Search results for: Web Mining
634 Use of AI for the Evaluation of the Effects of Steel Corrosion in Mining Environments
Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento
Abstract:
Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH and, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics. Acknowledgments: This work has been supported by MCIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.Keywords: carbon steel, corrosion, acid mine drainage, artificial intelligence, fuzzy logic
Procedia PDF Downloads 20633 Characteristic Study of Polymer Sand as a Potential Substitute for Natural River Sand in Construction Industry
Authors: Abhishek Khupsare, Ajay Parmar, Ajay Agarwal, Swapnil Wanjari
Abstract:
The extreme demand for aggregate leads to the exploitation of river-bed for fine aggregates, affecting the environment adversely. Therefore, a suitable alternative to natural river sand is essentially required. This study focuses on preventing environmental impact by developing polymer sand to replace natural river sand (NRS). Development of polymer sand by mixing high volume fly ash, bottom ash, cement, natural river sand, and locally purchased high solid content polycarboxylate ether-based superplasticizer (HS-PCE). All the physical and chemical properties of polymer sand (P-Sand) were observed and satisfied the requirement of the Indian Standard code. P-Sand yields good specific gravity of 2.31 and is classified as zone-I sand with a satisfactory friction angle (37˚) compared to natural river sand (NRS) and Geopolymer fly ash sand (GFS). Though the water absorption (6.83%) and pH (12.18) are slightly more than those of GFS and NRS, the alkali silica reaction and soundness are well within the permissible limit as per Indian Standards. The chemical analysis by X-Ray fluorescence showed the presence of high amounts of SiO2 and Al2O3 with magnitudes of 58.879% 325 and 26.77%, respectively. Finally, the compressive strength of M-25 grade concrete using P-sand and Geopolymer sand (GFS) was observed to be 87.51% and 83.82% with respect to natural river sand (NRS) after 28 days, respectively. The results of this study indicate that P-sand can be a good alternative to NRS for construction work as it not only reduces the environmental effect due to sand mining but also focuses on utilising fly ash and bottom ash.Keywords: polymer sand, fly ash, bottom ash, HSPCE plasticizer, river sand mining
Procedia PDF Downloads 77632 Mineral Deposits in Spatial Planning Systems – Review of European Practices
Authors: Alicja Kot-Niewiadomska
Abstract:
Securing sustainable access to raw materials is vital for the growth of the European economy and for the goals laid down in Strategy Europe 2020. One of the most important sources of mineral raw materials are primary deposits. The efficient management of them, including extraction, will ensure competitiveness of the European economy. A critical element of this approach is mineral deposits safeguarding and the most important tool - spatial planning. The safeguarding of deposits should be understood as safeguarding of land access, and safeguarding of area against development, which may (potential) prevent the use of the deposit and the necessary mining activities. Many European Union countries successfully integrated their mineral policy and spatial policy, which has ensured the proper place of mineral deposits in their spatial planning systems. These, in turn, are widely recognized as the most important mineral deposit safeguarding tool, the essence of which is to ensure long-term access to its resources. The examples of Austria, Portugal, Slovakia, Czech Republic, Sweden, and the United Kingdom, discussed in the paper, are often mentioned as examples of good practices in this area. Although none of these countries managed to avoid cases of social and environmental conflicts related to mining activities, the solutions they implement certainly deserve special attention. And for many countries, including Poland, they can be a potential source of solutions aimed at improving the protection of mineral deposits.Keywords: mineral deposits, land use planning, mineral deposit safeguarding, European practices
Procedia PDF Downloads 171631 A Practical and Theoretical Study on the Electromotor Bearing Defect Detection in a Wet Mill Using the Vibration Analysis Method and Defect Length Calculation in the Bearing
Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi
Abstract:
Wet mills are one of the most important equipment in the mining industries and any defect occurrence in them can stop the production line and it can make some irrecoverable damages to the system. Electromotors are the significant parts of a mill and their monitoring is a necessary process to prevent unwanted defects. The purpose of this study is to investigate the Electromotor bearing defects, theoretically and practically, using the vibration analysis method. When a defect happens in a bearing, it can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. The electromotor defects source can be electrical or mechanical. Sometimes, the electrical and mechanical defect frequencies are modulated and the bearing defect detection becomes difficult. In this paper, to detect the electromotor bearing defects, the electrical and mechanical defect frequencies are extracted firstly. Then, by calculating the bearing defect frequencies, and the spectrum and time signal analysis, the bearing defects are detected. In addition, the obtained frequency determines that the bearing level in which the defect has happened and by comparing this level to the standards it determines the bearing remaining lifetime. Finally, the defect length is calculated by theoretical equations to demonstrate that there is no need to replace the bearing. The results of the proposed method, which has been implemented on the wet mills in the Golgohar mining and industrial company in Iran, show that this method is capable of detecting the electromotor bearing defects accurately and on time.Keywords: bearing defect length, defect frequency, electromotor defects, vibration analysis
