned.Keywords: wood density, Duke FACE (free-air carbon dioxide enrichment), N fertilization, tree ring
Procedia PDF Downloads 335561 Assessment of Al/Fe Humus, pH, and P Retention to Differentiate Andisols under Different Cultivation, Karanganyar, Central Java, Indonesia
Authors: Miseri Roeslan Afany, Nur Ainun Pulungan
Abstract:
The unique characteristics of Andisol differentiate them from other soils. These characteristics become a guideline in determining management and usage with regards to agriculture. Especially in the tropical area, Andisols may have fast mineral alteration due to intensive water movement in the soils. Four soil chemical tests were conducted for evaluating soils in the study area. Al/Fe humus, allophane, pH, and P retention were used to differentiate Andisols under different practices. Non-cultivation practice (e.g. natural forest) and cultivation practices (e.g. horticulture systems and intensive farming systems) are compared in this study. We applied Blackmore method for P retention analysis. The aims of this study are: (i) to analyze the specific behavior of Al/Fe humus, pH, and allophane towards P retention in order (ii) to evaluate the effect of cultivation practices on their behavior changes among Andisols, and (iii) to gain the sustainable agriculture through proposing an appropriate soil managements in the study area. 5 observation sites were selected, and 75 soil sampling were analyzed in this study. The results show that the cultivation decreases P retention in all sampling sites. There is a declining from ±90% to ±50% of P retention in the natural forest where shifts into cultivated land. The average of P retention under 15 years of cultivation down into 63%, whereas, the average of P retention more than 15 years of cultivation down into 54%. Many factors affect the retention of P in the soil such as: (1) type and amount of clay, (2) allophone and/or imogolit, (3) Al/Fe humus, (4) soil pH, (5) type and amount of organic material, (6) Exchangeable bases (Ca, Mg, Na, K), (7) forms and solubility of Al/Fe. To achieve the sustainable agriculture in the study area, conventional agriculture practices should be preserved and intensive fertilizing practices should be applied in order to increase the soil pH, to maintain the organic matter of andisols, to maintain microba activities, and to release Al/Fe humus complex, and thus increase available P in the soils.Keywords: Andisols, cultivation, P retention, sustainable agriculture
Procedia PDF Downloads 280560 Digital Forensics Compute Cluster: A High Speed Distributed Computing Capability for Digital Forensics
Authors: Daniel Gonzales, Zev Winkelman, Trung Tran, Ricardo Sanchez, Dulani Woods, John Hollywood
Abstract:
We have developed a distributed computing capability, Digital Forensics Compute Cluster (DFORC2) to speed up the ingestion and processing of digital evidence that is resident on computer hard drives. DFORC2 parallelizes evidence ingestion and file processing steps. It can be run on a standalone computer cluster or in the Amazon Web Services (AWS) cloud. When running in a virtualized computing environment, its cluster resources can be dynamically scaled up or down using Kubernetes. DFORC2 is an open source project that uses Autopsy, Apache Spark and Kafka, and other open source software packages. It extends the proven open source digital forensics capabilities of Autopsy to compute clusters and cloud architectures, so digital forensics tasks can be accomplished efficiently by a scalable array of cluster compute nodes. In this paper, we describe DFORC2 and compare it with a standalone version of Autopsy when both are used to process evidence from hard drives of different sizes.Keywords: digital forensics, cloud computing, cyber security, spark, Kubernetes, Kafka
Procedia PDF Downloads 393559 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer A. Aljohani
Abstract:
COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network
Procedia PDF Downloads 92558 A Multi-Objective Decision Making Model for Biodiversity Conservation and Planning: Exploring the Concept of Interdependency
Authors: M. Mohan, J. P. Roise, G. P. Catts
Abstract:
Despite living in an era where conservation zones are de-facto the central element in any sustainable wildlife management strategy, we still find ourselves grappling with several pareto-optimal situations regarding resource allocation and area distribution for the same. In this paper, a multi-objective decision making (MODM) model is presented to answer the question of whether or not we can establish mutual relationships between these contradicting objectives. For our study, we considered a Red-cockaded woodpecker (Picoides borealis) habitat conservation scenario in the coastal plain of North Carolina, USA. Red-cockaded woodpecker (RCW) is a non-migratory territorial bird that excavates cavities in living pine trees for roosting and nesting. The RCW groups nest in an aggregation of cavity trees called ‘cluster’ and for our model we use the number of clusters to be established as a measure of evaluating the size of conservation zone required. The case study is formulated as a linear programming problem and the objective function optimises the Red-cockaded woodpecker clusters, carbon retention rate, biofuel, public safety and Net Present Value (NPV) of the forest. We studied the variation of individual objectives with respect to the amount of area available and plotted a two dimensional dynamic graph after establishing interrelations between the objectives. We further explore the concept of interdependency by integrating the MODM model with GIS, and derive a raster file representing carbon distribution from the existing forest dataset. Model results demonstrate the applicability of interdependency from both linear and spatial perspectives, and suggest that this approach holds immense potential for enhancing environmental investment decision making in future.Keywords: conservation, interdependency, multi-objective decision making, red-cockaded woodpecker
Procedia PDF Downloads 337557 Evaluation of Pesticide Residues in Honey from Cocoa and Forest Ecosystems in Ghana
Authors: Richard G. Boakye, Dara A Stanley, Mathavan Vickneswaran, Blanaid White
Abstract:
The cultivation of cocoa (Theobroma cocoa), an important cash crop that contributes immensely towards the economic growth of several Western African countries, depends almost entirely on pesticide application owing to the plant’s vulnerability to pest and disease attacks. However, the extent to which pesticides inputted for cocoa cultivation impact bees and bee products has rarely received attention in research. Through this study, the effects of pesticides applied for cocoa cultivation on honey in Ghana were examined by evaluating honey samples from cocoa and forest ecosystems in Ghana. An analysis of five honey samples from each land use type confirmed pesticide contaminants from these land use types at measured concentrations for acetamiprid (0.051mg/kg); imidacloprid (0.004-0.02 mg/kg), thiamethoxam (0.013-0.017 mg/kg); indoxacarb (0.004-0.045 mg/kg) and sulfoxaflor (0.004-0.026 mg/kg). None of the observed pesticide concentrations exceeded EU maximum residue levels, indicating no compromise of the honey quality for human consumption. However, from the results, it could be inferred that toxic effects on bees may not be ruled out because observed concentrations largely exceeded the threshold of 0.001 mg/kg at which sublethal effects on bees have previously been reported. One of the most remarkable results to emerge from this study is the detection of imidacloprid in all honey samples analyzed, with sulfoxaflor and thiamethoxam also being detected in 93% and 73% of the honey samples, respectively. This suggests the probable prevalence of pesticide use in the landscape. However, the conclusions reached in this study should be interpreted within the scope of pesticide applications within Bia West District and not necessarily extended to other cocoa-producing districts in Ghana. Future studies should therefore include multiple cocoa-growing districts and other non-cocoa farming landscapes. Such an approach can give a broader outlook on pesticide residues in honey produced in Ghana.Keywords: honey, cocoa, pesticides, bees, land use, landscape, residues, Ghana
Procedia PDF Downloads 81556 Impact of Agroforestry Practices on Biodiversity Management and Livelihoods of Communities Adjacent Magamba Nature Reserve(MNR), Tanzania
Authors: P. J. Kagosi, M. Mndolwa, E. Japhate
Abstract:
The study was conducted to communities adjacent MNR, Lushoto district, Tanzania. The MNR is one of the nine nature reserves in the Eastern Arc Mountains of Tanzania with an area of 8,700ha with high biological diversity. However, biodiversity in MNR have been threatened by increasing human activities for livelihood in 1970s. The AF systems in the study area was practised since 1980s however, no study was conducted on AF impacts. This paper presents the influence of AF on livelihood of communities adjacent MNR and biodiversity conservation. Qualitative and quantitative data were collected using socio-economic survey and botanical surveys. Data were analysed using Statistical Packages for Social Sciences and content analysis. The study found that in 1970s free livestock grazing caused considerable surface runoff, soil erosion and reduction of crop production. Since 1980s, the study area received various interventions based on the land conservations and improved livelihood through practising AF systems. It was further found that the AF farming improved crop productivity, reduced soil erosion, increased firewood (80.2%) and other forest products availability and AF encouraged community members practicing indoor livestock keeping.The dominant agroforestry tree found in the study area is grevillea reported by 74.1% of respondents planting an average of 40 trees. The study found that the AF reduced pressure to MNR as forest products and fodders were obtained from community's farms in turn, currently water flow from MNR has been increased. Thus AF products support livelihood needs and conserve biodiversity. The study recommends continuity education on new AF technology packages.Keywords: impact of agroforestry, biodiversity management, communities’ livelihoods, Magamba nature reserve