Procedia PDF Downloads 502630 Analysis of the Development of Mining Companies Social Corporate Responsibility Based on the Rating Score
Authors: Tatiana Ponomarenko, Oksana Marinina, Marina Nevskaya
Abstract:
Modern corporate social responsibility (CSR) is a sphere of multilevel responsibility of a company toward society represented by various stakeholders. The relevance of CSR management grows due to the active development of socially responsible investing (principles for responsible investment) taking into account factors of environmental, social and corporate governance (ESG), growing attention of the investment community in general to the long-term stability of companies and the quality of control of nonfinancial risks. The modern approach to CSR strategic management is aimed at the creation of trustful relationships with stakeholders, on the basis of which a contribution to the sustainable development of companies, regions, and national economics is insured. However, the practical concepts of social responsibility in mining companies are different, which leads to various degrees of application of CSR. A number of companies implement CSR using a traditional (limited) understanding of responsibility toward employees and counteragents, the others understand CSR much wider and try to use leverages of efficient cooperation. As in large mining companies the scope of CSR measures is diverse and characterized by different indices, the study was aimed at evaluating CSR efficiency on the basis of a proprietary methodology and determining the level of development of CSR management in terms of anti-crisis, reactive and proactive development. The methodology of the research includes analysis of integrated global reporting initiative (GRI) reports of large mining companies; choice of most representative sectoral agents by a criterion of the regularity of issuance and publication of reports; calculation of indices of evaluation of CSR level of the selected companies in dynamics. The methodology of evaluation of CSR level is based on a rating score of changes in standard indices of GRI reports by economic, environmental, and social directions. Result. By the results of the analysis, companies of fuel and energy and metallurgic complexes, in overwhelming majority, reflecting three indices out of a wide range of possible indicators of SDGs (Sustainable Development Goals), were selected for the study. The evaluation of the scopes of CSR of the companies Gazprom, LUKOIL, Metalloinvest, Nornikel, Rosneft, Severstal, SIBUR, SUEK corresponds to the reactive type of development according to a scale of CSR strategic management, which is the average value out of the possible values. The chief drawback is that companies, in the process of analyzing global goals, often choose the goals which relate to their own activities, paying insufficient attention to the interests of the stakeholders inside the country. This fact evidences the necessity of searching for more effective mechanisms of CSR control. Acknowledgment: This article is prepared within grant support of the RFBR, project 19-510-44013 'Development of the concept of mineral resources value formation in the context of sustainable development in resource-oriented economies'.Keywords: sustainable development, corporate social responsibility, development strategies, efficiency assessment
Procedia PDF Downloads 134629 A Novel Approach for the Analysis of Ground Water Quality by Using Classification Rules and Water Quality Index
Authors: Kamakshaiah Kolli, R. Seshadri
Abstract:
Water is a key resource in all economic activities ranging from agriculture to industry. Only a tiny fraction of the planet's abundant water is available to us as fresh water. Assessment of water quality has always been paramount in the field of environmental quality management. It is the foundation for health, hygiene, progress and prosperity. With ever increasing pressure of human population, there is severe stress on water resources. Therefore efficient water management is essential to civil society for betterment of quality of life. The present study emphasizes on the groundwater quality, sources of ground water contamination, variation of groundwater quality and its spatial distribution. The bases for groundwater quality assessment are groundwater bodies and representative monitoring network enabling determination of chemical status of groundwater body. For this study, water samples were collected from various areas of the entire corporation area of Guntur. Water is required for all living organisms of which 1.7% is available as ground water. Water has no calories or any nutrients, but essential for various metabolic activities in our body. Chemical and physical parameters can be tested for identifying the portability of ground water. Electrical conductivity, pH, alkalinity, Total Alkalinity, TDS, Calcium, Magnesium, Sodium, Potassium, Chloride, and Sulphate of the ground water from Guntur district: Different areas of the District were analyzed. Our aim is to check, if the ground water from the above areas are potable or not. As multivariate are present, Data mining technique using JRIP rules was employed for classifying the ground water.Keywords: groundwater, water quality standards, potability, data mining, JRIP, PCA, classification
Procedia PDF Downloads 430628 Investigating Dynamic Transition Process of Issues Using Unstructured Text Analysis
Authors: Myungsu Lim, William Xiu Shun Wong, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Namgyu Kim
Abstract:
The amount of real-time data generated through various mass media has been increasing rapidly. In this study, we had performed topic analysis by using the unstructured text data that is distributed through news article. As one of the most prevalent applications of topic analysis, the issue tracking technique investigates the changes of the social issues that identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has limitation that it cannot discover dynamic mutation process of complex social issues. The purpose of this study is to overcome the limitations of the existing issue tracking method. We first derived core issues of each period, and then discover the dynamic mutation process of various issues. In this study, we further analyze the mutation process from the perspective of the issues categories, in order to figure out the pattern of issue flow, including the frequency and reliability of the pattern. In other words, this study allows us to understand the components of the complex issues by tracking the dynamic history of issues. This methodology can facilitate a clearer understanding of complex social phenomena by providing mutation history and related category information of the phenomena.Keywords: Data Mining, Issue Tracking, Text Mining, topic Analysis, topic Detection, Trend Detection
Procedia PDF Downloads 408627 An Automatic Bayesian Classification System for File Format Selection
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.Keywords: data mining, digital libraries, digital preservation, file format
Procedia PDF Downloads 499626 Assessment of Environmental Impacts and Determination of Sustainability Level of BOOG Granite Mine Using a Mathematical Model
Authors: Gholamhassan Kakha, Mohsen Jami, Daniel Alex Merino Natorce
Abstract:
Sustainable development refers to the creation of a balance between the development and the environment too; it consists of three key principles namely environment, society and economy. These three parameters are related to each other and the imbalance occurs in each will lead to the disparity of the other parts. Mining is one of the most important tools of the economic growth and social welfare in many countries. Meanwhile, assessment of the environmental impacts has directed to the attention of planners toward the natural environment of the areas surrounded by mines and allowing for monitoring and controlling of the current situation by the designers. In this look upon, a semi-quantitative model using a matrix method is presented for assessing the environmental impacts in the BOOG Granite Mine located in Sistan and Balouchestan, one of the provinces of Iran for determining the effective factors and environmental components. For accomplishing this purpose, the initial data are collected by the experts at the next stage; the effect of the factors affects each environmental component is determined by specifying the qualitative viewpoints. Based on the results, factors including air quality, ecology, human health and safety along with the environmental damages resulted from mining activities in that area. Finally, the results gained from the assessment of the environmental impact are used to evaluate the sustainability by using Philips mathematical model. The results show that the sustainability of this area is weak, so environmental preventive measures are recommended to reduce the environmental damages to its components.Keywords: sustainable development, environmental impacts' assessment, BOOG granite, Philips mathematical model
Procedia PDF Downloads 197625 Genome-Wide Mining of Potential Guide RNAs for Streptococcus pyogenes and Neisseria meningitides CRISPR-Cas Systems for Genome Engineering
Authors: Farahnaz Sadat Golestan Hashemi, Mohd Razi Ismail, Mohd Y. Rafii
Abstract:
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system can facilitate targeted genome editing in organisms. Dual or single guide RNA (gRNA) can program the Cas9 nuclease to cut target DNA in particular areas; thus, introducing concise mutations either via error-prone non-homologous end-joining repairing or via incorporating foreign DNAs by homologous recombination between donor DNA and target area. In spite of high demand of such promising technology, developing a well-organized procedure in order for reliable mining of potential target sites for gRNAs in large genomic data is still challenging. Hence, we aimed to perform high-throughput detection of target sites by specific PAMs for not only common Streptococcus pyogenes (SpCas9) but also for Neisseria meningitides (NmCas9) CRISPR-Cas systems. Previous research confirmed the successful application of such RNA-guided Cas9 orthologs for effective gene targeting and subsequently genome manipulation. However, Cas9 orthologs need their particular PAM sequence for DNA cleavage activity. Activity levels are based on the sequence of the protospacer and specific combinations of favorable PAM bases. Therefore, based on the specific length and sequence of PAM followed by a constant length of the target site for the two orthogonals of Cas9 protein, we created a reliable procedure to explore possible gRNA sequences. To mine CRISPR target sites, four different searching modes of sgRNA binding to target DNA strand were applied. These searching modes are as follows i) coding strand searching, ii) anti-coding strand searching, iii) both strand searching, and iv) paired-gRNA searching. Finally, a complete list of all potential gRNAs along with their locations, strands, and PAMs sequence orientation can be provided for both SpCas9 as well as another potential Cas9 ortholog (NmCas9). The artificial design of potential gRNAs in a genome of interest can accelerate functional genomic studies. Consequently, the application of such novel genome editing tool (CRISPR/Cas technology) will enhance by presenting increased versatility and efficiency.Keywords: CRISPR/Cas9 genome editing, gRNA mining, SpCas9, NmCas9