Procedia PDF Downloads 354555 Floristic Diversity, Carbon Stocks and Degradation Factors in Two Sacred Forests in the West Cameroon Region
Authors: Maffo Maffo Nicole Liliane, Mounmeni Kpoumie Hubert, Mbaire Matindje Karl Marx, Zapfack Louis
Abstract:
Sacred forests play a valuable role in conserving local biodiversity and provide numerous ecosystem services in Cameroon. The study was carried out in the sacred forests of Bandrefam and Batoufam (western Cameroon). The aim was to estimate the diversity of woody species, carbon stocks and degradation factors in these sacred forests. The floristic inventory was carried out in plots measuring 25m × 25m for trees with diameters greater than 10 cm and 5m × 5m for trees with diameters less than 10 cm. Carbon stocks were estimated using the non-destructive method and the allometric equations. Data on degradation factors were collected using semi-structured surveys in the Bandrefam and Batoufam neighborhoods. The floristic inventory identified 65 species divided into 57 genera and 30 families in the Bandrefam Sacred Forest and 45 species divided into 42 genera and 27 families in the Batoufam Sacres Forest. The families common to both sacred forests are as follows: Phyllanthaceae, Fabaceae, Moraceae, Lamiaceae, Malvaceae, Rubiaceae, Meliaceae, Anacardiaceae, and Sapindaceae. Three genera are present in both sites. These are: Albizia, Macaranga, Trichillia. In addition, there are 27 species in common between the two sites. The total carbon stock is 469.26 tC/ha at Batoufam and 291.41 tC/ha at Bandrefam. The economic value varies between 15 823 877.05 fcfa at Batoufam and 9 825 530.528 fcfa at Bandrefam. The study shows that despite the sacred nature of these forests, they are subject to degradation factors such as bushfires (35.42 %), the creation of plantations (23.96 %), illegal timber exploitation (21.88 %), young people's lack of interest in the notion of conservation (9.38 %), climate change (7.29 %) and growing urbanization (2.08 %). These factors threaten biodiversity and reduce carbon storage in these forests.Keywords: sacred forests, degradation factors, carbon stocks, semi-structured surveys
Procedia PDF Downloads 49554 Development of Functional Cosmetic Materials from Demilitarized Zone Habiting Plants
Authors: Younmin Shin, Jin Kyu Kim, Mirim Jin, Jeong June Choi
Abstract:
Demilitarized Zone (DMZ) is a peace region located between South and North Korea border to avoid accidental armed conflict. Because human accessing to the area was forced to be prohibited for more than 60 years, DMZ is one of the cleanest land keeping wild lives as nature itself in South Korea. In this study, we evaluated the biological efficacies of plants (SS, PC, and AR) inhabiting in DMZ for the development of functional cosmetics. First, we tested the cytotoxicity of plant extracts in keratinocyte and melanocyte, which are the major cell components of skin. By 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with the cell lines, we determined the safety concentrations of the extracts for the efficacy tests. Next, we assessed the anti-wrinkle cosmetic function of SS by demonstrating that SS treatment decreased the expression of Matrix metalloproteinase-1 (MMP-1) in UV-irradiated keratinocytes via real-time PCR. The suppressive effect of SS was greatly potentiated by combination with other DMZ-inhabiting plants, PC and AR. The expression of tyrosinase, which is one the main enzyme that producing melanin in melanocyte, was also down-regulated by the DMZ-inhabiting SS extract. Wound healing activity was also investigated by in vitro test with HaCat cell line, a human fibroblast cell line. All the natural materials extracted form DMZ habiting plants accelerated the recovery of the cells. These results suggested that DMZ is a treasure island of functional plants and DMZ-inhabiting natural products are warranted to develop functional cosmetic materials. This study was carried out with the support of R&D Program for Forest Science Technology (Project No. 2017027A00-1819-BA01) provided by Korea Forest Service (Korea Forestry Promotion Institute).Keywords: anti-wrinkle, Demilitarized Zone, functional cosmetics, whitening
Procedia PDF Downloads 144