Procedia PDF Downloads 261624 Risk Based Maintenance Planning for Loading Equipment in Underground Hard Rock Mine: Case Study
Authors: Sidharth Talan, Devendra Kumar Yadav, Yuvraj Singh Rajput, Subhajit Bhattacharjee
Abstract:
Mining industry is known for its appetite to spend sizeable capital on mine equipment. However, in the current scenario, the mining industry is challenged by daunting factors of non-uniform geological conditions, uneven ore grade, uncontrollable and volatile mineral commodity prices and the ever increasing quest to optimize the capital and operational costs. Thus, the role of equipment reliability and maintenance planning inherits a significant role in augmenting the equipment availability for the operation and in turn boosting the mine productivity. This paper presents the Risk Based Maintenance (RBM) planning conducted on mine loading equipment namely Load Haul Dumpers (LHDs) at Vedanta Resources Ltd subsidiary Hindustan Zinc Limited operated Sindesar Khurd Mines, an underground zinc and lead mine situated in Dariba, Rajasthan, India. The mining equipment at the location is maintained by the Original Equipment Manufacturers (OEMs) namely Sandvik and Atlas Copco, who carry out the maintenance and inspection operations for the equipment. Based on the downtime data extracted for the equipment fleet over the period of 6 months spanning from 1st January 2017 until 30th June 2017, it was revealed that significant contribution of three downtime issues related to namely Engine, Hydraulics, and Transmission to be common among all the loading equipment fleet and substantiated by Pareto Analysis. Further scrutiny through Bubble Matrix Analysis of the given factors revealed the major influence of selective factors namely Overheating, No Load Taken (NTL) issues, Gear Changing issues and Hose Puncture and leakage issues. Utilizing the equipment wise analysis of all the downtime factors obtained, spares consumed, and the alarm logs extracted from the machines, technical design changes in the equipment and pre shift critical alarms checklist were proposed for the equipment maintenance. The given analysis is beneficial to allow OEMs or mine management to focus on the critical issues hampering the reliability of mine equipment and design necessary maintenance strategies to mitigate them.Keywords: bubble matrix analysis, LHDs, OEMs, Pareto chart analysis, spares consumption matrix, critical alarms checklist
Procedia PDF Downloads 153623 Improving Trainings of Mineral Processing Operators Through Gamification and Modelling and Simulation
Authors: Pedro A. S. Bergamo, Emilia S. Streng, Jan Rosenkranz, Yousef Ghorbani
Abstract:
Within the often-hazardous mineral industry, simulation training has speedily gained appreciation as an important method of increasing site safety and productivity through enhanced operator skill and knowledge. Performance calculations related to froth flotation, one of the most important concentration methods, is probably the hardest topic taught during the training of plant operators. Currently, most training teach those skills by traditional methods like slide presentations and hand-written exercises with a heavy focus on memorization. To optimize certain aspects of these pieces of training, we developed “MinFloat”, which teaches the operation formulas of the froth flotation process with the help of gamification. The simulation core based on a first-principles flotation model was implemented in Unity3D and an instructor tutoring system was developed, which presents didactic content and reviews the selected answers. The game was tested by 25 professionals with extensive experience in the mining industry based on a questionnaire formulated for training evaluations. According to their feedback, the game scored well in terms of quality, didactic efficacy and inspiring character. The feedback of the testers on the main target audience and the outlook of the mentioned solution is presented. This paper aims to provide technical background on the construction of educational games for the mining industry besides showing how feedback from experts can more efficiently be gathered thanks to new technologies such as online forms.Keywords: training evaluation, simulation based training, modelling, and simulation, froth flotation
Procedia PDF Downloads 113622 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach
Authors: Alvaro Figueira, Bruno Cabral
Abstract:
Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.Keywords: data mining, e-learning, grade prediction, machine learning, student learning path
Procedia PDF Downloads 122621 Determining of the Performance of Data Mining Algorithm Determining the Influential Factors and Prediction of Ischemic Stroke: A Comparative Study in the Southeast of Iran
Authors: Y. Mehdipour, S. Ebrahimi, A. Jahanpour, F. Seyedzaei, B. Sabayan, A. Karimi, H. Amirifard
Abstract:
Ischemic stroke is one of the common reasons for disability and mortality. The fourth leading cause of death in the world and the third in some other sources. Only 1/3 of the patients with ischemic stroke fully recover, 1/3 of them end in permanent disability and 1/3 face death. Thus, the use of predictive models to predict stroke has a vital role in reducing the complications and costs related to this disease. Thus, the aim of this study was to specify the effective factors and predict ischemic stroke with the help of DM methods. The present study was a descriptive-analytic study. The population was 213 cases from among patients referring to Ali ibn Abi Talib (AS) Hospital in Zahedan. Data collection tool was a checklist with the validity and reliability confirmed. This study used DM algorithms of decision tree for modeling. Data analysis was performed using SPSS-19 and SPSS Modeler 14.2. The results of the comparison of algorithms showed that CHAID algorithm with 95.7% accuracy has the best performance. Moreover, based on the model created, factors such as anemia, diabetes mellitus, hyperlipidemia, transient ischemic attacks, coronary artery disease, and atherosclerosis are the most effective factors in stroke. Decision tree algorithms, especially CHAID algorithm, have acceptable precision and predictive ability to determine the factors affecting ischemic stroke. Thus, by creating predictive models through this algorithm, will play a significant role in decreasing the mortality and disability caused by ischemic stroke.Keywords: data mining, ischemic stroke, decision tree, Bayesian network
Procedia PDF Downloads 174620 An Approach for Association Rules Ranking
Authors: Rihab Idoudi, Karim Saheb Ettabaa, Basel Solaiman, Kamel Hamrouni
Abstract:
Medical association rules induction is used to discover useful correlations between pertinent concepts from large medical databases. Nevertheless, ARs algorithms produce huge amount of delivered rules and do not guarantee the usefulness and interestingness of the generated knowledge. To overcome this drawback, we propose an ontology based interestingness measure for ARs ranking. According to domain expert, the goal of the use of ARs is to discover implicit relationships between items of different categories such as ‘clinical features and disorders’, ‘clinical features and radiological observations’, etc. That’s to say, the itemsets which are composed of ‘similar’ items are uninteresting. Therefore, the dissimilarity between the rule’s items can be used to judge the interestingness of association rules; the more different are the items, the more interesting the rule is. In this paper, we design a distinct approach for ranking semantically interesting association rules involving the use of an ontology knowledge mining approach. The basic idea is to organize the ontology’s concepts into a hierarchical structure of conceptual clusters of targeted subjects, where each cluster encapsulates ‘similar’ concepts suggesting a specific category of the domain knowledge. The interestingness of association rules is, then, defined as the dissimilarity between corresponding clusters. That is to say, the further are the clusters of the items in the AR, the more interesting the rule is. We apply the method in our domain of interest – mammographic domain- using an existing mammographic ontology called Mammo with the goal of deriving interesting rules from past experiences, to discover implicit relationships between concepts modeling the domain.Keywords: association rule, conceptual clusters, interestingness measures, ontology knowledge mining, ranking
Procedia PDF Downloads 322619 Integrating Data Mining with Case-Based Reasoning for Diagnosing Sorghum Anthracnose
Authors: Mariamawit T. Belete
Abstract:
Cereal production and marketing are the means of livelihood for millions of households in Ethiopia. However, cereal production is constrained by technical and socio-economic factors. Among the technical factors, cereal crop diseases are the major contributing factors to the low yield. The aim of this research is to develop an integration of data mining and knowledge based system for sorghum anthracnose disease diagnosis that assists agriculture experts and development agents to make timely decisions. Anthracnose diagnosing systems gather information from Melkassa agricultural research center and attempt to score anthracnose severity scale. Empirical research is designed for data exploration, modeling, and confirmatory procedures for testing hypothesis and prediction to draw a sound conclusion. WEKA (Waikato Environment for Knowledge Analysis) was employed for the modeling. Knowledge based system has come across a variety of approaches based on the knowledge representation method; case-based reasoning (CBR) is one of the popular approaches used in knowledge-based system. CBR is a problem solving strategy that uses previous cases to solve new problems. The system utilizes hidden knowledge extracted by employing clustering algorithms, specifically K-means clustering from sampled anthracnose dataset. Clustered cases with centroid value are mapped to jCOLIBRI, and then the integrator application is created using NetBeans with JDK 8.0.2. The important part of a case based reasoning model includes case retrieval; the similarity measuring stage, reuse; which allows domain expert to transfer retrieval case solution to suit for the current case, revise; to test the solution, and retain to store the confirmed solution to the case base for future use. Evaluation of the system was done for both system performance and user acceptance. For testing the prototype, seven test cases were used. Experimental result shows that the system achieves an average precision and recall values of 70% and 83%, respectively. User acceptance testing also performed by involving five domain experts, and an average of 83% acceptance is achieved. Although the result of this study is promising, however, further study should be done an investigation on hybrid approach such as rule based reasoning, and pictorial retrieval process are recommended.Keywords: sorghum anthracnose, data mining, case based reasoning, integration
Procedia PDF Downloads 81618 Research on Spatial Distribution of Service Facilities Based on Innovation Function: A Case Study of Zhejiang University Zijin Co-Maker Town
Authors: Zhang Yuqi
Abstract:
Service facilities are the boosters for the cultivation and development of innovative functions in innovative cluster areas. At the same time, reasonable service facilities planning can better link the internal functional blocks. This paper takes Zhejiang University Zijin Co-Maker Town as the research object, based on the combination of network data mining and field research and verification, combined with the needs of its internal innovative groups. It studies the distribution characteristics and existing problems of service facilities and then proposes a targeted planning suggestion. The main conclusions are as follows: (1) From the perspective of view, the town is rich in general life-supporting services, but lacking of provision targeted and distinctive service facilities for innovative groups; (2) From the perspective of scale structure, small-scale street shops are the main business form, lack of large-scale service center; (3) From the perspective of spatial structure, service facilities layout of each functional block is too fragile to fit the characteristics of 2aggregation- distribution' of innovation and entrepreneurial activities; (4) The goal of optimizing service facilities planning should be guided for fostering function of innovation and entrepreneurship and meet the actual needs of the innovation and entrepreneurial groups.Keywords: the cultivation of innovative function, Zhejiang University Zijin Co-Maker Town, service facilities, network data mining, space optimization advice
Procedia PDF Downloads 115617 Water Ingress into Underground Mine Voids in the Central Rand Goldfields Area, South Africa-Fluid Induced Seismicity
Authors: Artur Cichowicz
Abstract:
The last active mine in the Central Rand Goldfields area (50 km x 15 km) ceased operations in 2008. This resulted in the closure of the pumping stations, which previously maintained the underground water level in the mining voids. As a direct consequence of the water being allowed to flood the mine voids, seismic activity has increased directly beneath the populated area of Johannesburg. Monitoring of seismicity in the area has been on-going for over five years using the network of 17 strong ground motion sensors. The objective of the project is to improve strategies for mine closure. The evolution of the seismicity pattern was investigated in detail. Special attention was given to seismic source parameters such as magnitude, scalar seismic moment and static stress drop. Most events are located within historical mine boundaries. The seismicity pattern shows a strong relationship between the presence of the mining void and high levels of seismicity; no seismicity migration patterns were observed outside the areas of old mining. Seven years after the pumping stopped, the evolution of the seismicity has indicated that the area is not yet in equilibrium. The level of seismicity in the area appears to not be decreasing over time since the number of strong events, with Mw magnitudes above 2, is still as high as it was when monitoring began over five years ago. The average rate of seismic deformation is 1.6x1013 Nm/year. Constant seismic deformation was not observed over the last 5 years. The deviation from the average is in the order of 6x10^13 Nm/year, which is a significant deviation. The variation of cumulative seismic moment indicates that a constant deformation rate model is not suitable. Over the most recent five year period, the total cumulative seismic moment released in the Central Rand Basin was 9.0x10^14 Nm. This is equivalent to one earthquake of magnitude 3.9. This is significantly less than what was experienced during the mining operation. Characterization of seismicity triggered by a rising water level in the area can be achieved through the estimation of source parameters. Static stress drop heavily influences ground motion amplitude, which plays an important role in risk assessments of potential seismic hazards in inhabited areas. The observed static stress drop in this study varied from 0.05 MPa to 10 MPa. It was found that large static stress drops could be associated with both small and large events. The temporal evolution of the inter-event time provides an understanding of the physical mechanisms of earthquake interaction. Changes in the characteristics of the inter-event time are produced when a stress change is applied to a group of faults in the region. Results from this study indicate that the fluid-induced source has a shorter inter-event time in comparison to a random distribution. This behaviour corresponds to a clustering of events, in which short recurrence times tend to be close to each other, forming clusters of events.Keywords: inter-event time, fluid induced seismicity, mine closure, spectral parameters of seismic source
Procedia PDF Downloads 285616 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils
Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen
Abstract:
Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.Keywords: copper, Klara, lime, N100, phytoextraction
Procedia PDF Downloads 146615 Statistical Models and Time Series Forecasting on Crime Data in Nepal
Authors: Dila Ram Bhandari
Abstract:
Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.Keywords: time series analysis, forecasting, ARIMA, machine learning
Procedia PDF Downloads 164614 Re-Examining Contracts in Managing and Exploiting Strategic National Resources: A Case in Divestation Process in the Share Distribution of Mining Corporation in West Nusa Tenggara, Indonesia
Authors: Hayyan ul Haq, Zainal Asikin
Abstract:
This work aims to explore the appropriate solution in solving legal problems stemmed from managing and exploiting strategic natural resources in Indonesia. This discussion will be focused on the exploitation of gold mining, i.e. divestation process in the New Mont Corporation, West Nusa Tenggara. These legal problems relate to the deviation of the national budget regulation, UU. No. 19/2012, and the implementation of the divestastion process, which infringes PP. No. 50/2007 concerning the Impelementation Procedure of Regional Cooperation, which is an implementation regulation of UU No. 1/2004 on State’s Treasury. The cooperation model, have been developed by the Provincial Government, failed to create a permanent legal solution through normative approach. It has merely used practical approach that tends (instant solution), by using some loopholes in the divestation process. The above blunders have accumulated by other secondary legal blunders, i.e. good governance principles, particularly justice, transparency, efficiency, effective principles and competitiveness principle. To solve the above problems, this work offers constitutionalisation of contract that aimed at reviewing and coherencing all deviated contracts, rules and policies that have deprived the national and societies’ interest to optimize the strategic natural resources towards the greatest benefit for the greatest number of people..Keywords: constitutionalisation of contract, strategic national resources, divestation, the greatest benefit for the greatest number of people, Indonesian Pancasila values
Procedia PDF Downloads 459613 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining
Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri
Abstract:
In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.Keywords: educational data mining, Facebook, learning styles, personality traits
Procedia PDF Downloads 231612 Gold, Power, Protest, Examining How Digital Media and PGIS are Used to Protest the Mining Industry in Colombia
Authors: Doug Specht
Abstract:
This research project sought to explore the links between digital media, PGIS and social movement organisations in Tolima, Colombia. The primary aim of the research was to examine how knowledge is created and disseminated through digital media and GIS in the region, and whether there exists the infrastructure to allow for this. The second strand was to ascertain if this has had a significant impact on the way grassroots movements work and produce collective actions. The third element is a hypothesis about how digital media and PGIS could play a larger role in activist activities, particularly in reference to the extractive industries. Three theoretical strands have been brought together to provide a basis for this research, namely (a) the politics of knowledge, (b) spatial management and inclusion, and (c) digital media and political engagement. Quantitative data relating to digital media and mobile internet use was collated alongside qualitative data relating to the likelihood of using digital media in activist campaigns, with particular attention being given to grassroots movements working against extractive industries in the Tolima region of Colombia. Through interviews, surveys and GIS analysis it has been possible to build a picture of online activism and the role of PPGIS within protest movement in the region of Tolima, Colombia. Results show a gap between the desires of social movements to use digital media and the skills and finances required to implement programs that utilise it. Maps and GIS are generally reserved for legal cases rather than for informing the lay person. However, it became apparent that the combination of digital/social media and PPGIS could play a significant role in supporting the work of grassroots movements.Keywords: PGIS, GIS, social media, digital media, mining, colombia, social movements, protest
Procedia PDF Downloads 427611 Assessment of Negative Impacts Affecting Public Transportation Modes and Infrastructure in Burgersfort Town towards Building Urban Sustainability
Authors: Ntloana Hlabishi Peter
Abstract:
The availability of public transportation modes and qualitative infrastructure is a burning issue that affects urban sustainability. Public transportation is indispensable in providing adequate transportation means to people at an affordable price, and it promotes public transport reliance. Burgersfort town has a critical condition on the urban public transportation infrastructure which affects the bus and taxi public transport modes and the existing infrastructure. The municipality is regarded as one of the mining towns in Limpopo Province considering the availability of mining activities and proposal on establishment of a Special Economic Zone (SEZ). The study aim is to assess the efficacy of current public transportation infrastructure and to propose relevant recommendations that will unlock the possibility of future supportable public transportation systems. The Key Informant Interview (KII) was used to acquire data on the views from commuters and stakeholders involved. There KII incorporated three relevant questions in relation to services rendered in public transportation. Relevant literature relating to public transportation modes and infrastructure revealed the imperatives of public transportation infrastructure, and relevant legislation was reviewed concerning public transport infrastructure. The finding revealed poor conditions on the public transportation ranks and also inadequate parking space for public transportation modes. The study reveals that 100% of people interviewed were not satisfied with the condition of public transportation infrastructure and 100% are not satisfied with the services offered by public transportation sectors. The findings revealed that the municipality is the main player who can upgrade the existing conditions of public transportation. The study recommended that an intermodal transportation facility must be established to resolve the emerging challenges.Keywords: public transportation, modes, infrastructure, urban sustainability
Procedia PDF Downloads 226610 The Effect of Additive Acid on the Phytoremediation Efficiency
Authors: G. Hosseini, A. Sadighzadeh, M. Rahimnejad, N. Hosseini, Z. Jamalzadeh
Abstract:
Metal pollutants, especially heavy metals from anthropogenic sources such as metallurgical industries’ waste including mining, smelting, casting or production of nuclear fuel, including mining, concentrate production and uranium processing ends in the environment contamination (water and soil) and risk to human health around the facilities of this type of industrial activity. There are different methods that can be used to remove these contaminants from water and soil. These are very expensive and time-consuming. In this case, the people have been forced to leave the area and the decontamination is not done. For example, in the case of Chernobyl accident, an area of 30 km around the plant was emptied of human life. A very efficient and cost-effective method for decontamination of the soil and the water is phytoremediation. In this method, the plants preferentially native plants which are more adaptive to the regional climate are well used. In this study, three types of plants including Alfalfa, Sunflower and wheat were used to Barium decontamination. Alfalfa and Sunflower were not grown good enough in Saghand mine’s soil sample. This can be due to non-native origin of these plants. But, Wheat rise in Saghand Uranium Mine soil sample was satisfactory. In this study, we have investigated the effect of 4 types of acids inclusive nitric acid, oxalic acid, acetic acid and citric acid on the removal efficiency of Barium by Wheat. Our results indicate the increase of Barium absorption in the presence of citric acid in the soil. In this paper, we will present our research and laboratory results.Keywords: phytoremediation, heavy metal, wheat, soil
Procedia PDF Downloads 337609 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: machine learning, imbalanced data, data mining, big data
Procedia PDF Downloads 130608 Hydrogeophysical Investigations And Mapping of Ingress Channels Along The Blesbokspruit Stream In The East Rand Basin Of The Witwatersrand, South Africa
Authors: Melvin Sethobya, Sithule Xanga, Sechaba Lenong, Lunga Nolakana, Gbenga Adesola
Abstract:
Mining has been the cornerstone of the South African economy for the last century. Most of the gold mining in South Africa was conducted within the Witwatersrand basin, which contributed to the rapid growth of the city of Johannesburg and capitulated the city to becoming the business and wealth capital of the country. But with gradual depletion of resources, a stoppage in the extraction of underground water from mines and other factors relating to survival of the mining operations over a lengthy period, most of the mines were abandoned and left to pollute the local waterways and groundwater with toxins, heavy metal residue and increased acid mine drainage ensued. The Department of Mineral Resources and Energy commissioned a project whose aim is to monitor, maintain, and mitigate the adverse environmental impacts of polluted water mine water flowing into local streams affecting local ecosystems and livelihoods downstream. As part of mitigation efforts, the diagnosis and monitoring of groundwater or surface water polluted sites has become important. Geophysical surveys, in particular, Resistivity and Magnetics surveys, were selected as some of most suitable techniques for investigation of local ingress points along of one the major streams cutting through the Witwatersrand basin, namely the Blesbokspruit, which is found in the eastern part of the basin. The aim of the surveys was to provide information that could be used to assist in determining possible water loss/ ingress from the Blesbokspriut stream. Modelling of geophysical surveys results offered an in-depth insight into the interaction and pathways of polluted water through mapping of possible ingress channels near the Blesbokspruit. The resistivity - depth profile of the surveyed site exhibit a three(3) layered model with low resistivity values (10 to 200 Ω.m) overburden, which is underlain by a moderate resistivity weathered layer (>300 Ω.m), which sits on a more resistive crystalline bedrock (>500 Ω.m). Two locations of potential ingress channels were mapped across the two traverses at the site. The magnetic survey conducted at the site mapped a major NE-SW trending regional linearment with a strong magnetic signature, which was modeled to depth beyond 100m, with the potential to act as a conduit for dispersion of stream water away from the stream, as it shared a similar orientation with the potential ingress channels as mapped using the resistivity method.Keywords: eletrictrical resistivity, magnetics survey, blesbokspruit, ingress
Procedia PDF Downloads 63607 A U-Net Based Architecture for Fast and Accurate Diagram Extraction
Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal
Abstract:
In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO
Procedia PDF Downloads 137606 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System
Authors: Nareshkumar Harale, B. B. Meshram
Abstract:
The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design
Procedia PDF Downloads 227605 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 121